
The NCTUns 1.0 network simulator is a new and much more powerful
simulator than the simulator presented in this paper. Information about this
new simulator is available at http://NSL.csie.nctu.edu.tw/nctuns.html. 
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Abstract

This paper proposes a new methodology for easily
constructing extensible and high-fidelity TCP/IP network
simulators. The methodology uses a kernel-reentering tech-
nique to reuse the existing real-life network protocol stacks,
real application programs that generate traffic, and real
utility programs that configure, monitor, or gather network
statistics to the maximum extent. Only an event scheduler
and some modifications to the kernel are needed to “glue”
these existing components to collectively simulate a
network.

A simulator constructed this way has many advantages
that a traditional network simulator cannot provide. First,
reuse of real-life implementation in the simulator can
generate more accurate results than a traditional simulator
that abstracts a lot of away from the real implementation.
Second, it can save much time and effort that would be
needed if a high-fidelity simulator is developed from
scratch. Third, because real application programs cannot
distinguish a simulated network constructed by the simu-
lator from a real one, all existing real-life and future appli-
cation programs can directly run on any node in a
simulated network. 

1. Introduction

Network simulators implemented in software are valu-
able tools for researchers in developing, testing, and diag-
nosing network protocols. Simulation is economical

because it can carry out experiments without the actual hard-
ware. It is flexible because it can, for example, simulate a
link with any bandwidth and propagation delay or a router
with any queue size and queue management policy. Simula-
tion results are easier to analyze than experimental results
because important information at critical points can be easily
logged to help researchers diagnose network protocols.

Network simulators, however, have their limitations. A
complete network simulator not only needs to simulate hosts
and routers, it also needs to simulate application programs
that generate network traffic. It also needs network utility
programs that configure, monitor, or gather statistics about a
simulated network. As such, developing a complete network
simulator is a large effort and traditional network simulators
tend to have the following drawbacks due to limited devel-
opment resources:

• Simulation results are usually not as convincing as those
produced by real hardware and software equipment. In
order to constrain their complexity and development
cost, most existing network simulators can only simulate
real-world network protocol implementations with lim-
ited detail, and this may generate wrong results in some
situations. 

For example, in ns [2], there are many differences
between the real-life and the simulation implementation
of the TCP/IP stack. First, in ns a TCP connection must
use a fixed length for all of its packets (because there is
no real application programs running to exchange data).
However, in real networks, this is unnecessary. Second,
in ns IP fragmentation is not handled. However, in real
networks, IP fragmentation may occur. Third, in ns the
receiver of a TCP connection does not implement the
dynamic advertised window mechanism (because there
is no real application program running to use the
received data). However, in real network usages, TCP
receivers always use the dynamic advertised window
mechanism to implement flow control between the TCP
sender and receiver.
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• These simulators are not extensible in the sense that
they lack the UNIX system call (POSIX) application
programming interface (API). As such, existing or to-
be-developed real application programs cannot be run
normally in separate address space to generate traffic on
nodes in a simulated network. Instead, in order to inter-
act with the simulator, they must be rewritten to use the
internal API provided by the simulator (if there is any)
and be compiled with the simulator to form a single pro-
gram.

This causes the following two problems. First, these
network simulators are limited to the study of only
network-level performance such as link utilization,
packet drop rate, etc. Application-level performance of
a real distributed application program (e.g., the response
time of a distributed database system when running on a
particular network configuration) cannot be studied.
However, a system designer or network planner may
need to know whether a given network topology and
associated link capacities can provide reasonable appli-
cation-level performance. Indeed, some commercial
simulation systems have been developed to meet this
application; see e.g. [3]. Second, the lack of UNIX
POSIX API prohibits the use of these network simula-
tors in areas where user-developed real programs need
to run on nodes to carry out tasks cooperatively. Exam-
ples of these areas include intelligent mobile agents [4]
and Mobile IP [5].

In this paper, we propose a simple simulation meth-
odology that alleviates these drawbacks. A simulator
constructed under this methodology has three desirable
properties as follows. First, it reuses the real-life UNIX
TCP/IP protocol stack, existing real network application
programs, and existing real network utility programs. As a
result, it can generate more accurate simulation results than
a traditional TCP/IP network simulator that abstracts a lot
away from a real-life TCP/IP implementation. Second, it
provides the UNIX POSIX API (i.e., the standard UNIX
system call interface) on every node in a simulated network.
Any real UNIX application program, either existing or to be
developed, thus can run on any node in a simulated network
to generate traffic. One important advantage of this property
is that since such a developed application program for simu-
lations is a real UNIX program, the program’s simulation
implementation can be its real implementation on an UNIX
machine. As a result, when the simulation study is finished,
we can quickly implement the real system by reusing its
simulation implementation. Third, the simulator can be
easily constructed with minimal time and effort. By reusing
existing code to the maximum extent, this methodology
enables a network researcher to easily construct his/her own
TCP/IP network simulator. 

A simulator constructed under our methodology has
been operational for several years. Its simulation results
have been validated extensively against results obtained
from real hardware, and shown to correctly reflect TCP/IP
network behaviors. (For example, the simulation results
presented in [6] were all confirmed by real experiment
results and more validation results are stored in our database
available at http://NSL.csie.nctu.edu.tw/NSL_DATA.) On
July 1, 1999, this simulator was released for the public and
was named Harvard TCP/IP network simulator 1.0 [7].
Since that time, as of August 1, 2001, more than 1,000
universities, research institutes, industrial research laborato-
ries, and ISPs have downloaded the simulator.

2. Related Work

In the literature, some approaches also use a real-life
TCP/IP stack to generate results [8, 9, 10, 11]. However,
unlike our approach, these approaches are used for emula-
tion purposes, rather than for simulation purposes. Among
these approaches, Dummynet [11] most resembles our
simulator. Both Dummynet and our simulator use tunnel
interfaces to use the real-life TCP/IP protocol stack on the
simulation machine. However, there are some fundamental
differences. Dummynet uses the real time, rather than the
simulated network's virtual time. Thus the simulated link
bandwidth is a function of the simulation speed and the total
load on the simulation machine. As the number of simulated
links increases, the highest link bandwidth that can be simu-
lated decreases. Moreover, in Dummynet, routing tables are
associated with incoming links rather than nodes. Thus, the
simulator will not know how to route packets generated by a
router, since they do not come from any link

OPNET [3], REAL [12], ns [2], SSFnet [13], PARSEC
and GloMoSim [14] represent the traditional network simu-
lation approach. In this approach, the thread-supporting
event scheduler, application programs that generate network
traffic, utility programs that configure, monitor, or gather
statistics about a simulated network, the TCP/IP protocol
implementation on hosts, the IP protocol implementation on
routers, and links are all compiled together to form a single
user-level program. Due to the enormous complexity, such
a simulator tends to be difficult to develop and verify. A
simulator constructed using this approach cannot provide
UNIX POSIX API for real application programs to run in
separate address space as they normally do on a real host.
Although some simulators may provide their own internal
API, real application programs still need to be rewritten so
that they can use the internal API, be compiled with the
simulator successfully, and be concurrently executed with
the simulator during simulation. 
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ENTRAPID [15] uses another approach. It uses the
virtual machine concept [16] to provide multiple virtual
kernels on a physical machine. Each virtual kernel is a
process and simulates a node in a simulated network. The
system calls issued by an application program are redirected
to a virtual kernel. As such, UNIX POSIX API can be
provided by ENTRAPID and real application programs can
be run in separate address space as normal. Because the
complex kernel needs to be ported to and implemented at
the user level, many involved subsystems (e.g., the file, disk
I/O, process scheduling, inter-process communication,
virtual memory subsystems) need to be modified exten-
sively. As a result, the porting effort is very large and the
correctness of the ported system need to be extensively veri-
fied.

The contribution of this paper is that we propose a new
methodology that can easily construct network simulators
with many advantages.

3. Simulator Architecture 

Our simulator architecture differs from traditional ones
in how it integrates the various components that implement
the following functions in a simulated network:

1. Links with various delays and bandwidths
2. Routers that forward IP packets
3. Hosts that use TCP/UDP/IP protocol to send and

receive packets
4. Application programs that generate network

traffic
5. Network utility programs that configure, monitor,

or gather statistics about a network

Unlike traditional approaches such as REAL [8] and ns
[2], our simulator architecture does not need to combine
component 1, 2, 3, 4, and 5 together to form a single
program. Instead, a simulator constructed under our meth-
odology has separate and independent components for 1, 2,
3, 4, and 5. When these components run concurrently on an
UNIX machine, collectively their executions simulate a
network. Since the constructed system is intended to be
used as a simulator, the time used in the system is virtual
time, rather than real time. Section 5.1 will give the details.

In addition, our simulator only needs to simulate links
(component 1), and the complicated components 2, 3, 4, and
5 need not be simulated. In a simulated network, these
complicated components’ existing real-life code and
programs are directly used in the same way as they are used
in a real network. In contrast, a traditional network simu-
lator needs to simulate all of these components in a single
user-level program and therefore cannot simulate these

components in great detail. Some traditional simulators
simulate only an abstract of the real-life TCP/IP protocol
implementation. Others port the in-kernel real-life TCP/IP
protocol implementation to the user level trying to increase
simulation fidelity. However, because many involved
kernel subsystems need to be carefully removed (e.g., the
mbuf buffer system, which is extensively used in the BSD
UNIX TCP/IP protocol stack), the ported version usually
differs from the real-life implementation and its behavior
may be different from the original behavior. 

In the rest of this section, we will describe the key ideas
and techniques that make our simulator architecture
feasible.

3.1. Tunnel Network Interface

Tunnel network interfaces is the key facility that makes
our simulation architecture feasible. A tunnel network inter-
face, available on most UNIX machines, is a pseudo
network interface that does not have a real physical network
attached to it. The functions of a tunnel network interface,
from the kernel’s point of view, are no different from those
of an Ethernet network interface. A network application
program can send out its packets to its destination host
through a tunnel network interface or receive packets from a
tunnel network interface, just as if these packets were sent
to or received from a normal Ethernet interface. 

Each tunnel interface has a corresponding device
special file in the /dev directory. If an application program
opens a tunnel interface’s special file and writes a packet
into it, the packet will enter the kernel. To the kernel, the
packet appears to come from a real network and just be
received. From now on, the packet will go through the
kernel’s TCP/IP protocol stack as an Ethernet packet would
do. On the other hand, if the application program reads a
packet from a tunnel interface’s special file, the first packet
in the tunnel interface’s output queue in the kernel will be
dequeued and copied to the application program. To the
kernel, the packet appears to have been transmitted onto a
network and this pseudo transmission is no different from
an Ethernet packet transmission.

Using tunnel network interfaces, we can easily simulate
a single-hop TCP/IP network depicted in Figure 1 (a),
where a TCP sender on host 1 is sending its TCP packets to
a TCP receiver on host 2. We set up the virtual simulated
network by performing the following two steps. First, we
configure the kernel routing table of the simulation machine
so that tunnel network interface 1 is chosen as the outgoing
interface for the TCP packet sent from host 1 to host 2,
tunnel network interface 2 for the TCP packets sent from
host 2 to host 1. Second, for each of the two links to be
simulated, we run an application program (called “virtual



4

link” object here) to simulate it. For the link from host i to
host j (i = 1 or 2, j = 3 - i), the application program would
open tunnel network interface i’s and j’s special file in /dev
and then execute an endless loop. In each step of this loop, it
simulates a packet’s transmission on the link by reading a
packet from the special file of tunnel interface i, waiting the
link’s propagation delay time plus the packet’s transmission
time on the link, and then writing this packet to the special
file of tunnel interface j. 

After performing the above two steps, the virtual simu-
lated network has been constructed. Figure 1 (b) depicts this
simulation scheme. Since our trick of replacing a real link
with a simulated link happens outside the kernel, the kernels
on both hosts do not know that their packets actually are
exchanged on a virtual simulated network. The TCP sender
and receiver programs, which run on top of the kernels, of
course do not know the fact either. As a result, all existing
real network application programs can run on the simulated
network, all existing real network utility programs can work
on the simulated network, and the TCP/IP network protocol
stack used in the simulation is the real-life working imple-
mentation, not just an abstract or a ported version of it. 

By using the kernel-reentering technique presented in
Section 4, the kernel of the simulation machine is shared by
all nodes (hosts and routers) in a virtual simulated network.
Therefore, although in Figure 1 (b) there are two TCP/IP
protocol stacks depicted, actually they are the same one --
the protocol stack of the single simulation machine.

3.2. Opaque and Transparent Network Cloud 
Simulation Models

To extend simulated networks from single-hop
networks as shown in Figure 1 (a) to multi-hop networks,
we need to simulate an additional object type -- interme-
diate routers. A traditional way of simulating a network
composed of links and routers is to simulate them in a user-
level program. We call a simulated network formed this
way an “opaque network cloud.” It is “opaque” because the
kernel can not see through the network cloud. As Figure 2
(a) illustrates, once a packet is injected into an opaque
network cloud, it will be covered by the opaque network
cloud when it traverses through the routers on the way to its
destination host. The kernel of the simulation machine
cannot see this packet because the packet will not enter and
leave the kernel again until it finally reaches its destination
host. OPNET Modeler [3] and ns [2] are examples of those
network simulators that use the opaque network cloud simu-
lation model.

In contrast, when a packet arrives at a router, our meth-
odology simulates the packet forwarding operation by
performing the following three steps. First, the virtual link
object from which the arriving packet comes writes the
packet into the kernel. Second, the kernel automatically
forwards the packet toward the correct direction (i.e., puts it
into the correct output port’s queue). (This routing step can
be done automatically because any UNIX host in real life
can also function as a router.) Third, the virtual link object
of the next hop pulls this packet out of the kernel (i.e., fetch
it from the output port’s queue) and then simulates its trans-
mission on the next hop. We call a simulated network
formed this way a “transparent network cloud.” “Trans-
parent” here means that, as shown in Figure 2 (b), after a
packet is injected into the network cloud, the packet will go
down (enter the kernel) and go up (leave the kernel) when
passing through each router on the way to its destination
host. Thus the kernel will see the packet when it traverses
through the network cloud. 

A network simulator that uses the transparent network
cloud model has many advantages over one that uses the
opaque model. First, since the real-life working protocol
stack is used in routing and forwarding a packet, there is no
need to spend time and effort on porting the in-kernel
routing protocol stack to a user-level program to simulate
routers. Second, because the unmodified real-life UNIX
routing protocol stack is used, simulation results are more
credible than those generated otherwise. Third, the standard
UNIX system call interface (API) is exposed and supported
on every node. All real application programs that can run on
hosts can now run on routers as well. 

Figure 1:  (a) A TCP/IP network example to be simulated.
(b) By using tunnel interfaces, only the two links need to
be simulated. The complicated TCP/IP protocol stack
need not be simulated. Instead, the real-life working TCP/
IP protocol stack is directly used in the simulation.
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Figure 3 (b) and (c) illustrate the differences between
two simulated networks that are based on the opaque and
transparent network cloud simulation models, respectively.
Both of them are constructed to simulate the same network
in (a).

4. Design 

This section presents our addressing, routing, and
address-remapping schemes that are designed to support the
transparent network cloud simulation model. As described
earlier, the single simulation machine will act as both hosts
and routers during a simulation. Using the network of
Figure 3 (a) as an example, we illustrate the operations
occurred on the simulation machine when a packet is sent
across the network from node 1 to node 2. As depicted in
Figure 4, the operations involve a sequence of leaving and
entering the kernel operations. That is, to forward a packet
along the path from the TCP sender to the TCP receiver in
Figure 3 (a), the packet will leave the kernel along link 1
and then re-enter it, leave the kernel along link 3 and then
re-enter it, and finally, leave the kernel along link 5 and then
re-enter it.

To route packets, the simulation machine needs to
maintain a routing table. Since the simulation machine
simulates all the routers and hosts in a simulated network,
by using the union of the routing tables in all of the nodes,
one may think that the simulation machine should be able to
route packets correctly. However, when unified together,
these routing tables contain conflicting information. For
example, in the network of Figure 3 (a), when forwarding a
packet destined to host 2, host 1 will choose link 1 as its

next hop, router 1 will choose link 3 as its next hop, and
router 2 will choose link 5 as its next hop. If all these
conflicting (destination IP address, next hop) pairs are
stored in the single simulation machine’s routing table, the
kernel cannot choose the correct next hop for forwarding a
packet.

One solution to this problem is to have a separate
routing table in the kernel for every node in the simulated
network. Each packet re-entering the kernel then tells the
kernel which node it should simulate at this time. For
example, when passing through router 2, the packet will tell
the kernel that now the kernel should simulate router 2. The
kernel then uses this information to look up the corre-
sponding routing table to retrieve the correct routing entry.

Although the above method can solve the route conflict
problem, it is not our preferred solution for the following
reasons. First, maintaining a separate routing table in the
kernel for every node of a simulated network is not the stan-
dard mechanism used by an UNIX machine. In order to
work around the route conflict problem, we will need to
extensively modify the kernel code that is related to routing
and forwarding. This violates our goal of minimizing modi-
fication to a real-life network protocol stack. Second, using
a different routing mechanism means that we no longer can
use many existing utilities, such as “route,” to configure
routes. Many new utility programs would have to be devel-
oped to adapt to the changes.

Our preferred solution is to use a special address-
remapping and route-setup scheme so that using the default
kernel routing table does not result in the route conflict
problem. The basic idea is to remap the destination IP
address of a packet to a new one before it arrives at and is
forwarded by a router. We call the mapped version of an IP
address on node i as this IP address’s “As-Seen-By-
Node(i)” address. Because our address-remapping scheme

Host Host
RouterRouter

Host HostRouterRouter

Packets

Packets
(a) An opaque network cloud

(b) A transparent network cloud

Figure 2:  Opaque and transparent network clouds differ in
whether or not packets traversing through routers in the
simulated network are “visible” to the kernel of the simu-
lation machine.

Kernel

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

Kernel

Figure 4:  Routing a packet along a route in the simulated
network of Figure 3 (c) is a sequence of leaving and en-
tering the kernel operations applied to the simulation ma-
chine.
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guarantees that none of these “As-Seen-By-Node(i)”
addresses will be the same, the route conflict problem will
not happen. Figure 3 (d) illustrates the address-remapping
idea. In the following sections, we will explain our
addressing, address-remapping, and routing schemes in
detail.

4.1. Use a Private Address Scheme for a Node’s 
(Normal) IP Address(es)

Like the usual practice over the Internet that each node
has one IP address associated with each of its network inter-
faces, we assign one IP address to each network interface of
a node. These addresses are called “normal” in the rest of
the paper to distinguish them from the “As-Seen-By-
Node(i)” addresses, which will be defined in Section 4.3.
Because one-way simplex links are supported in a simulated
network, some IP addresses of a node may be associated
with the node’s incoming interfaces while the others associ-
ated with its outgoing interfaces. In our scheme, only those
IP addresses that are associated with outgoing interfaces are
used to reference nodes. For example, when we want to
send a packet to a node j, we will use one IP address of node
j that is associated with one of node j’s outgoing interface to
be the packet’s destination address. We will not use an IP
address that is associated with an incoming interface to
reference a node.

The network address of a simulated network in our
system is “192.168.0.0”. “192.168.” was chosen because it
is within the experimental address space defined in RFC
1918. Using it assures that the simulation machine can still
be connected to a real network without interfering with
other networks during the simulation. For simplicity,
however, in the rest of this paper, we will use “1.1.0.0” as
the network address of a simulated network. Every simplex
link is defined as a subnet in the simulated network and has
“1.1.Link_ID.0” as its sub-network address, where Link_ID
is its link identity. 

Consider a simplex link from node A to node B. We
define the IP address of node A on this link as “1.1.Link_
ID.NodeA_ID”, where NodeA_ID is the identity of node A
in the simulated network. Although the IP address of node B
on this link will not be used in the simulation (because this
link is node B’s incoming link), due to the requirement that
we must specify a local and a remote address when config-
uring a tunnel network interface, we still define node B’s
address as “1.1.Link_ID.254”. Arbitrarily chosen, “254”
will hereafter remind us that an IP address ending with
“254” should not be used to reference a node. The IP
addresses of all nodes on all links in a simulated network
are assigned using the same scheme described here. As
explained earlier, if a node has multiple links, only its IP

addresses that are associated with its outgoing simplex links
are used. Therefore, IP addresses in the form of “1.1.Link_
ID.254” will never be used to reference a node. For
example, host 1 in Figure 3 (a) will have two IP addresses.
The first address, “1.1.1.1”, will be used while the second,
“1.1.2.254”, will not be used. For the same reason, router 1
in Figure 3 (a) will have four IP addresses, but only
“1.1.3.3” and “1.1.2.3” will be used to reference it.

4.2. Construct the Virtual Simulated Network

We then use these defined IP addresses to configure
tunnel network interfaces on the simulation machine to
construct a virtual simulated network. The way we
configure a simulated network is exactly the same way a
person configures a real network composed of nodes and
point-to-point links. A tunnel network interface, which is
just like a SLIP or PPP network interface for a point-to-
point link, is used for a one-way simplex link in the simu-
lated network. We associate tunnel network interface i with
link i so that its local IP address and its remote IP address
are “1.1.i.SourceNode_ID” and “1.1.i.254’, respectively,
where SourceNode_ID is the node identity of simplex link
i’s source node.

4.3. Define a Node’s IP Address(es) Seen from 
Other Nodes

Although we have defined a node’s (normal) IP
address(es), these addresses are only useful in helping us
construct a virtual simulated network and reference nodes.
To solve the route conflict problem discussed in Section 4,
we need to define and introduce the concept of the “As-
Seen-by-Node(i)” IP address of a node’s IP address, where i
is an index variable. The “As-Seen-by-Node(i)” IP address
of node j’s IP address is the address that node i should use
when sending a packet to node j. In our methodology, we
define a node’s “As-Seen-by-Node(i)” IP address, where i is
the node identity of any other node in the simulated
network, as follows:

Suppose “1.1.Link_ID.Node_ID” is one of a node’s 
IP addresses as defined in Section 4.1, then the 
“As-Seen-by-Node(i)” IP address of this address is 
“1.1.Link_ID.i”.

As defined above, a node, in addition to its (normal) IP
address(es), has a unique “As-Seen-by-Node(i)” IP address
for node i in the simulated network. For example, in Figure
3(a), node 2’s “As-Seen-by-Node(1)” IP address is
“1.1.6.1”, its “As-Seen-by-Node(3)” IP address “1.1.6.3”
and its “As-Seen-by-Node(4)” IP address “1.1.6.4”. In our
methodology, if node i wants to send a packet to node j, it
uses node j’s “As-Seen-by-Node(i)” IP address as its
packet’s destination IP address so that its packet can be
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correctly routed in the simulated network. The next session
explains how this scheme works.

4.4. Use “As-Seen-by-Node(i)” IP Addresses to 
Route Packets

Using “As-Seen-by-Node(i)” IP addresses enables us to
correctly route packets without the route conflict problem
discussed in Section 4. This is achieved because even if
there are multiple sending nodes that all want to send
packets to the same destination node j, these packets’ desti-
nation IP addresses will be different from each other. In
fact, these sending nodes will all use node j’s “As-Seen-by-
Node(i)” IP addresses, and i will be different for different
sending nodes. Since we no longer can find two routing
entries in the simulation machine’s routing table that have
the same destination IP address but different next hops to
forward a packet, the route conflict problem is solved. 

To set up routes for every pair of nodes, the routes for
all possible “As-Seen-by-Node(i)” IP addresses in a simu-
lated network should be set up. This can be easily accom-
plished by using the existing user-level “route” utility
provided on an UNIX machine.

If node i has only one link (i.e., it is a host), setting its
routes to all other nodes’ “As-Seen-by-Node(i)” IP
addresses is simple. We only need to set its outgoing link
(thus the link’s associated tunnel network interface) as the
next hop for these IP addresses. If node i has multiple links
connecting it to the rest of the network (i.e., it is a router),
the selection of the next hop for a “As-Seen-by-Node(i)” IP
address actually depends on the desired routing algorithm.
For example, we can use routes generated by a shortest-
distance-vector or policy routing algorithm to configure the
routes for the entire simulated network. 

Using “As-Seen-by-Node(i)” IP addresses and setting
routes for these IP addresses effectively achieve the
following two functions -- storing each node’s routing table
separately in the kernel and forwarding packets using their
own correct routing tables. The reason is that when we set
the next hop for node j’s “As-Seen-by-Node(i)” IP address,
we are essentially adding a route from node i to node j into
node i’s own routing table. 

4.5. Modify A Packet’s “As-Seen-by-Node(i)” 
Destination and Source Addresses on Every 
Hop Along Its Path

Suppose that before a packet arrives at its final destina-
tion node j, it arrives at node i. In our methodology, the
kernel can forward the packet to the correct next hop (link)
if the packet’s destination IP address has been set to the

“As-Seen-by-Node(i)” address of node j’s IP address. In
order to continuously route a packet across multiple nodes
toward its destination node, this packet’s destination IP
address must be modified on every hop along its path.

More specifically, before a packet arrives at node i, we
must change its destination IP address from its current one
to the “As-Seen-by-Node(i)” address of its final destination
node’s IP address. This change can be easily done because
we only need to change the least significant byte of this
packet’s destination IP address to i. For example, in Figure
3 (d), when a packet is routed from node 1, via node 3 and
node 4, to node 2, its destination IP address in the IP header
will be “1.1.6.1”, “1.1.6.3”, “1.1.6.4” and “1.1.6.2”, respec-
tively. Note that by using this scheme, when a packet
arrives at its final destination node, the destination address
in its IP header is the same as its destination node’s
(normal) IP address. This property is important because it
enables the kernel to decide when to stop forwarding the
packet. In Section 6.2, we will explain this property in
detail.

Sometimes a node j in a simulated network may want to
send reply packets back to node i after having received a
packet from node i. For example, during a TCP connec-
tion’s connection establishment phase, when a server
receives a SYN packet from a client, it will reply with a
SYN+ACK packet to that client to continue the three-way
handshaking procedure. Also, in an ICMP application (e.g.,
traceroute), a node in the simulated network may want to
send an error message (e.g., TTL expired) back to a packet’s
source node. Therefore, in order for a node to directly use
the source IP address in a received packet’s header to send
back a reply packet, before this packet arrives at node i,
both its destination and source IP addresses should be
changed to their corresponding “As-Seen-by-Node(i)”
addresses. 

Since before a packet arrives at a node, it is transmitted
on a link, it is natural for virtual link objects in the simu-
lated network to modify the source and destination address.
In our methodology, when a virtual link object is created to
simulate a one-way simplex link, the parameters associated
with it, besides standard ones such as bandwidth and delay,
contain the identity (assume i for the following discussion)
of this link’s destination node. With this information, when
receiving a packet, this link can change the least significant
bytes of the packet’s source and destination IP addresses to i
before delivering it to the link’s destination node. 
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5. Implementation

5.1. User-Level Event Scheduler

Our system only needs to simulate one kind of object --
the virtual link objects that simulate links. Hosts and routers
need not be simulated because the simulation machine acts
as them in a simulation. Due to this property, our TCP/IP
network simulator is just a user-level event scheduler.
(Section 7.1 presents the implementation of an in-kernel
version, which greatly speeds up simulation.) This event
scheduler simulates links simply by scheduling a time for a
link to read a packet from the link’s source node (in order to
simulate the previous packet’s transmission time) and a
time for a link to deliver a packet to the link’s destination
node (in order to simulate the link propagation delay).

Another task of the event scheduler is to pass the simu-
lated network’s virtual time down into the kernel so that the
timers of TCP connections in the simulated network can be
triggered by the virtual time rather than by the real time.
Although this can be easily implemented by periodically
calling a system call to pass the current virtual time into the
kernel, we implement this by mapping the memory location
that stores the current virtual time in the event scheduler to a
memory location in the kernel. As such, at any time the
virtual time in the kernel is as precise as that maintained in
the event scheduler without any system call overhead.

The virtual time in the event scheduler is maintained by
a counter. The time unit represented by one tick of the
counter can be set to any value as small as we would like
(e.g., one nanosecond) to simulate high speed links. The
current virtual time thus is the current value of the counter
times the used time unit. During simulation, the counter is
periodically advanced by one as soon as all events that need
to be processed at current virtual time have been processed. 

Events are generated in many situations. One situation
is that it is time for the first packet in a tunnel interface’s
output queue to enter the simulated network. In each time
unit, the event scheduler checks a bit map to see which
tunnel interfaces have a packet to enter the simulated
network at this time. (We use the memory-mapping tech-
nique to map the in-kernel bit map to a map maintained in
the event scheduler. Therefore the overhead for checking
this bit map in every time unit is insignificant.) When it is
time for a packet in a tunnel interface to enter the simulated
network, an event is generated and immediately executed.
Executing this event will remove this packet from that
tunnel interface’s output queue and generate more events to
be executed in the future. One of these events is used to
simulate the link propagation delay that this packet should
experience before reaching the other end of the link.

Another event is used to simulate the packet’s transmission
time so that during this period of time the same tunnel inter-
face cannot inject any more packet into the simulated
network. 

An event is triggered when the current virtual time
becomes greater than its timestamp. All events are precisely
scheduled and triggered based on the virtual time of the
simulated network. For this reason, simulation results are
not affected by other activities on the simulation machine
(e.g., disk I/O and network I/O).

5.2. Kernel 

Some parts of the kernel need to be modified to support
our simulator.

IP and UDP/TCP Checksum Tests: Because in simu-
lation the source and destination IP addresses of a packet
will change on every hop (see Section 4.5), the checksums
in the IP and UDP/TCP headers of the packet will be incor-
rect and should not be checked. Skipping these checksum
tests will not affect the data integrity of packets in our simu-
lator because all packets in our simulated network, in fact,
never leave the simulation machine. For situations where
we need to simulate a corrupted packet, we can simply set a
flag in its IP header to indicate it. Nodes in the simulated
network can then detect the corruption and discard the
packet.

TCP Timers: TCP slow and fast timers should be
modified so that they are triggered based on the virtual time
of the simulated network rather than the real time. If we
would use the real time, a TCP connection’s re-transmit
(slow) timer would prematurely expire k times earlier than
when it should do, if a simulated network is k times slower
than the real network.

Virtual Clocks: In the real world, each machine’s
clock may be different from others’ due to clock drift and
skew. We should simulate this phenomenon to avoid
multiple TCP connections to drop packets, time out, and
“slow-start” in a lock-step manner. For this purpose, we
maintain a separate virtual clock for each node in a simu-
lated network. These virtual clocks are offset by some
random time.

Process Scheduler: The default UNIX process sched-
uler is modified so that the processes of the event scheduler
and all launched traffic generators are scheduled in a
controlled way. The default UNIX process scheduler uses a
priority-based dynamic scheme to schedule runnable
processes. As such, the order in which the event scheduler
and traffic generator processes are scheduled cannot be
precisely controlled. Also, the CPU cycles allocated for
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each of these processes cannot be guaranteed. This may
result in potential problems. For example, after getting the
control of CPU, the event scheduler may use the CPU too
long before releasing it to traffic generators. Because the
event scheduler advances the virtual time while it is
executing, if it monopolizes the CPU too long, no network
traffic can be generated during this long period of time,
which should not occur. To avoid this potential problem, we
modified the default UNIX process scheduler so that the
event scheduler process and all runnable traffic generator
processes are scheduled explicitly in a round-robin manner. 

5.3. Application 

With our run-time system and kernel support, an appli-
cation program can work with our simulator without any
modification.

Associate an Application’s TCP Socket(s) with the
ID of the Node on Which It Runs. If a TCP application
program runs on node i, its TCP timers should be triggered
based on node i’s virtual clock. We achieve this requirement
by modifying the kernel and using a run-time system. In our
simulator, launching an application program must be
performed by our run-time system. After obtaining the
process ID of the just launched application program, the
run-time system immediately calls a system call to pass the
node_ID information to the kernel. Inside the system call,
the node_ID information will be stored in the process’s
process control block. This information will later be used
when a TCP control block (socket) is created for this
process.

Use the Simulated Network’s Virtual Time. When an
application program reports data related to time, it should
use the simulated network’s virtual time, rather than the real
time. Examples include “ping,” which reports a packet‘s
round-trip time, and “ftp,” which reports the throughput of a
file transfer. Another example is an application program
(traffic generator) that uses time information to generate a
particular traffic pattern (e.g., constant-bit-rate or Poisson
arrival). This requirement can be easily handled because our
run-time system has the process IDs of all launched applica-
tion programs and will pass these process IDs into the
kernel. The kernel’s implementation of time-related system
calls such as (gettimeofday(), sleep(), alarm(), etc.) is modi-
fied so that each of these system calls will check whether
the process that issues this system call is one of these
launched processes. If so, it returns the current virtual time.
Otherwise, it returns the default current real time.

6. Configuration and Usage Examples

We use the example network depicted in Figure 3 (a) to
illustrate the configuration and usage of our simulator. The
example considers a TCP sender and a TCP receiver
connected through a cascade of routers. In the appendix at
the end of this paper, we consider a more complex network
topology (Figure 6).

6.1. Network Configuration

All links in the network of Figure 3 (a) are 10 Mbps
links. The propagation delay of link i is set to be i ms. This
configuration allows us to easily test whether our simulator
can correctly simulate links with various delays.

6.2. Tunnel Network Interface Configuration

The commands used to configure the six tunnel
network interfaces for link 1, 2, 3, 4, 5, and 6, respectively,
are shown as follows: 

ifconfig tun1 1.1.1.1 1.1.1.254 netmask 0xffffff00
ifconfig tun2 1.1.2.3 1.1.2.254 netmask 0xffffff00
ifconfig tun3 1.1.3.3 1.1.3.254 netmask 0xffffff00
ifconfig tun4 1.1.4.4 1.1.4.254 netmask 0xffffff00
ifconfig tun5 1.1.5.4 1.1.5.254 netmask 0xffffff00
ifconfig tun6 1.1.6.2 1.1.6.254 netmask 0xffffff00

A tunnel network interface resembles a SLIP or PPP
network interface because both are used for a point-to-point
link. What the first “ifconfig” command states is that tunnel
network interface 1 (“tun1”) will be used for a link whose
local IP address is “1.1.1.1” and whose foreign address is
“1.1.1.254”. After executing these commands on an UNIX
machine, host 1’s (normal) IP address in the simulated
network is “1.1.1.1”, host 2’s (normal) IP address is
“1.1.6.2”, router 1’s (normal) IP addresses are “1.1.2.3” and
“1.1.3.3”, and finally router 2’s (normal) IP addresses are
“1.1.4.4” and “1.1.5.4”.

To save a user’s time and effort, our simulator provides
a program that reads in the network configuration file and
automatically generates the required tunnel interface
configuration commands.

Note that because the single simulation machine acts as
both routers and hosts in the simulated network, it is impor-
tant for our simulator to know when to forward and when to
stop forwarding a packet. Together, the following three
properties enable the kernel to know when to stop
forwarding a packet: 

• First, as stated in Section 4.5, when a packet arrives at
its destination node, the destination address in its IP
header, although it may have been changed several
times, will be its destination node’s (normal) IP address. 
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• Second, a node’s (normal) IP address is the local
address of one configured tunnel network interface. 

• Third, the local address of any configured tunnel inter-
face is one of the simulation machine’s IP addresses that
can be used in the real world. Other machines in a real
world network can use any of these configured tunnel
interfaces’ local addresses to send a packet to this simu-
lation machine. For this reason, when a packet is
received, whether from a physical network or from a
simulated network, if its destination address is one of
these tunnel interfaces’ local addresses, the kernel will
think that this packet is destined for itself and thus will
stop forwarding the packet. The kernel then delivers the
packet through the TCP/IP protocol stack to an applica-
tion program.

6.3. Route Configuration

The commands used to configure the routes for the
simulated network are as follows:

route add 1.1.2.1 -interface tun1
route add 1.1.3.1 -interface tun1
route add 1.1.4.1 -interface tun1
route add 1.1.5.1 -interface tun1
route add 1.1.6.1 -interface tun1

route add 1.1.1.2 -interface tun6
route add 1.1.2.2 -interface tun6
route add 1.1.3.2 -interface tun6
route add 1.1.4.2 -interface tun6
route add 1.1.5.2 -interface tun6

route add 1.1.1.3 -interface tun2
route add 1.1.4.3 -interface tun3
route add 1.1.5.3 -interface tun3
route add 1.1.6.3 -interface tun3

route add 1.1.1.4 -interface tun4
route add 1.1.2.4 -interface tun4
route add 1.1.3.4 -interface tun4
route add 1.1.6.4 -interface tun5

The purpose of the first block of these commands is to
set routes for host 1. What the first “route” command states
is that any packet whose destination IP address is “1.1.2.1”
should be sent out through tunnel network interface 1
(“tun1”). The second block is for setting routes for host 2.
The third block is for setting routes for router 1. The last
block is for setting routes for router 2. Clearly, configuring
routes for host i follows a simple and regular pattern. Let’s
assume that host i uses link j (tunnel network interface j) as
its outgoing link to the rest of the simulated network. The
route configurations for host i are as follows:

For each link in the simulated network, do 

let k be the identity of the link
if (k != j) do

route add 1.1.k.i -interface tun(j)

For a large network, the number of routing entries to be
generated and set up can be large. To save a user’s time and

effort, our simulator provides a program that reads in the
network configuration file and automatically generates the
needed routing entries. In addition, the routing daemons
provided on UNIX (e.g., routed and gated which implement
RIP and OSPF routing protocols respectively) can be run on
nodes in a simulated network to cooperatively and dynami-
cally generate and set up routing entries.

6.4. Link Configuration

The simulator reads in a link configuration file to simu-
late a link’s bandwidth and delay. The format of a line for a
link in this file is (Link_ID, Destination_Node_ID, Band-
width, Delay). Because we associate link i with tunnel
network interface i when we configure tunnel network inter-
faces, as performed in Section 4.2, each virtual link object
knows from which tunnel network interface to read packets.
For a link, if it wants to deliver a packet to its destination
node, after simulating the link’s propagation delay and the
packet’s transmission time, it can use the same tunnel
network interface from which it reads packets to write
packets into the kernel. Actually, it does not matter which
tunnel network interface a virtual link object should use to
write packets into the kernel. The result will be the same.
This is because, as in a real network, no matter from which
network interface a packet is received, the kernel can still
correctly forward the packet or deliver it to an application
program. The following six lines are for links 1, 2, 3, 4, 5
and 6.

# link_ID next_Node_ID BW delay
# --------------------------------------------------

1  3 10Mbps 1ms
2  1 10Mbps 2ms
3  4 10Mbps 3ms
4  3 10Mbps 4ms
5  2 10Mbps 5ms
6  4 10Mbps 6ms

6.5. Example Application Programs

Any existing real-world application program (e.g., the
Netscape web browser and the Apache web server) can
readily run on any node in our simulated network The
following are just a few application examples that our simu-
lator has used. We illustrate them using the network of
Figure 3 (a).

6.5.1: “Ping” Reports Round-Trip Time

“Ping” is a useful tool to test whether our simulator can
correctly simulate links with various delays and band-
widths. Usually, in a real-world network, “ping” can only be
executed on a host. This means that only the round-trip time
between an edge host and a node (either an edge host or a
router) can be reported. In contrast, in our simulator, “ping”
can report a packet’s round-trip time between any two
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nodes. The following example demonstrates that we can use
“ping” to estimate the round-trip time between router 1
(node 3) and router 2 (node 4) of Figure 3 (a), neither of
which is an edge host.

# ping 1.1.4.3
PING 1.1.4.3 (1.1.4.3): 56 data bytes
64 bytes from 1.1.4.3: icmp_seq=0 ttl=255 time=7.000 ms
64 bytes from 1.1.4.3: icmp_seq=1 ttl=255 time=7.000 ms
^C
--- 1.1.4.3 ping statistics ---
2 packets transmitted, 2 packets received, 0%
packet loss
round-trip min/avg/max = 7.000/7.000/7.000 ms

6.5.2: “Traceroute” Shows the Routing Path

“Traceroute” can test whether routes are correctly set
up in our simulator. Being able to use “traceroute” to show
the routing path between any two nodes, our simulator has
been helpful in debugging routing protocols. In the
following example, “traceroute” outputs the routing path
from host 2 to host 1 of Figure 3 (a).

# traceroute 1.1.1.2
traceroute to 1.1.1.2 (1.1.1.2), 30 hops max, 40 byte 
packets
 1  1.1.6.2  11.000 ms  11.000 ms  11.000 ms
 2  1.1.4.2  19.000 ms  18.000 ms  18.000 ms
 3  1.1.1.2  21.000 ms  21.000 ms  22.000 ms

Because the links used in the simulator are simplex
links, the output of “traceroute” in our simulator is some-
what different from its normal output. To understand its
output in our simulator, we need to look at the Link_ID field
(the second least significant byte) of the IP addresses
reported by “traceroute.” In general, the sequence of these
Link_ID values shows us how a packet is routed along these
links. The only exception occurs on the last hop of the
reported routing path, where the reported Link_ID gives us
the reverse direction of the actual link that is used to
transmit packets to the destination node. For example, in the
above output, “traceroute” shows that a packet is first sent
on link 6, then on link 4, and finally on link 2. (Although it
reports that link 1 is the last hop, according to our explana-
tion, we know it means link 2.) This anomaly is caused by
UNIX’s different processing of choosing the source IP
address to be included in the error-reporting packet. On
every hop, except the last hop, where the error-causing
packet has not yet reached its destination node, the chosen
source IP address is the error-causing packet’s incoming
interface’s address. However, on the last hop, where the
error-causing packet has reached its destination, it is the
error-reporting packet’s outgoing interface’s address. Since
an Ethernet’s incoming and outgoing interfaces use the
same IP address, this anomaly does not happen in a real
network that uses Ethernet interfaces.

6.5.3: “Ftp” Client and Server on Any Node

“Ftp” clients and servers can readily work on our simu-
lation machine. Since ftp clients can accept scripts to “get”
and “put” files automatically, we can use them to generate
network traffic in different directions automatically. The
following example illustrates the use of “ftp” to “put” a file
to /dev/null on a remote node. (/dev/null is a sink device on
an UNIX machine. It sinks all data without writing it to
disks, thus eliminating unnecessary disk I/O operations on
the simulation machine.)

# ftp 1.1.4.3
Connected to 1.1.4.3.
220 nsl.csie.nctu.edu.tw FTP server
ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for ‘/bin/ls’.
total 73408
-rw-rw-r--  1 root  wheel   2383872 Aug  8 23:53 file1
226 Transfer complete.
ftp> put file1 /dev/null
local: file1 remote: /dev/null
200 PORT command successful.
150 Opening BINARY mode data connection for 
‘/dev/null’.
226 Transfer complete.
2383872 bytes sent in 2.29 seconds (1017.04 Kbytes/s)

The above throughput report confirms that our simu-
lator can correctly simulate 10 Mbps links. After removing
the bandwidth consumed by the IP and TCP header over-
head, the achieved throughput of 1017.04 KB/sec is roughly
the throughput that can be achieved on 10 Mbps links with
an MTU of 576 bytes.

Notice that the ftp server in the above example is on
router 2 (node 4) in the simulated network, not on an edge
host. Moreover, the ftp client is running on router 1 (node
3), also not on an edge host. Actually, in our simulator, a
real application program can run on any node in a simulated
network. This capability allows network traffic to be gener-
ated deep inside a simulated network.

By using “inetd” [17], the internet “super-server” on an
UNIX machine, a ftp server on a node can be dynamically
and automatically launched by “inetd” only when the ftp
server is really needed. Therefore, providing a ftp server on
every node in a simulated network is very resource-effi-
cient, and invoking a ftp server on a node does not need any
human effort.

6.5.4: “Tcpdump” Monitors Packets on Any Link

“Tcpdump” is a useful tool for monitoring and scruti-
nizing packets transmitted on a link (e.g., an Ethernet).
Since “tcpdump” opens a network interface to monitor a
network’s traffic and since, from the kernel’s point of view,
a tunnel network interface is no different from a normal
network interface, we can readily use “tcpdump” to monitor
network traffic on any link (tunnel network interface) in a
simulated network. This means that we can directly use
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many useful “tcpdump” scripts (e.g., [18]) to analyze
network traffic. For example, the following shows the use
of tcpdump on link 3 of Figure 3 (a) to trace packets trans-
mitted on the link from node 3 to node 4:

# tcpdump -i tun3

22:10:01.034208 1.1.3.3.2882 > 1.1.4.3.8000: 
38232:39692(1460) ack 97 win 8192 (ttl 27, id 39326)

6.5.5: “Trpt” Traces Any TCP Connection

If compiled with the TCPDEBUG option, the UNIX
kernel will automatically trace the state and variables asso-
ciated with a TCP connection whenever certain events
occur (e.g., just sent out a packet, just received a packet, and
a timer just expired). The information recorded include
values of many important variables, such as the current
timestamp, sequence numbers, congestion window size,
slow start threshold, and timers’ information. This informa-
tion is beyond what “tcpdump” can observe. “Trpt”[19] is a
tool on an UNIX machine that can extract a TCP connec-
tion’s information from the kernel to the user level for anal-
ysis. The following is a line of “trpt”’s output that contains
send and receive sequence numbers, sending window size,
and timer (retransmit and keep alive) information:
# trpt 
631 ESTABLISHED:output 
(src=1.1.3.3,3195,dst=1.1.4.3,8000)[75219d1..7521f85)@8e7
54(win=8052)<ACK> -> ESTABLISHED rcv_nxt 8e754 rcv_wnd 
100a4 snd_una 7512a49 snd_nxt 7521f85 snd_max 7521f85 
snd_wl1 8e754 snd_wl2 74bf3c1 snd_wnd 10000 REXMT=3 (t_
rxtshft=0), KEEP=14400

6.5.6: Mobile IP Simulation Is Easy

Our simulator has been used to study the performance
of mobile IP [20]. Figure 5 illustrates how this simulator’s
architecture allows us to easily implement a home agent.
The home agent needs to intercept arriving packets destined
for a mobile station that is not currently in its home
network, encapsulate them, and then send them to the
mobile station’s current foreign agent. To intercept a mobile
station’s packets, we simply redirect them to a special
tunnel network interface (tun_redirect in this example) by
changing an entry in the routing table. For example, in
Figure 5, we change [1.1.1.3 -> tun2] to [1.1.1.3 -> tun_
redirect]. The home agent then can read redirected raw
packets from this special tunnel network interface in the
same way as a virtual link object reads raw packets from its
associated tunnel network interface. To encapsulate and
tunnel these packets to the foreign agent, the home agent
need only treat these raw packets as normal data and send
them to the mobile station’s foreign agent via a normal data-
gram socket.

Implementing a foreign agent on top of this simulator is
equally easy. Since a mobile station’s tunneled packets are
received by its foreign agent via a normal datagram socket,

when they are delivered to the foreign agent at the user
level, the packets have been automatically decapsulated in
the kernel. The foreign agent uses a raw socket to send the
received raw packets to the kernel, which then sends the
packets on a tunnel link that is directly connected to the
mobile station. A raw socket instead of a normal socket is
used because the received raw packet already has its own
TCP/IP headers and thus should bypass the normal TCP/IP
protocol stack processing. Our implementations for the
home and foreign agents contain only about 20 lines of C
code for intercepting, encapsulating, tunneling, and decap-
sulating traffic. This would be hard to achieve if we would
use a traditional simulator for this task.
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(a) Arriving packets destined for the mobile station are
transmitted on tun2 link when the mobile station 
is in its home network.
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Figure 5:  Simulating mobile IP. By changing a routing
entry on node 3 from [1.1.1.3 -> tun2] to [1.1.1.3 -> tun_
redirect], the home agent can intercept arriving packets
destined for the mobile station. It then reads these raw
packets from tun_redirect and sends them to the foreign
agent via a normal datagram socket.

tun_redirect.



14

7. Improvement and Extension

7.1. Improve Simulation Speed

To speed up simulations, we move the user-level event
scheduler down into the kernel. Running a simulation in the
kernel is implemented as a never-return system call. In the
original implementation, when a packet goes through many
nodes along its path, it needs to be copied out and into the
kernel multiple times before reaching its destination, as
shown in Figure 3 (c). Because the data volume that needs
to be copied is large and the frequency of these copy opera-
tions is high, a lot of simulation time is spent on these copy
operations and simulations are slow. In the new in-kernel
implementation, because a packet now can always stay in
the kernel on its way to its destination node, copy operations
can be eliminated and replaced with cheap operations of
moving pointers from one tunnel interface directly to
another in the kernel. Compared to the cost of copying a
whole packet out and into the kernel, the cost of moving a
pointer is minimal. Since the reduction of the required CPU
time is so great and it is on the performance critical path, the
new in-kernel simulator runs about 500% faster than its
original user-level implementation. As a consequence of
eliminating packet copy cost, now sending real data in our
simulator is no longer a performance burden, but an asset
without any overhead. (In order to run faster, some other
TCP/IP simulators only send “fake” or “null” data in
packets.) 

7.2. Support a Variety of Scheduling and 
Queueing Disciplines

Sometimes in a network to be simulated, output links
may use a variety of packet scheduling methods (e.g., FIFO
and round-robin) and/or queueing disciplines (e.g., drop-tail
and RED [21]). But normally a UNIX kernel supports only
FIFO and drop-tail. Thus a TCP/IP network simulator
constructed using UNIX and based on our methodology
cannot simulate this kind of network. To solve this problem,
the ALTQ tool [22], which allows a network interface to use
a different packet scheduling method and/or queueing disci-
pline in a UNIX kernel, can be installed on the simulation
machine. It is easy to change buffer size in ALTQ.

7.3. Emulation and Distributed Simulation

Our simulator can easily be used as an emulator to
intercept live packets, let them traverse in a simulated
network, and then transmit them onto a real network again.
Interfacing a simulated and real network is easy for our
simulator. This is because our simulator uses tunnel inter-
faces to construct a virtual simulated network and tunnel

interfaces can also be used in the real world to construct a
real network. By properly configuring tunnel interfaces and
route entries on the simulation machine, live packets from a
real network can be first received at on an Ethernet interface
and then automatically forwarded to a tunnel interface.
From now on, a live packet can traverse in a simulated
network until it needs to be transmitted onto a real network
again. At this time, it can be automatically forwarded from a
tunnel interface to an Ethernet interface for transmission.
For the same reason, in a distributed simulation, packets can
be easily exchanged among the partitioned subnetworks of a
simulated network. 

8. Scalability Discussions

Because in our scheme a single UNIX machine is used
to simulate a whole network (including nodes’ protocol
stacks, traffic generators, etc.), the scalability of our simu-
lator is a concern. In the following, we will study several
scalability issues.

8.1. Number of Nodes

Because our scheme uses the kernel re-entering tech-
nique to simulate multiple nodes, there is no limitation on
the maximum number of nodes that can be simulated.

8.2. Number of Links

In our scheme, because each simulated link uses a
tunnel interface, the maximum number of links that can be
simulated is limited by the maximum number of tunnel
interfaces that a BSD UNIX system can support, which
currently is 256. If needed, this number can be increased by
modifying the kernel device deriver subsystem.

8.3. Number of Routing Entries

Since in our scheme the kernel routing table can be
viewed as an union of each simulated node’s routing table,
the size (the number of routing entries) of the kernel routing
table will increase as the number of simulated nodes
increases. For a network simulation, suppose that the
number of nodes to be simulated is N and the number of
(tunnel) interfaces used by these nodes is T, then the total
number of routing entries that need to be stored in the kernel
routing table will be N * T. This is because in our scheme,
each tunnel interface defines an IP address and each of these
IP addresses has a different “As-Seen-By-Node(i)” address
for each different node.

Note that a simulated node uses at least one interface to
connect to a simulated network. Therefore, T should be
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greater than or equal to N. The size of the kernel routing
table required thus is between [N2, T2]. As noted above, on
current BSD UNIX systems, T cannot be greater than 256.
Thus, the size of the kernel routing table required is less
than 65,536 (256*256). We have tested several network
configurations that need to store over 60,000 routing entries
in the kernel routing table. We found that the because the
BSD UNIX systems use the radix tree [23] to efficiently
store and look up routing entries, using a large number of
routing entries in a simulation is feasible and does not slow
down simulation speed much.

8.4. Number of Application Programs

Since application programs running on an UNIX simu-
lation machine are all real independent programs, the simu-
lation machine’s physical memory requirement is roughly
proportional to the number of application programs running
on top of it. Although, at first glance, this requirement may
seem severe and may greatly limit the maximum number of
application programs that can simultaneously run on an
UNIX machine, we found that the virtual memory mecha-
nism provided on an UNIX machine together with the
“working set” property of a running program greatly alle-
viate the problem. The reason is that, when an application
program is running, only a small portion of its code related
to network processing will need to be present in the physical
memory. In addition, because UNIX machines support the
uses of shared libraries and shared virtual memory pages,
the required memory space for running the same application
program multiple times can be greatly reduced. For
example, on a PC with 512 MB physical memory, we can
support up to 1,000 TCP connections used by 2,000 ftp and
ftpd programs without any page in and page out activities. 

8.5. Simulation Speed

A simulator often runs slower and slower when the size
of the simulated network increases and/or the network load
becomes heavier. The size of a simulated network generally
is measured by its numbers of nodes and links, and the
offered network load generally is measured by the number
of packets that need to be exchanged through a simulated
network per second. 

To see how our simulator’s speed changes under
various network sizes, we performed a series of tests using
the in-kernel implementation of our simulator. We found
that large network sizes do not slow down simulations
much. The simulator’s speed is relatively fixed under
various network sizes. We used the chain topology as the
simulated network’s topology (like the one depicted in
Figure 3 (a)) and varied the length of the chain (the number
of nodes and links) from 1 to 250. The traffic imposed on

the simulated network is a greedy UDP flow originating on
the first node and ending on the last node. We found that as
the network size increases, the required simulation time
only slightly increases. As an evidence, our results show
that the simulation time for the 250-node case is only 1.8
times of the simulation time for the 2-node case. We
attribute this scalability to the in-kernel implementation of
our simulator. This is because, as explained in Section 7.1,
the packet copy operation overhead on the intermediate
forwarding nodes can be eliminated. 

To see how our simulator’s speed changes under
various network loads, we used a 10-node chain network
and varied the bandwidth of its links from 10 to 100 Mbps.
Because the traffic imposed on the simulated network is a
greedy UDP flow, the network load will increase when we
increase the link bandwidth. We found that increasing
network load from 10 to 100 Mbps had a more significant
effect than increasing network sizes on slowing down simu-
lations. The slow down factor is 3.5 when the network load
was varied from 10 to 100 Mbps. We attribute this slow
down to the increased number of events that our simulator
needs to process per second in virtual time. 

9. Limitation

Since only a single UNIX machine (with its own
protocol stack) is used to simulate multiple nodes, our simu-
lator has a limitation that it allows only one version of TCP/
IP protocol stack in a simulated network. Studying interac-
tions between different TCP versions (e.g., TCP tahoe and
TCP reno) or between different TCP implementations (e.g.,
FreeBSD and Linux) thus cannot be done by using our
simulator as is. One way to overcome this limitation is to
use a distributed simulation approach discussed in Section
7.3. In such a distributed environment, a UNIX machine
with a particular protocol stack can be used to simulate
nodes using the same stack, while other UNIX machines
with different stacks may be used to simulate nodes using
different stacks.

Furthermore, we note that if a simulation study requires
modification of in-kernel protocols, the kernel will need to
be modified and recompiled before our simulation method-
ology can be used. Modifying and recompiling the kernel,
however, may represent a challenge for some users.

10. Conclusions

We have described a methodology for easily
constructing extensible and high-fidelity TCP/IP network
simulators. Due to its unique architecture, a simulator
constructed under our methodology has many important
advantages that are hard to achieve by traditional network
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simulators. First, the simulator uses the real-life TCP/IP
protocol stack of the simulation machine. As such, its simu-
lation results are more accurate than those generated by a
traditional simulator that abstracts a lot away from the real-
life implementation. Second, since the standard UNIX
system call API is provided on every node in a simulated
network, any existing or future real application program can
run on any node in a simulated network. In addition,
because the simulation implementation of a developed
application program on our simulator can be directly used
as the program’s real implementation, much time and effort
can be saved. 

The proposed methodology is general and not specific
to a particular platform. Although our simulator is based on
FreeBSD, this methodology actually can be applied to any
machine that has a TCP/IP protocol stack and supports
tunnel interfaces. 
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Appendix

In this appendix we illustrate the configuration of the
network simulator for a network topology that is more
complex than the simple one used in Section 6.1, 6.2., and
6.3. Figure 6 depicts the mesh topology considered in this
appendix.

Tunnel Network Interface Configuration

The commands used to configure the twelve tunnel
network interfaces for link 1, 2, ..., and 12 of Figure 6 are
shown as follows: 

ifconfig tun1 1.1.1.1 1.1.1.254 netmask 0xffffff00
ifconfig tun2 1.1.2.4 1.1.2.254 netmask 0xffffff00
ifconfig tun3 1.1.3.3 1.1.3.254 netmask 0xffffff00
ifconfig tun4 1.1.4.6 1.1.4.254 netmask 0xffffff00
ifconfig tun5 1.1.5.2 1.1.5.254 netmask 0xffffff00
ifconfig tun6 1.1.6.5 1.1.6.254 netmask 0xffffff00
ifconfig tun7 1.1.7.4 1.1.7.254 netmask 0xffffff00
ifconfig tun8 1.1.8.6 1.1.8.254 netmask 0xffffff00
ifconfig tun9 1.1.9.6 1.1.9.254 netmask 0xffffff00
ifconfig tun10 1.1.10.5 1.1.10.254 netmask 0xffffff00
ifconfig tun11 1.1.11.5 1.1.11.254 netmask 0xffffff00
ifconfig tun12 1.1.12.4 1.1.12.254 netmask 0xffffff00

Route Configuration

The commands used to configure the routes for the
simulated network of Figure 6 are shown as follows:

route add 1.1.2.1 -interface tun1
route add 1.1.3.1 -interface tun1
route add 1.1.4.1 -interface tun1
route add 1.1.5.1 -interface tun1
route add 1.1.6.1 -interface tun1
route add 1.1.7.1 -interface tun1
route add 1.1.8.1 -interface tun1
route add 1.1.9.1 -interface tun1
route add 1.1.10.1 -interface tun1
route add 1.1.11.1 -interface tun1
route add 1.1.12.1 -interface tun1

route add 1.1.1.2 -interface tun5
route add 1.1.2.2 -interface tun5
route add 1.1.3.2 -interface tun5
route add 1.1.4.2 -interface tun5
route add 1.1.6.2 -interface tun5
route add 1.1.7.2 -interface tun5
route add 1.1.8.2 -interface tun5
route add 1.1.9.2 -interface tun5
route add 1.1.10.2 -interface tun5
route add 1.1.11.2 -interface tun5
route add 1.1.12.2 -interface tun5

route add 1.1.1.3 -interface tun3
route add 1.1.2.3 -interface tun3
route add 1.1.4.3 -interface tun3
route add 1.1.5.3 -interface tun3
route add 1.1.6.3 -interface tun3
route add 1.1.7.3 -interface tun3
route add 1.1.8.3 -interface tun3
route add 1.1.9.3 -interface tun3
route add 1.1.10.3 -interface tun3
route add 1.1.11.3 -interface tun3
route add 1.1.12.3 -interface tun3

route add 1.1.1.4 -interface tun2
route add 1.1.3.4 -interface tun7
route add 1.1.4.4 -interface tun7
route add 1.1.5.4 -interface tun12
route add 1.1.6.4 -interface tun12
route add 1.1.8.4 -interface tun7
route add 1.1.9.4 -interface tun7
route add 1.1.10.4 -interface tun12
route add 1.1.11.4 -interface tun12

route add 1.1.1.5 -interface tun11
route add 1.1.2.5 -interface tun11
route add 1.1.3.5 -interface tun10
route add 1.1.4.5 -interface tun10
route add 1.1.5.5 -interface tun6
route add 1.1.7.5 -interface tun11
route add 1.1.8.5 -interface tun10
route add 1.1.9.5 -interface tun10
route add 1.1.12.5 -interface tun11

route add 1.1.1.6 -interface tun8
route add 1.1.2.6 -interface tun8
route add 1.1.3.6 -interface tun4
route add 1.1.5.6 -interface tun9
route add 1.1.6.6 -interface tun9
route add 1.1.7.6 -interface tun8
route add 1.1.10.6 -interface tun9
route add 1.1.11.6 -interface tun9
route add 1.1.12.6 -interface tun8

Figure 6:  A mesh network topology to illustrate configu-
ration of the network simulator.
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