
A LOCATION-DEPENDENT RUNS-AND-GAPS MODEL FOR
PREDICTING TCP PERFORMANCE OVER A UAV WIRELESS

CHANNEL

H.T. Kung∗, Chit-Kwan Lin∗, Tsung-Han Lin∗, Stephen J. Tarsa∗, Dario Vlah∗,
Daniel Hague†, Michael Muccio†, Brendon Poland†, Bruce Suter†

∗Harvard University, Cambridge, MA
†Air Force Research Laboratory, Rome, NY

Abstract

In this paper, we use a finite-state model to predict
the performance of the Transmission Control Protocol
(TCP) over a varying wireless channel between an
unmanned aerial vehicle (UAV) and ground nodes. As
a UAV traverses its flight path, the wireless channel
may experience periods of significant packet loss, suc-
cessful packet delivery, and intermittent reception. By
capturing packet run-length and gap-length statistics
at various locations on the flight path, this location-
dependent model can predict TCP throughput in spite
of dynamically changing channel characteristics. We
train the model by using packet traces from flight
tests in the field and validate it by comparing TCP
throughput distributions for model-generated traces
against those for actual traces randomly sampled from
field data. Our modeling methodology is general and
can be applied to any UAV flight path.

1. Introduction

TCP is the most widely-used reliable transport pro-
tocol and is employed in many different applications,
ranging from Web surfing, to file transfer, to distributed
computing [1]. In this paper, we consider using TCP to
transport data from ground nodes to a low-flying, fixed-
wing UAV over a wireless channel. Naturally, research
and application development in this scenario benefits
from repeatable experimentation that captures opera-
tion in realistic environments. This is best achieved
in physical deployments, though repeatability is often
limited by economic and logistical constraints. As a
result, we are interested in constructing a model for
predicting TCP throughput over the wireless channel
that will enable repeatable realistic emulation to sup-

port application and system development. This model
must address the large variations in the wireless chan-
nel that the UAV may experience in the course of its
flight path, and allow the emulator to use the real TCP
stack for congestion control [2].

One of the challenges in capturing channel con-
ditions is to account for physical and environmental
effects that may cause packet loss/reception events to
be correlated over time [3]; in modeling, this effect
is often referred to as channel memory. In periods
where the wireless channel sees significant packet
loss, TCP throughout it largely determined by patterns
of consecutive loss (gaps) and consecutive reception
(runs) that are driven by channel memory, rather than
just the average packet loss rate over a period.

To illustrate why the run and gap pattern is impor-
tant, we consider TCP behavior in a simple emulation
experiment where we fix the average packet loss rate
at 10%, while varying the gap and run lengths in the
channel. Specifically, let us construct a sequence of
packet receptions and losses using alternating segments
of 9i receptions and i losses, while varying the value
of i. Figure 1 demonstrates that different run and gap
sizes, arising from varying degrees of channel memory,
have a significant impact on TCP performance. Thus,
to properly model wireless channels for the purpose
of TCP performance evaluation, we ought to take run
and gap behavior into account, in addition to first-order
statistics such as average packet loss rate.

Looking ahead at an example, Figure 4 (lower
portion) in Section 4 depicts the measured packet re-
ception of a UAV receiving transmissions from ground
nodes over the course of its flight path. In keeping
with our interest in employing commercial-off-the-
shelf (COTS) components [4], we use the IEEE 802.11
medium access control and physical layer [5] through-

out this work. The large variations in loss behavior
that we observe with respect to the position of the
UAV suggests a location-dependent model is necessary,
where distinct submodels are used to characterize
different legs of the flight path. Practically, we will
have to train each submodel with a relatively small
amount of data, as we are subject to the velocity of
and area covered by the plane.

Our modeling approach can meet these objectives. In
the past, other modeling efforts employed multi-state
Markov chains, or simply drew run and gap lengths
from a distribution fitted to measured data (we review
these methods in Section 2). However, we will show
that these existing methods can be further improved
by grouping contiguous locations with similar run and
gap statistics (referring to the combined portions of
the flight path as legs), and then clustering within legs
based on run/gap distributions. We train a different
submodel for clusters within each leg, which can
later be combined to produce accurate trace-based
TCP throughput predictions in the presence of limited
training data.

2. Related Work

Trace-driven emulation (see, e.g., [6], [7]) of the
wireless channel typically entails recording represen-
tative traces from a physical deployment, training a
model based on the traces, and then using the model
to generate synthetic traces to drive emulation. Com-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30

T
C

P
 t
h
ro

u
g
h
p
u
t
(k

b
p
s
)

o
b
s
e
rv

e
d
 o

v
e
r

5
 m

in

Gap length

Constant run/gap len

Figure 1: TCP throughput depends on run/gap sizes, rather
than the mean packet loss rate. We measured throughput
of a TCP connection over an emulated channel with a
constant 10% mean packet loss, but increased run/gap sizes.
Maximum achievable throughput without losses is 160 kbps.
Each data point is an average of 5 runs, each lasting 5
minutes; error bars show the standard deviation. Notice an
increase in TCP throughput as run/gap sizes increase, while
the mean packet rate is kept the same.

monly, these synthetic traces are replayed to exercise
a higher-layer protocol under test (e.g., TCP, in this
paper).

Many link-layer trace models decompose into sub-
models capturing different facets of channel behavior,
such as the classic two state Gilbert [8] and Fritchman
models [9]. Nguyen et al. [10] also use two submod-
els, capturing error and error-free packet bursts based
on burst length distributions. Their method is to fit
piecewise curves to model the two distributions inde-
pendently. This approach shows improved accuracy in
predicting TCP throughput over prior loss models.

Konrad et al. present a Markov-based Trace Analysis
(MTA) algorithm [11] that treats packet traces col-
lected by mobile GSM nodes as being generated by
a process with two states: lossy and error-free. MTA
partitions the collected traces into these two states, and
again estimates length distributions for subtraces in
each state. For the lossy state, they then train a discrete
time Markov chain (DTMC), capable of generating
synthetic lossy subtraces. All three components of the
model are combined to output full synthetic packet
traces by alternately drawing lengths from lossy and
error-free length distributions, and emitting symbols
according to the DTMC for the lossy state. MTA-
generated traces show improved error burst statistics
over simpler models, however the algorithm does not
take into account the mobile node’s location or tra-
jectory, and relies on DTMCs of order 6 to produce
accurate results, which require large training data sets.

Previous work [12], [13] on the Lakehurst MANET
trace dataset has implied the importance of incor-
porating location dependence into channel modeling
approaches. However, the volume of data needed can
make this impractical for trace-based methods. As
an alternative, radio propagation models are some-
times used [14], [15], [16], though realism comes at
the expense of arduous model tuning. Instead, our
location-dependent methodology, with its use of trace
clustering, focuses on producing accurate results on
relatively little training data.

3. Model Overview

As shown in Figure 1 and argued recently by Gurtov
and Floyd [15], the second-order statistics of the wire-
less channel (run and gap length distributions) severely
impact emulated/simulated TCP behavior. Therefore,
we focus on accurate representation of these properties
over the entire UAV flight path by first breaking up a
mobile trace into more granular locations. Because this

approach results in having a larger number of location-
dependent models to train and less training data per-
model, our method must be able to train accurately on
relatively limited trace data.

To accomplish this, we cluster fixed-sized blocks of
traces by both position and loss behavior. Each block is
registered to one of 45 locations along the flight path
based on UAV telemetry data. The choice of block
size and number of locations is discussed in Sections
4 and 5. We then combine contiguous locations whose
blocks exhibit similar mean gap lengths into legs of the
flight. Within each leg, we cluster together individual
blocks based on their mean gap-lengths, noting the
proportion of traces falling into each cluster. An order-
n Markov model is trained per cluster in each leg.

Grouping locations into legs based on gap behavior
improves model accuracy by making more training
data available to model each location within a leg.
Further clustering within each leg results in lower error
by reducing the variance that must be explained by any
single model. Figure 2 summarizes this structure.

Each cluster’s Markov model outputs a synthetic,
block-length trace. For a particular leg, we create
a full-length synthetic trace by concatenating block-
length traces. submodels. The sequence of the cluster
submodels is randomly chosen based on the observed
cluster distribution. Figure 3 summarizes this process
for a given flight path.

Our approach departs from prior work in that it treats
trace data from different physical locations separately
when their channel characteristics are very different,
but pools them together when characteristics are sim-
ilar. This means that a model for one portion of the
flight path need not explain starkly different behavior
observed in another portion of the flight path. Mean-
gap clustering of individual blocks allows us to have
accurate low-order Markov models, such as models of
order 2, that are trainable with a relatively smaller set
of trace data. This is in contrast to the MTA algorithm,
where models of order 6 are used and trained on a large
dataset. In that approach, high-complexity modeling
may be necessary because a single model is trained on
all traces from a mobile node, regardless of position
or loss behavior.

4. Trace Collection in the Field

We collect packet traces of the ground-to-air wire-
less channel by recording individual packet trans-
missions and receptions between stationary ground
transmitters and mobile receivers aboard an overhead
UAV. A similar approach has been applied in the

Channel
Model

Leg 1
Model

Cluster A
Model

. . .

. . .
Cluster B
Model

Leg 2
Model

Leg m
Model

Cluster A
Model

Cluster B
Model

Figure 2: The decomposition of our wireless channel model
into component submodels.

Pick next
leg along
flight
path

Pick cluster
according to
selected leg’s

cluster
distribu7on

Generate block
via selected
cluster’s

Markov model

Sufficient
of

blocks?

Append new
block to

synthe7c trace

No

Yes

Figure 3: The process our model employs to generate a
synthetic packet trace along the modeled flight path.

air-to-ground direction in ongoing research. In this
section, we describe the equipment, facilities, experi-
mental setup, flight plan, and post-processing required
to construct these traces.

4.1. Equipment and Facilities

Both transmitting and receiving nodes are Mo-
bile Internet Devices (MIDs) based on 800MHz
x86-compatible Intel Atom processors, with Marvell
SD8686 802.11b/g internal SDIO radios. Three trans-
mitting MIDs are placed on the ground spaced ap-
proximately 20m apart, and four receiving nodes are
mounted on the UAV (see Section 4.2). During flight,
ground transmitters broadcast 1420-byte UDP packets,
while airborne receivers log the sequence number and
sender ID of each arriving packet. Results presented in
this paper are based on a transmitter rate of 10 packets
per second, however the same methodology has been
applied at rates of up to 200 packets per second. We
rely on CSMA to provide fair share of the wireless
channel among transmitters, although we note that a
round-robin scheme is an alternative.

The UAV is a SIG Rascal 110 with a 110” wingspan.
The fuselage is comprised of a balsa wood airframe
covered by a fiberglass cowl, with fixed landing gear
and wing struts made of aluminum. The plane’s engine

Figure 4: Upper: Cyclic flight path taken by the UAV. Each
flight consists of approximately 10 clockwise laps. Ground
transmitter locations are in blue; runway positions are in grey.
Units are in meters. Lower: Overlay of packet reception data
between ground TX1 and airborne, wingtip-mounted RX1,
aggregated over all flights. Each dot represents a 20-packet
block of the trace. Blocks with a mean gap length ≤ 5 are in
green, blocks with mean gap between 5 and 19 are in yellow,
and blocks with no packet reception are in red.

Rx 1  Rx 2 

Rx 3 

(Rx 4 in cockpit)  

Rx 1, 2 

Rx 3 

Figure 5: The positions of externally mounted MIDs on the
UAV. The inset photos show a closeup of the right wing-
mounted MID, as well as the cockpit-mounted MID.

is electric, and is powered by batteries held in saddle
bags draped over the exterior of the nose of the plane.
The electric engine simplifies aircraft maintenance due
in large part to its cleanliness as compared to gas
engines. Though the engine need not be refueled,
batteries must be swapped every 30 minutes, limiting
flying time conservatively to 20 minutes. Servicing
time between flights requires a minimum of 5 minutes
to replace batteries, download data, and set up new

experiments. UAV battery packs are also used to power
onboard MIDs, eliminating the need to monitor and
charge the MIDs’ individual batteries.

The airfield is located atop a large hill in Stock-
bridge, NY. Facilities include two runways, a hangar,
an electronics workbench with a reserve-battery charg-
ing station, a bunker capable of monitoring surround-
ing airspace and weather, and a trailer for technicians
and pilots. The property is free of 802.11 radio signals
not belonging to flight experiments. The surrounding
valleys are primarily woodland and farmland. Flights
were conducted in late October and early November,
after the leaves of deciduous trees had fallen.

For UAV flight, three personnel are required: a pilot,
a spotter, and a technician to monitor instruments and
autopilot status from the ground. Takeoff, taxi, and
landing are conducted by a pilot via remote joystick,
and control of the plane is handed over to an autopilot
system when the aircraft reaches cruising altitude.
While the plane is being serviced between flights, a
control laptop is used to download data from each MID
and to issue commands for subsequent flights.

Via autopilot, the UAV is capable of following a
flight path passing through preset waypoints. This
allows us to collect data over multiple laps within
a flight, and to repeat multiple flights as necessary.
In our tests, on a day with low wind, the autopilot
achieves repeatably high positional accuracy across
laps. Over all flights, positional deviation with respect
to a fixed way point was no more than 13m when
the plane was level, and no more than 25m when the
plane was banking through a turn. Assuming that the
aircraft can correct its course within 5 seconds of the
initial departure from the flight path, at an airspeed of
20m/s, and with a link rate of 10 packets per second,
this deviation results in a difference of 2 and 6 packet
transmissions measured during that portion of the flight
cycle, respectively.

Throughout the flight, the autopilot system records
instrument readings approximately every 250ms. For
our purposes, the most relevant readings are altitude,
airspeed, GPS latitude, GPS longitude, and GPS clock-
time.

4.2. Experimental Setup and Flight Path

MID transmitters were placed on the ground in a
field with their screens facing skyward, as depicted
by the blue circles in Figure 4. Three receivers are
strapped to the exterior of the plane: one on the
underside of each wingtip, and one between the land-
ing gear struts on the underside of the fuselage, as

shown in Figure 5. These three MIDs are oriented with
their screens facing downward toward the ground. An
additional receiver is placed in the cockpit of the plane
with its screen pointing forward toward the propeller,
as depicted in the inset photo in Figure 5.

The flight path is a dumbell-shaped cycle (Figure 4)
that passes beyond the extremes of MID radio range.
Each lap of the dumbell lasts approximately 90 sec-
onds, with the UAV autopilot set to maintain an air
speed of 20m/s and an altitude of 75m. Cruising time
for each flight is about 15 minutes, meaning the UAV
executes 10 laps. Our complete set of traces spans six
flights collected over five hours in one day.

4.3. MID Antenna Patterning

In order to characterize the ground-to-air wireless
channel in terms of transmitter/receiver positions, we
also must account for the effects of MID orientation
on packet reception. To do this, we mapped the MID’s
antenna pattern in an anechoic chamber. An MID was
attached to a fiberglass positioning arm and Received
Signal Strength (RSS) was measured as the arm was
rotated about its three primary axes.

In Figure 6, we show the signal strength for rotations
about two axes. The upper plot shows the RSS pattern
that the cockpit-mounted receiver would experience
with respect to ground transmitters throughout the
flight. In the lower plot, angles between 0◦ and 180◦

describe the RSS pattern for exterior-mounted MIDs
with respect to ground nodes. Note that though the
MIDs on the exterior of the plane will enjoy little
degredation in signal strength, we expect the MID in
the cockpit will see relative fluctuations of up 15dB,
depending on whether a ground node faces the front
or back of the receiver. As we discuss in Section 4.4,
this effect is exhibited in Figure 7.

4.4. Post-processing: Positional Traces, Loca-
tions, and Legs

After synchronizing MID clock readings to GPS
time, we use packet timestamps to establish the plane’s
latitude and longitude at each reception event from
telemetry data. In Figure 7, each blue dot shows the
position of the UAV when a packet was received,
for each transmitter-receiver pair (the flight path is
clockwise). We note that the reception of the cockpit
MID (RX4) degrades as soon as it passes the ground
nodes, in both directions, as predicted by its antenna
pattern and orientation (see Figure 6). In contrast, the

‐90 

‐80 

‐70 

‐60 

0 
10  20 

30 
40 

50 
60 
70 

80 

90 

100 

110 
120 

130 
140 

150 
160 170 

180 
190 200 

210 
220 

230 
240 

250 

260 

270 

280 

290 
300 
310 

320 
330 

340 350 

‐90 

‐80 

‐70 

‐60 

‐50 
10 

20  30 
40 

50 
60 
70 
80 

90 

100 

110 

120 
130 

140 
150 

160 
170 180 

190 
200 210 

220 
230 

240 
250 

260 

270 

280 

290 

300 
310 
320 

330 
340 

350 360 

0o Posi0on 

+90o Posi0on 

CO
M
PA

L 

0o Posi0on 

+90o Posi0on 

COMPAL 

Figure 6: MID antenna patterns collected in an anechoic
chamber. Radial plot of RSS in dB, as the receiver is rotated
about a single axis. Upper: RSS pattern of the cockpit-
mounted receiver with respect to fixed ground transmitters;
angles between 180◦ and 360◦ apply to packets received
from a transmitter as the UAV passes over and departs from
the node. Lower: RSS of externally-mounted MIDs with
respect to fixed ground nodes is restricted to angles between
0◦ and 180◦.

orientations of RX1-RX3 allow them to receive on
approach as well as departure.

In order to build a contiguous packet trace of each
flight, we must also associate packet losses with UAV
position. We calculate the number of lost packets be-
tween receptions by subtracting consecutively received
sequence numbers and linearly interpolate timestamps
between the two received packets. This allows us to
look up the plane’s position using the interpolated
timestamps, and to construct a contiguous trace where
each packet transmission event is mapped to positional
coordinates for the UAV, regardless of actual reception.

Next, we associate blocks of a trace with discrete
locations along the flight path. By discretizing the path
and registering blocks to the closest location, we ensure
that there is sufficient data to support modeling at posi-
tions covering legs of interest. We define 45 locations
evenly spaced along the flight path, meaning that on
average, a block of 20 packet events will be collected
for each location during every lap. Traces are divided
into blocks of length 20, and each block is labeled with
the GPS coordinates of its 10th packet. Deviations in
the flight path will cause blocks in consecutive laps to
be misaligned, so we use a registration window around
each location to associate each individual block with
its nearest location by position.

TX1 TX2 TX3

RX1

TX: 1, RX: 1 TX: 2, RX: 1 TX: 3, RX: 1

RX2

TX: 1, RX: 2 TX: 2, RX: 2 TX: 3, RX: 2

RX3

TX: 1, RX: 3 TX: 2, RX: 3 TX: 3, RX: 3

RX4

TX: 1, RX: 4 TX: 2, RX: 4 TX: 3, RX: 4

Figure 7: Packet receptions observed for different transmitter-receiver pairs, plotted at the location of the UAV at the time of
reception. RX1-RX3 are mounted on the UAV exterior and RX4 is mounted in the cockpit.

5. Model Training Methodology

5.1. Trace Clustering

A block is the basic unit for clustering on channel
quality, and hence it has to be sufficiently long to
obtain channel quality statistics, but not be so long
as to preclude clustering at a useful granularity. The
selected block size of 20 packets appears to be a
reasonable choice given the expected variations in
channel quality and deviations in autopilot-controlled
flight trajectory. Choosing the length of a leg is also
an engineering decision; short legs allow the model
to give information about more locations with finer
granularity, but the reduction in training data per leg
may result in less accurate models.

Within each leg, we cluster blocks by their mean
gap length, a metric that reflects channel quality.
We choose gap length instead of run length because
a run can easily be interrupted by a single packet
loss even if the channel quality is relatively good,
making run lengths a less stable metric. The k-means
algorithm [17] is applied to cluster the blocks. A rep-
resentative clustering is illustrated in Figure 8, where
we show the histogram of mean gap length from a
typical leg where the UAV is within radio range of

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20

C
ou

nt

Mean Gap Length

Cluster 1
Cluster 2

Figure 8: Histogram of mean gap length and corresponding
cluster identity of each bin. As in this example, two clusters
are usually observed representing good (Cluster 1) and bad
(Cluster 2) channel quality. Clustering the blocks helps
reduce the model complexity.

the ground transmitter. Two clusters of channel quality
can be observed: most of the time, the UAV has a good
connection with the ground node, but, occasionally, the
channel degrades enough to cause all packets in a block
to be lost.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20

C
D

F

Gap Length

Validation Trace
Model (Order=2, Cluster=2)
Model (Order=2, Cluster=1)
Model (Order=1, Cluster=2)
Model (Order=0, Cluster=2)

Figure 9: Gap-length CDFs of model-generated synthetic
traces compared against those of the validation traces. In-
creasing both the number of clusters and the order of the
model results in a gap-length CDF closer to that of the
validation set, provided there is sufficient data to properly
train the model.

5.2. Markov Model Training

For each cluster, we train an order-n Markov chain,
and combine per-cluster Markov models into a per-
leg model by assigning a probability proportional to
the cluster size to each (i.e., via the observed cluster
distribution).

In our formulation, each state of the Markov model
corresponds to a sequence of n symbols in a block,
and we train the models by counting the number of
transitions between sequences of n symbols occurring
in the trace. Note that the size of the training set limits
the order of the Markov chain. An order-n Markov
chain has 22n state transitions, so with a leg size of four
blocks containing approximately 2400 symbols over
30 laps, it would be unlikely that the 2400/n = 600
countable transitions are enough to accurately train any
model of order n ≥ 4.

6. Evaluation

6.1. Performance Measurement

In order to evaluate the performance of our models,
we split the traces from six flights in two halves. The
first half contains traces from the first three flights
and is used as a training set, while the other half
is used to validate the trained model. We chose to
use a single transmitter-receiver pair (TX2 and RX4
as shown in Figure 7) to evaluate the model because
it has the most packet receptions. In Section 6.2,
the models are evaluated by comparing the run and

gap distributions of model-generated traces against
those of the validation traces. Additionally, in Section
6.3, we compare TCP throughput for model-generated
synthetic traces with that of the validation traces.

6.2. Model Training Accuracy

Figure 9 shows gap length distributions from traces
generated by models of orders n = 0, 1, 2, using k =
1, 2 clusters alongside the corresponding validation-
set distribution. For both Sections 6.2 and 6.3, we
train a single leg containing 12 consecutive locations,
representing the northerly straight leg of the flight path
(see Figure 4). Results from the southerly leg have
similar performance.

We first note that when using a single cluster,
blocks with large gap length bias the model’s fit:
short gaps with lengths between 5 and 10 are under-
represented and larger gaps between 12 and 15 are
over-represented, while the model fails to capture
blocks with gap length 20. Clustering seperates small
gap length blocks from large gap length blocks, and
results in a better fit across all lengths. Second, we
note that increasing the order of the Markov chain also
improves performance, which indicates the existence
of channel memory.

Examining error as each model parameter is varied
in isolation confirms that order n = 2 with k = 2
clusters is best for this leg. Tables 1, 2, and 3 compare
traces generated by models with different parameters
by showing the normalized squared distance between
the run- or gap-length CDF of model-produced traces
and the run- or gap-length CDF of the underlying field-
collected trace. We use this metric as an indication of
the relative error produced by different models. The
values presented are an average across a large number
of runs, and the comparisons hold with a high degree of
stability. We see that increasing either the order of the
model beyond n = 2, or the number of clusters beyond
k = 2 results in a less accurate model because the
amount of training data per model is reduced. In other
words, the transition probabilities in the Markov model
are not well-constrained. This is confirmed in Table 3,
where we increase the leg size from 4 locations to 12,
and note that model error decreases as training data
is added from more locations. Though larger leg sizes
aid training, they may also reduce the usefulness of a
leg’s model, since the granularity is reduced.

Cluster Gap Length Error Run Length Error

1 0.001637 0.000237

2 0.000917 0.000241

3 0.001212 0.000223

Table 1: Model performance as a function of number of
clusters, for a model order of 2. The 2-cluster case achieves
the smallest gap-length error, while having a run-length error
comparable to other cases.

Order Gap Length Error Run Length Error

0 0.013633 0.008994

1 0.001137 0.000597

2 0.000917 0.000241

3 0.001176 0.000457

Table 2: Model performance as a function of model order for
the two-cluster case. The order-2 model achieves the smallest
gap and run-length errors.

6.3. TCP Prediction Performance

We next conduct trace-based emulation to estimate
TCP throughput using both model-generated synthetic
traces, and real traces from the UAV flights. Specif-
ically, we instrument two Linux machines to redirect
a TCP flow under test to a user-mode tunnel program
which 1) exerts a rate limit equal to that in the trace
collection, and 2) forwards or drops packets based on
the nearest packet reception event in the trace [7] [18].
The Linux machines ran the kernel version 2.6.24
and the default Linux TCP implementation [19] with
SACK and timestamp options turned on, and using
CUBIC congestion control. Each TCP flow under test
lasted 150 seconds.

The raw packet traces had relatively poor average
packet loss. As a result, emulated TCP flows expe-
rience frequent timeouts, leading to severe channel
underutilization and sometimes indistinguishably low
throughput numbers for traces with significantly dif-
ferent characteristics. In practice, link-layer retries are
often used to improve loss conditions; we adopt this
method in emulation and allow five retransmissions per
packet to obtain reasonable TCP throughput numbers

Leg Size Gap Length Error Run Length Error

12 0.000917 0.000241

6 0.001352 0.000824

4 0.004740 0.002296

Table 3: Model performance as a function of leg size. Gap-
and run-length errors increase as the leg size decreases, due
to the decreased size of the training set.

Trace Description TCP Throughput
(KB/s)

Validation
Error

Validation trace 11.4

Model n = 1, k = 1 13.7 20%

Model n = 1, k = 2 13.9 22%

Model n = 2, k = 1 10.4 9%

Model n = 2, k = 2 12.2 7%

Table 4: TCP peformance observed on several synthetic
traces and a validation trace. The validation error is computed
with respect to the validation trace. Each value is an average
of 4 runs; in the case of validation traces, each run used a
different subset of the validation data.

for comparison.
We performed the TCP emulation over a leg of

the flight with good reception, i.e. few blocks with
gaps spanning the entire block. We test models with
orders n = 1, 2 and clusters k = 1, 2, as well as
a validation trace, and present the TCP performance
results in Table 4. We can see that the order n = 1
models underperform all order n = 2 models. For
models of order n = 2, a k = 2 cluster model slightly
outperforms the k = 1 cluster model. We observe that
this improvement is small because the leg does not
show strong clustered behavior, since it is chosen to
have few long gaps in order to have sustained TCP
throughput.

7. Future Work

We have evaluated the TCP performance prediction
ability of a model over a simple circling UAV flight
pattern. However, many applications might require
testing under a large set of flight patterns. Therefore,
an attractive future extension of this work would give
us the ability to evaluate arbitrary flight paths by
“stitching” them together from legs characterized by
substitute models drawn from a small, experimentally-
trained basis set. The main challenge lies in choosing
the substitute models while minimizing the modeling
error; potential criteria useful in the choice include
mean distance, signal strength, or orientation of the
UAV. A second challenge consists of choosing the
experimental flight trajectory such that its leg mod-
els allow us to construct the largest possible set of
stitched-together composite flight paths. Construction
of such a basis set of models is likely to be time-
consuming, but our modeling methodology presented
in this paper can be easily adapted to new training
data. In this light, our methodology can be viewed as a
bootstrap process for subsequent online model training,

an avenue of future investigation.
Use of UAV auto-pilot was invaluable in our ex-

perimental work because repeating the same trajectory
let us collect a larger amount of training data per
trajectory leg. Yet, experimental results based on auto-
pilot control may be limited in their implications;
environmental effects such as different wind speeds can
lead to variations in repeated flights. In this paper we
assumed that these variations are largely negligible. It
would be prudent to test this assumption in the future,
by examining how much variation our method can
tolerate when combining the collected data.

8. Conclusions

By using a location-dependent runs-and-gaps model,
we can predict TCP throughput over a varying ground-
to-UAV wireless channel. This is achieved in spite of
large channel variations due to dynamically changing
conditions in communication distance, antenna angles,
engine shadowing, etc., and TCP’s sensitivity to dis-
tributions of packet loss (gaps) and delivery (runs)
statistics. Two factors contribute to the success: (1)
model training on clustered blocks of traces based on a
relatively stable metric—mean gap-length, and (2) per-
leg modeling, leveraging a stable cluster distribution
in a local geographic neighborhood. This is a general
methodology for modeling TCP behavior and can be
applied to any UAV flight path.

Acknowledgements

This material is based on research sponsored by Air Force
Research Laboratory under agreement numbers FA8750-09-
2-0180 and FA8750-10-2-0180. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory
or the U.S. Government. Additionally, we gratefully thank
Robert Gorman for his help with field logistics including the
arduous task of mounting our UAV payloads.

References

[1] D. E. Comer, Internetworking with TCP/IP: Principles,
Protocols and Architectures. Upper Saddle River, NJ:
Prentice Hall, 2005.

[2] R. Caceres and L. Iftode, “Improving the performance
of reliable transport protocols in mobile computing
environments,” IEEE Journal on Sel. Areas in Comm.,
vol. 13, no. 5, pp. 850–857, 1995.

[3] L. Ahumada, R. Feick, R. Valenzuela, and C. Morales,
“Measurement and characterization of the temporal
behavior of fixed wireless links,” IEEE Trans. Vehic.
Tech., vol. 54, no. 6, pp. 1913–1922, 2005.

[4] D. Hague, H. T. Kung, and B. W. Suter, “Field experi-
mentation of cots-based uav networking,” in MILCOM,
2006.

[5] Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specification, IEEE Std., 1999.

[6] G. Judd and P. Steenkiste, “A simple mechanism for
capturing and replaying wireless channels,” in SIG-
COMM Workshop on Exp. Approaches to Wireless Net
Design and Anal. (E-WIND), 2005.

[7] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and
R. H. Katz, “Trace-based mobile network emulation,”
in SIGCOMM, 1997.

[8] E. Gilbert et al., “Capacity of a burst-noise channel,”
Bell Syst. Tech. J, vol. 39, no. 9, pp. 1253–1265, 1960.

[9] B. D. Fritchman, “A binary channel characterization us-
ing partitioned markov chains,” Trans. on Info. Theory,
vol. 13, no. 2, pp. 221–227, April 1967.

[10] G. T. Nguyen, R. H. Katz, B. Noble, and M. Satya-
narayanan, “A trace-based approach for modeling wire-
less channel behavior,” in Proc. Winter Sim. Conf.,
1996.

[11] A. Konrad, B. Y. Zhao, A. D. Joseph, and R. Ludwig,
“A markov-based channel model algorithm for wireless
networks,” Wireless Networks, vol. 9, no. 3, pp. 189–
199, May 2003.

[12] X. Lu, Y.-C. Chen, P. Lio, and D. Towsley, “Modeling
mobility from military manet traces,” in ACITA, 2008.

[13] Y.-E. Lu, F. Wicker, Y.-C. Chen, P. Lio, and D. Towsley,
“On secure network structures in the lakehurst trace,”
in ACITA, 2008.

[14] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and
M. Gerla, “Glomosim: A scalable network simulation
environment,” UCLA, Tech. Rep., 1999.

[15] “Opnet,” http://www.opnet.com.

[16] “Qualnet,” http://www.scalable-networks.com.

[17] J. MacQueen et al., “Some methods for classification
and analysis of multivariate observations,” 1966.

[18] M. Satyanarayanan and B. Noble, “The role of trace
modulation in building mobile computing systems,” in
HotOS, 1997.

[19] P. Sarolahti and A. Kuznetsov, “Congestion Control in
Linux TCP,” in Proceedings of the FREENIX Track:
2002 USENIX Annual Technical Conference, 2002, pp.
49–62.

