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Abstract—We consider the problem of identifying bad mea-
surements in compressive sensing. These bad measurements can
be present due to malicious attacks and system malfunction.
Since the system of linear equations in compressive sensing is
underconstrained, errors introduced by these bad measurements
can result in large changes in decoded solutions. We describe
methods for identifying bad measurements so that they can be
removed before decoding. In a new separation-based method
we separate out top nonzero variables by ranking, eliminate
the remaining variables from the system of equations, and
then solve the reduced overconstrained problem to identify bad
measurements. Comparing to prior methods based on direct or
joint /;-minimization, the separation-based method can work
under a much smaller number of measurements. In analyzing
the method we introduce the notion of inversions which governs
the separability of large nonzero variables.

I. INTRODUCTION

Compressive sensing has emerged as a major research
area due to, among others, the surprising property that sub-
Nyquist sampling can capture the information present in a
sparse signal. In general, this is made possible by having each
measurement be some incoherent linear combination of the
signal, thus ensuring that sparse signal components contribute
to the measurement with high probability.

A standard compressive sensing formulation is as follows:

y=Azx

where x is an N-dimensional vector representing the sparse
signal being sampled, A is an M x N measurement matrix
containing random entries, and y is a vector of M measure-
ments which are random linear combinations of components
of x. Typically, M < N, so this is an underconstrained
system that does not have a unique solution for general x.
Nevertheless, suppose that = is K-sparse in the sense that it
can be expressed as a linear combination of K basis vectors in
some basis with K being a fraction of M. Then it is possible to
recover x with high probability using a random measurement
matrix A. A rich volume of literature examines this topic
starting with the seminal work of Candes and Tao [1].
Clearly, given the underconstrained nature of the above
formulation the M measurements in the vector y are, in some
sense, information-dense. As a result, perturbations of y can
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severely impact the successful reconstruction of the signal x.
In particular, in this paper we focus on coping with such
perturbations when just a few of the elements of y exhibit
arbitrary error. Such cases could occur when, for example, the
compressive measurements are being collected in a distributed
system and a small fraction of the nodes either malfunction
or have been compromised to output incorrect values in order
to interfere with the decoding process.

Note that when the errors are substantial, the application
can detect their existence for the following reason. Because the
decoded solution will not yield sufficiently many zero or near-
zero components, the application should be able to notice the
lack of expected sparsity in the decoded solution, and conclude
it is not trustworthy.

However, when errors are not large enough to allow easy
observation of the decoded solutions on the existence of
bad measurements, detecting and identifying them can be
challenging. In this case, since the compressive sensing system
is underconstrained, the incorrect solution led by bad measure-
ments can be anywhere in a (N — (M —h))-dimensional space,
where h is the number of bad measurements. This makes the
problem of identifying bad measurements difficult.

In this paper, we show that we can identify bad measure-
ments for the case where there are only relatively few of
them. (Throughout the paper, we use the terms “bad samples”,
“bad measurements” and “bad equations” interchangeably.)
We describe a method for doing so, called the separation-
based method, and compare it with prior methods based on
direct or joint ¢;-minimization.

For performance analysis, we have identified a key param-
eter, called the number of inversions. We can estimate inver-
sions via empirical sampling and use the resulting estimate to
configure a separation-based method. In practice, this almost
always leads to successful identification of bad measurements.

II. BACKGROUND

In this section we introduce some notation, review the
standard ¢;-minimization method, and describe two relevant
kinds of error.

A. Notation
We will use the following notation to write down the
standard compressive sensing formulation:
y= Az (1)

Here, y € RM are the compressive samples, A € RM:N is the
random measurement matrix such that M < N, and 2 € RY
is the original sparse input to be reconstructed. We will say
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that « is (K, €)-sparse if only K entries of « have a magnitude
greater than €. Thus, with € > 0 we can describe vectors which
are only approximately sparse. On the other hand, for ¢ = 0,
x will have exactly K or fewer nonzero entries; for those
cases we will just say that = is K-sparse or that z is exactly
sparse. For brevity, for an exactly or approximately sparse
signal x, we will often use the term nonzeros to refer to the
K largest entries of x, even if for the latter case there are other
smaller elements which are not equal to zero. Finally, given an
arbitrary vector x, we will write xx to denote a “truncated”
version of x, where all except the K largest-magnitude entries
have been set to 0.

We adopt the standard solution method via /1 -minimization,
as follows:

x* = argmin ||z, 2)
y=Azx

It has been shown that the ¢;-reconstruction of K -sparse
signals is exact with high probability if

N
M Klog —
>C 0g - 3)

for some small constant C' [2]. For example, in practice, C' =
1.7 with log, gives a probability of decoding failure of less
than 0.1%.

B. Truncation Error

Consider a (K, €)-sparse signal x, with some ¢ > 0. Recon-
structing this approximately sparse x exactly is not possible
with the underconstrained system of M < NN measurements.
This means that the reconstruction z* will inevitably contain
some error induced by the minimization in (2) treating the
target vector x as K -sparse, that is, by truncating it so that
some of its entries with magnitudes < e become zeros. Errors
in x* resulting from this truncation are bounded; indeed, from
compressive sensing literature [3] we have

. Co
2" — x|, < TR |z — 2k, “4)

with Cy being some constant dependent on properties of the
measurement matrix A. Note that use of larger M will allow
us to use larger K, tightening the bound in (4) and thus
reducing ||z* — z||4,.

C. Direct {1-minimization

We consider the case where h individual elements of y, the
compressive samples, are corrupted for some small i. We then
have the following formulation with the error vector e being
h-sparse:

y=Azx+e (®)]

Candes et al. [4] showed that in the presence of noise, solving
the linear system with solely ¢;-minimization can still give
a reasonable solution. They show that the magnitude of the
solution error is bounded proportionally to the noise level as
follows:

* CO
z* =z, < NG |z —zKll,, +Cillel,, (6)

where Cy and C; are some constants. This suggests use of
conventional /;-minimization, which we refer to as direct ¢1-
minimization in this paper, for scenarios where small additive

noise is introduced in every measurement, such as the mea-
surement noise from the sensing devices or the quantization
error. However, for other scenarios where even just few
measurements are corrupted due to malfunctioning sensors,
corrupted packets, or malicious attacks the upper bound in (6)
may still be arbitrarily large.

D. Errors Introduced by Bad Measurements

Under direct ¢;-minimization, any amount of error intro-
duced by bad measurements will cause distortion in decoded
solutions. As an illustration, the red curve in Figure 1(a) shows
the effect of a single nonzero entry in the error vector e, that
is, a single bad measurement. We obtained the compressive
sensing solutions for N = 200,M = 50, K = 10, with
all nonzero elements in the input set to a value of 100. For
the error metric we used the average of the displacements
of computed nonzero element values normalized by their
respective original values.

The effect of this type of error will depend on the appli-
cation. If the application’s goal is to recover exact values
of the nonzero inputs, any amount of error will limit the
precision of the recovered values. On the other hand, suppose
that the objective is to merely identify the locations of the
nonzero elements; for example, they could represent bad
measurements (see Section III-B) or a small number of sensors
in a large population detecting certain exceptional conditions.
A straightforward method to perform the identification is to
admit any values exceeding some threshold. The red curves in
Figures 1(b) and 1(c) show how a single bad equation affects
such identification success under direct ¢;-minimization, given
same parameters as in the previous example, using an identifi-
cation threshold of 50. We can see that when error approaches
50 or 100, the solution begins to fail to identify all nonzeros,
or begin to identify incorrect nonzeros, respectively.

Therefore, to tackle the error problems caused by bad
measurements, one should identify and remove these measure-
ments from the system to allow solutions with better accuracy.

III. TWO METHODS

In this section, we will discuss two approaches to detect
and recover errors stemming from bad measurements. The
joint /;-minimization method utilizes the fact that because
we assume that there are only few bad measurements, the
error vector is sparse. On the other hand, the separation-based
method aims to separate out sufficiently many zero variables
so they can be eliminated from the measurements, resulting in
an overconstrained system with which the error vector can be
solved.

A. Joint ¢1-minimization Method

A method has been described in literature to deal with
sparse errors in compressive sensing [5], based on joint /;-
minimization for solving both vectors « and e simultaneously.
The method works by expressing the formulation in (5) as
follows:

y=[a 1]|" %)
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and (c) incorrect identification of nonzeros. This example assumes that N = 200, M = 50 and K = 10, with the value of nonzeros equal to 100.

That is, by using the fact that e is sparse, we can treat it as part
of the input, and reconstruct it using the error-free formulation
in (1).

This method has been shown to work in numerical experi-
ments [5]. Later, it was proven to work by showing that the
joint measurement matrix [ A I ] satisfies a sufficient con-
dition, restricted isometry property (RIP), which guarantees
that the minimization in (2) succeeds with high probability,
although under slightly worse bounds than a purely random
matrix of same dimension [6].

B. Separation-based Method

We now describe an alternative method for dealing with
bad measurements called the separation-based method, which
works in three steps: first, it reduces the original undercon-
strained system to a smaller, overconstrained system by elim-
inating sufficiently many zero variables. Then, it transforms
that system into an underconstrained system for e, and solves it
using ¢1-minimization. Finally, once we know e, we eliminate
it from the original system and solve for x. We describe these
steps in detail below for K-sparse x. We will extend the
method to approximately K-sparse z in Section V.

o Step I: Separating nonzeros. We begin with the system
of measurements in (5), which is an underconstrained
M x N system, and use ¢;-minimization to obtain z*.
From there, we extract a subset £ of L < M indices
which we make sure (see discussion in Section IV)
will include the K nonzeros in x with high probability;
namely, we construct £ by taking the L elements of x*
with the largest magnitudes. Note that elements of x at
indices not in £ are all zeros for K-sparse x; thus, they
don’t contribute any weight to the measurement vector y
and thus can be removed from the system of equations.
We now have a new overconstrained system

y=Bz' +e (8)

where B is a new M x L matrix composed of A’s
columns {a; : i € L}, and, correspondingly, ' is a new
vector of L unknowns {z;:¢ € L}, which we refer to
as “left-over” variables. The parameter L is chosen so
that we have a good probability of finding the original
K nonzero elements among the [ largest-magnitude
elements of z*. Thus, at the very least, L > K.

o Step II: Identifying Bad Measurements. The over-
constrained system in (8) with a sparse error vector
e has been studied previously in the context of error
correction [1]. The method reported there is not directly
applicable to our problem because it targets general non-
sparse signals and thus needs more measurements to
identify errors. However, after Step I is performed and the
system becomes overconstrained, we can use the method
to find e. First, we construct a (M — L) x M matrix F
whose null-space is the range of B, so that FB = 0.
Then we multiply both sides of (8) by F to get

Fy = FB2' + Fe = Fe )
Rewriting the left-hand side for clarity as § we get

y=Fe (10)
which is an underconstrained system. We can view (10)
as a compressive sensing of sparse vector e, and, noting
F satisfies RIP, we solve e via ¢;-minimization.

o Step III: Solving Error-free System. Clearly, once we
know e, we can eliminate it from the right-hand side
of (5) and solve the resulting system using standard /¢;-
minimization. Alternatively, we can use the locations of
the nonzero elements in e to identify bad equations,
remove these equations in (5), and solve the resulting
system. (The latter approach is useful for the approxi-
mately sparse case of Section V.)

Figure 1(a) shows the simulation results by repeating the
same experiments in Section II-C with the two methods. The
separation-based method improves the performance of the
direct ¢; method when the error magnitude is small. When
errors are large, their performance becomes similar. Note
that for the separation-based method, the curves of nonzero
distortion and missed fraction on nonzeros look very similar.
This is due to the fact that when the method misses a nonzero
variable, it will treat it as a zero variable. In this case, the
method would eliminate the component by setting it to zero,
causing a distortion in the decoded solution. Thus the relative
distortion is the same as the missed fraction. In comparison
with the joint-¢; method, we observe that the separation-
based method performs better when the magnitude of errors
is smaller.
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Fig. 2. Magnitudes of x’s components, with computed x* exhibiting
inversion under error. Top: The original z with blue nodes denoting zero-
valued variables and red nodes denoting the K nonzero variables. Bottom:
When solving the system using ¢1-minimization, the error will displace the
blue and red nodes from the correct solution, and may result in some blue
nodes getting mixed into the red nodes. The number of blue nodes larger than
the smallest red node is the number of inversions W.

IV. ANALYSIS FOR EXACTLY SPARSE SIGNAL USING THE
NOTION OF INVERSIONS

In this section, we analyze the performance of the
separation-based method by introducing the notion of inver-
sions.

We assume the signal x to be recovered is exactly sparse
with K nonzeros. That is, components in x other than the K
largest ones are all zero. The separation-based method aims
to separate and eliminate some of these zero components in
order to reduce the total number of unknowns. Therefore,
separability of zero components using the computed z* is
a key to its performance. Figure 2 illustrates the component
magnitudes of a K-sparse x vector and a computed x* vector
after solving x directly via ¢;-minimization. The figure shows
the value of every component in z and x*. We denote the K
nonzero components as the red nodes and the other N — K
zero components as the blue nodes. Due to the errors from the
bad equations, or insufficient good equations, the component
values in z* are displaced from their original values. As the
figure shows, some blue nodes may end up with larger mag-
nitudes than some red nodes, resulting in separation difficulty.
We call the number of blue nodes that have larger magnitudes
than the smallest red node the number of inversions, W, or
simply inversions.

The value W determines how well we can separate the
components in Step I. Note that all the K nonzero components
need to be in the set £ of L extracted components. Otherwise,
incorrectly dropped the nonzero terms would result in wrong
constraints to the system of equations. Therefore, L has to be
sufficiently large to ensure

L>K+W (11)

On the other hand, we want to turn the system of equations into
an overconstrained one involving the L left-over variables, and
later use ¢;-minimization to identify errors. Therefore we also
need to ensure that (10) can be solved with ¢;-minimization.
Since the F matrix has dimension (M — L) x M, we know
from (3) that condition (12) below ensures error recovery with
high probability:

M — L > O(hlog(M/h)) (12)

Combining (11) and (12) yields a lower bound on the number

M of measurements required for the separation-based method:

M > K + W + O(hlog(M/h)) (13)

In addition, to ensure that we can solve Step I with /;-
minimization, we need to bound M by the sparsity of x:

M > O(K log(N/K)) (14)

From (13), we can see that the number of measurements
required for error detection is a function of W. Fortunately
W can be small and is related to how “separated” the nonzero
components in x are away from zero. Here we need to
introduce another parameter «, referred to as “nonzeros floor,”
to denote the magnitude of the smallest nonzero component
in z. That is, « represents the degree of separability of x’s
nonzero components from zero. As long as « is large enough
relative to e, separation by rank is possible.

To see this clearly, as shown in (6), the {5 distance between
x and the reconstructed x* is bounded by the error magnitude.
In other words, the displacement of every component z; in x
is also bounded:

|27 — @l < 2" — 2, < Cuille],, (15)

Hence when « is sufficiently large relative to e, there will be
no inversions, that is, W = 0. In this case, those components
which assume the K largest magnitudes in the computed x*
are precisely those K nonzero variables in the original x.

V. EXTENSION TO APPROXIMATELY SPARSE SIGNAL

We show that the separation-based method is applicable to
approximately-sparse signals. Recall that such a (K, ¢)-sparse
signal x may have components with small magnitudes relative
to the K-leading components.

We first argue that small or zero W can be ensured so the
separation is possible. We know from (6) that the displacement
of components in the computed z* is still bounded even if x
is approximately sparse:

Collzx —
VK

Therefore, following the same argument as before, W is
guaranteed to be zero given sufficiently large a.

However, additional errors are introduced in eliminating the
separated components with small magnitudes. This is due to
the fact that x is (K, e)-sparse, not exactly sparse; so the
eliminated components are small but not zero. Denoting the
elimination error as eg, we can rewrite (8) after elimination
of the variables as an overconstrained system:

l
|2} — 23] < |2 — 2, < Cillell, + = (16)

y=Baz' +e+ep a7

and
ep = Z a; T
J¢L
where a; is the j-th column of the measurement matrix A.
Similarly, we can rewrite (10) in Step II as

(18)

g=F(e+egr)=Fe (19)
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Note that €’ is not sparse in general. Thus at first glance it may
appear that we cannot solve (19) by ¢;-minimization. Never-
theless, our goal is to know the locations of nonzero compo-
nents in e instead of recovering e’ exactly. £;-minimization
may still be applicable because it can separate out nonzeros
which are distinguishably larger than other components. For
this, we need to assume that the entries e; of e constitute the
largest components in ¢’ and that they are significantly larger
in their magnitudes than other components. That is,

2Co lles|l,,
€| > ——————+
Vh
The condition follows from (4), and the constant 2 is to avoid
e; canceling er due to sign difference. We argue that the
assumption in (20) is reasonable. If e has magnitudes similar
to the small-valued components in z, one will not be able to

observe the effect of e in the solution and thus in this case
there is no need to remove the bad equations.

,Vi=1,2,..,m, e, #0  (20)

VI. CONTRASTING THE TWO METHODS AND
APPLICATION STRATEGY

Finally, let us compare the joint ¢;-minimization method
and the separation-based method. The joint ¢;-minimization
method has the advantage that it only makes assumptions on
the sparsity of e. Thus it can recover any sparse e regardless of
its magnitude. In contrast, the separation-based method needs
to have assumptions on error magnitudes, that is, the error
needs to be sufficiently small relative to the nonzeros floor a,
to allow separation of variables. On the other hand, the /;-
minimization method needs a larger number of measurements
than the separation-based method, since the former recovers
both x and e simultaneously, whereas the latter recovers only
z in Steps I and IIL

The above suggests a strategy of detecting and identifying
bad measurements. That is, for a given set of equations which
may or may not contain any bad ones, we first apply the joint
¢1-minimization method to solve for  and e. The procedure
is deemed to be successful if the computed e* is sparse and
the computed solution of the system corrected by e* is also
sparse. Otherwise, apply the separation-based method as it can
survive with fewer measurements.

We can furthermore use the properties of the two methods
to design a strategy for choosing the number of measurements
M. Suppose the application is such that measurements are
relatively costly. Then, a straightforward strategy is to start
with small M and slowly add more measurements. We note
there can be three outcomes, depending on the magnitude of
the error: 1) if the error is extreme the application can detect
the bad measurement as an outlier, and we are finished; 2)
if the error is moderate, separation may fail at small M, and
joint-¢1 succeed when M increases sufficiently; finally, 3) if
the error is small, separation may succeed at smaller M than
joint-¢1.

A similar strategy may be employed for the type of ap-
plications where sets of M compressive measurements are
taken periodically, e.g., to repeatedly determine the status of
a set of objects. In that case, the application can, over time,
adapt M so that at least one of the methods succeeds; one
potential adaptation scheme may be to additively decrease,
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(separation) performs better given sufficiently large nonzeros floor o, which
is configured to be 150 in these experiments.
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Fig. 4. Top: An exemplar test signal  with N=200, K=10, and a=150.
Bottom: The decoded solution z* after directly solving with £1-minimization
with M=75. A bad measurement was introduced into the linear system y =
Az. The computed =* still preserves the “peaks” structure of z; thus one can
eliminate a large number of small-valued components to reduce the number
of unknowns.

multiplicatively increase the value of M so that the system
quickly leaves the state where both methods fail.

VII. NUMERICAL EXPERIMENTS

In this section we demonstrate and compare the performance
of the separation-based and the joint /;-minimization methods
via numerical experiments.

A. Performance of the Separation-based Method

Figure 3 shows the performance of both methods. In each
experiment, we use an exactly sparse signal of length 200. The
signal has 10 peaks at random locations as shown in Figure 4.
For simplicity, all the peak values are set to 150 while all
others are set to 0. An M x 200 Gaussian matrix is used
to obtain the M measurements. One of the measurements is
deliberately corrupted by adding an error amount ranging from
20 to 300. For the separation-based method, the number of left-
over variables L is set to its lower bound K + W assuming
we know W. In reality, W will not be known a priori and it
can only be estimated empirically or analytically. We use this
smallest possible L to establish a performance upper bound
for the separation-based method.

We varied the number of measurements M from 50 to 100.
The joint ¢;-minimization method performs very well when
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Fig. 5. The separation-based method can tolerate a higher number of bad
measurements. In this experiment we fixed « = 150, M = 75, e; = 30, and
varied the number of bad measurements.

there is a sufficient amount of measurements. When M is 75
or 100, it can always recover from the corrupted measurements
regardless of the error magnitudes. In contrast, although the
separation-based method is also capable of recovering from the
bad measurements, it cannot tolerate errors too large due to an
excessive amount of inversions. For large M, e.g. M = 100,
the separation-based method can handle larger errors because
more inversions can be tolerated.

The separation-based method shows its main advantage
when the measurements are less plentiful. When M is dropped
to 50, it is insufficient for the joint ¢;-minimization method,
resulting in a recovery rate around 70% for the entire error
range. The separation-based method however can achieve over
90% recovery rate when the nonzeros floor « is large enough
relative to the errors. This suggests, as described earlier, a
hybrid method to combine the advantages of both joint ¢;
and the separation-based method. That is, one should use the
joint /1 method first. If it fails, the separation-based method
can be used instead. The results of the hybrid method are also
shown in Figure 3, and the hybrid method indeed can improve
the joint /; method when the number of measurements is not
sufficient.

This experiment shows that the separation-based method can
recover with fewer number of measurements than the joint
¢1-minimization method. For similar reasons, the separation-
based method can tolerate a higher number of bad measure-
ments. Figure 5 shows the results of an experiment where
we vary h to change the number of bad equations. We use
the same setting as the previous experiment, and set the
total number of measurements to 75 and 100. When a bad
measurement is added, we always add a constant error 30 to
the measured value. The results show that the separation-based
method can generally achieve the same recovery rate as the
joint ¢;-minimization method while allowing 20-30 additional
bad measurements.

Next, we show that the separation-based method also applies
to approximately sparse signals. In this experiment, we use the
same settings except we set all the original zero components
to a fixed value 1. This number is chosen to satisfy Eq (20).
Note that a truncation error exists even if no bad measurements
are presented. Figure 6 shows the performance of separation-
based method applied to this approximately sparse signal.
Note that when error introduced by the bad measurement is

350
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300 | M=50, separation e .
250 *

Solution Error

100 120 140 160 180 200
Error

Fig. 6. The separation-based method applies to an approximately sparse
signal. When the error is small, the solution error recovery rate is similar to
the case that no bad measurements are introduced.

small (e.g., less than 60), the performance of the separation-
based method is comparable to the error-free case which
involves no bad equations. This shows that the method has
successfully removed the bad equations. In contrast, the joint
£1-minimization method has a higher solution error, due to the
lack of sufficient measurements.

VIII. CONCLUSIONS

In this paper we describe a new method, called separation-
based method, for detecting and also identifying bad mea-
surements in compressive sensing. If errors introduced by bad
measurements are small, then the separation-based method
requires a smaller number of good measurements than the
previous method based on joint ¢;-minimization. We note
that if there are sufficient good measurements, the joint ;-
minimization works independently of error magnitudes. In
practice we suggest a hybrid approach. That is, we will use the
joint £1-minimization method first. If the joint method fails due
to an insufficient amount of good measurements, then we use
the separation-based method, as it can survive with a smaller
number of good measurements.

We have shown that the separation-based method works
for both exactly and approximately sparse signals. In the
analysis we have introduced the notion of inversions. A tight
upper bound on the number of inversions is a key to ensure
the effectiveness of the separation-based method. We argue
that obtaining such an upper bound is empirically feasible in
practice.
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