
Compressive Sensing Medium Access Control
for Wireless LANs

Tsung-Han Lin and H. T. Kung
School of Engineering and Applied Sciences

Harvard University
Email: {thlin, htk}@eecs.harvard.edu

Abstract—We propose a medium access control (MAC) pro-
tocol for wireless local area networks (LANs) that leverages
the theory of compressive sensing. The proposed compressive
sensing MAC (CS-MAC) exploits the sparse property that, at a
given time, only a few hosts are expected to request for radio
channel access. Under CS-MAC, a central coordinator, such as
a wireless access point (AP) can recover a multitude of these
requests in one decoding operation, and then schedule multiple
hosts accordingly. The coordinator is only required to receive a
relatively small number of random projections of host requests,
rather than polling individual hosts. This results in an efficient
request-grant method. Via a hardware prototype based on a
software-defined radio platform, we demonstrate the feasibility
of realizing CS-MAC with compressive measurements formed in
the air to achieve high efficiency.

I. INTRODUCTION

Compressive sensing is an emerging technology that has
drawn considerable attention recently for its ability to acquire
and extract critical information efficiently. It has found ap-
plications in various fields such as medical imaging, cognitive
radio, wireless communication, and sensor networks (see, e.g.,
[9]). In particular, two features of compressive sensing are
worth noting. First, generating compressive measurements is
blind to the content of the signal to be compressed and has low
computational complexity. Second, it is sufficient to capture
the signal with a small number of compressive measurements,
which is approximately proportional to its information content,
i.e., its sparsity, not its length. Therefore, compressive sensing
is attractive in large-scale distributed scenarios where coordi-
nation is substantial, and important information is sparse.

Wireless medium access control concerns scheduling of
radio channels shared among a network of distributed hosts.
The state-of-the-art 802.11 wireless LAN standard adopts a
CSMA/CA random access method, whereby contention is re-
solved by a randomized backoff counter on every host station.
The idle channel is won by the host whose backoff counter
expires first. This method works well when there are relatively
few hosts in the network; however it has limitations due to its
distributed control paradigm. For example, collision avoidance
relies on local carrier sensing. When carrier sensing cannot
function properly, e.g., in the presence of hidden terminals,
throughput will greatly degrade (see, e.g., [7]). Quality-of-
service (QoS) policies are also difficult to be implemented
due to the lack of a central coordination.

While central coordination can potentially provide better

scheduling, its efficient implementation however has been a
challenge. For example, polling-based MAC protocols [15][1]
may suffer from the high communication overhead, propor-
tional to the number of hosts N in the network, or require
complex scheduling to improve their efficiency. 802.11 PCF
[1] is one example: it is rarely deployed in practice due to its
overhead. The inefficiency of polling in part results from the
fact that the central coordinator may poll a host that does not
have data to send. It is wasteful because in a large network,
only a few hosts may be contending for the channel at any
given time. This suggests the use of a sparse vector to represent
the hosts in the network where the contending hosts are the
nonzero components. AP’s polling operations can be viewed
as constructing the sparse vector by checking its components
one by one. In this paper, we propose CS-MAC, a compressive
sensing based MAC protocol that allows a coordinator to check
all components of the sparse vector at once by receiving only
a small number of messages by the hosts.

CS-MAC can realize efficient centralized scheduling for
three reasons. 1) Compressive sensing allows CS-MAC to
identify contending hosts by receiving only a few compressive
measurements with the number of measurements approxi-
mately proportional to the number of contending hosts. The
communication overhead on the central coordinator thus can
be minimized. 2) The compressive measurements of host
channel access requests are formed in the air from concurrent
transmissions. This analog approach eliminates the need of
scheduling request transmissions, and thus enables fast mea-
surement collection. 3) CS-MAC uses a distributed random
access protocol to limit the number of contending hosts at a
given time when many hosts have data to send. Consequently,
the number of required compressive measurements does not
need to be adaptive to the network contention level and can be
set to a fixed constant. In addition, CS-MAC can scale with
the number of hosts. The overhead of CS-MAC grows sub-
linearly with N , assuming fast decoding algorithms [14] and
parallel processing hardware [17] are used.

We summarize the main contributions of this paper as
follows: 1) We use compressive sensing to implement a
compressive requests/multiple grants MAC for wireless LANs.
To our knowledge, we are the first in the literature to design
a complete MAC solution based on compressive sensing. 2)
We show an analog radio implementation incorporating a
suite of low-overhead methods to address key issues such

AP

Hosts …

Request
Solicitation

SIFS
Compressive
Requests

Scheduled Transmission

ACK
Bitmap

Schedule Bitmap
For Multiple Grants

Data 1 Data k

SIFSDecodingSIFS

Fig. 1: Overview of CS-MAC operations.

as analog compressive measurements formation and easy-to-
implement synchronization. We demonstrate the practicality of
host requests recovery on a hardware prototype. 3) We show
through software simulation that CS-MAC can offer better
performance in both throughput and fairness over two state-
of-the-art protocols, 802.11 DCF and Idle Sense [10].

This paper is organized as follows: we first briefly intro-
duce compressive sensing in Section II. We then present the
design of CS-MAC in Section III. The implementation of the
software-defined radio prototype of CS-MAC and experiments
is detailed in Section IV, followed by performance simulation
in Section V, and finally conclusions in Section VI.

II. COMPRESSIVE SENSING

In this section, we provide a brief introduction to compres-
sive sensing. Interested readers are referred to, e.g., [8], for
an extensive treatment of the subject. Compressive sensing
originates from the observation that natural signals are often
sparse in some domain, i.e., a signal can be represented by
a few significant coefficients, such as natural images in the
frequency domain. While traditional compression can exploit
this sparsity to reduce signal size, it requires statistical analysis
of the entire signal to derive the significant coefficients. Com-
pressive sensing instead attempts to remove this requirement
considering an interesting question: given a sparse signal of
sparsity K, i.e., it has only K significant coefficients, can one
capture the K coefficients without collecting and analyzing
the complete data of some large size N? Equivalently, given
an M × N sensing matrix A, and the measurement vector
y = Ax, can we recover the signal vector x with M < N?
Since this linear system is underdetermined, the problem in
general has infinite solutions for x. However, it has been
shown that exact recovery is possible with M as small
as O(K log N

K), provided that A satisfies some regulatory
conditions such as the restricted isometry property (RIP).
Gaussian and Bernoulli random matrices are found to be good
candidates for A that satisfy RIP with high probability. In this
case, the measurements can be viewed as random projections
of the signal to be compressed. Due to their expected high
incoherency, the random projections effectively capture all
useful information about the signal with high probability when
there are enough of them. One way to recover the sparse signal
x is to choose the solution vector with minimum `1-norm over
all feasible solutions. That is, find x by solving the following
minimization problem.

min
x∈RN

|x|`1 subject to y = Ax (1)

and (1) can be solved via linear programming.
In short, compressive sensing enables efficient data collec-

tion with a small number of measurements, which is approxi-
mately a small constant multiple of the sparsity K when log N

K
is small. CS-MAC exploits this idea for efficient collection of
host channel access requests.

III. CS-MAC DESIGN

In contrast to 802.11 DCF, CS-MAC takes a centralized
approach to schedule radio channel access. In other words,
a central coordinator is used to first learn distributed hosts’
needs for channel access and then schedule transmission slots
accordingly. For clarity, in this paper we assume a single
wireless access point (AP) serving as the central coordinator,
and all hosts in the wireless LAN are associated with the AP.

CS-MAC has two key ideas, namely the compressive re-
quests and multiple grants. In CS-MAC, to acquire trans-
mission opportunities, distributed hosts send channel access
requests concurrently; thus multiple requests are combined in
the air, which we call the compressive requests. The AP can
then use the compressive requests to identify the contending
hosts and grant transmission opportunities. As noted in Sec-
tion II, the number of measurements required for recovery is
approximately proportional to the number of hosts requesting
for channel access at the moment, rather than the total number
of hosts in the network. CS-MAC thus can scale to networks
with a large number of hosts.

Although the AP can efficiently learn the hosts’ needs for
channel access through compressive requests, given a fixed
number of measurements, only a limited number of K hosts
can request concurrently due to the sparsity constraint. To
control the number of concurrent requesting hosts, CS-MAC
uses a randomized scheme under which the hosts send requests
with some probability. Noting that the AP can resolve up to K
requesting hosts at a time and grant transmission opportunities
to multiple hosts (called multiple grants). This contention thus
is a multi-winner contention. We will show that in multi-
winner contention, collisions are much less likely to occur
when K is sufficiently large, and thus the efficiency of CS-
MAC is not hampered by the randomized scheme.

The basic operation of CS-MAC is outlined in Figure 1. CS-
MAC begins with the AP initiating a request solicitation. Upon
receiving the solicitation, hosts wish to access the channel may
reply with requests, depending on the outcome of a local coin
toss. The concurrent request transmissions then are combined
in the air forming compressive requests. The AP next decodes
the received compressive requests to identify contending hosts
and schedules data transmissions accordingly. The schedule
is then broadcast using a schedule bitmap packet. Finally,
after the scheduled hosts finish transmitting data packets,
the AP broadcasts an acknowledgement bitmap packet to
acknowledge received packets.

A. Analog compressive requests: random linear combining in
the air

As noted earlier, random projections of a sparse vector
can preserve sufficient information with high probability for

recovery. CS-MAC generates such random projections via
concurrently transmitting random sequences as the requests
from multiple hosts. The concurrent transmissions can be
formulated as:

y =
[
a1 a2 ... aN

]

h1x1

h2x2

...
hNxN

+ n (2)

where ai is the random sequence of host i and hi is the channel
coefficient from host i to the AP. xi is a binary {0,1} variable
indicating whether host i sends its request and n denotes the
noise vector. Assuming that ai has length M and the channel
is coherent over the transmission period, y is the received
signal of length M at the AP.

For simplicity, the random sequence is generated from
Bernoulli distribution of {1,-1}. Assuming there are at most
K hosts requesting at any given time (we will justify this
assumption later in Section III-B), (2) can be viewed as a
sparse recovery problem that has only K nonzero hixi in the
unknown vector. Then M can be as small as cK � N for
exact recovery where c is a small constant. Empirically the
value of c around 3 to 4 is sufficient for recovery provided
that n is relatively small. Note that in identifying requesting
hosts, the compressive sensing decoding process yields the
solution of hixi without having to estimate the channel state
information. Since hixi is 0 when host i does not request for
channel access, we can use a threshold to distinguish between
zero and nonzero xi.

Finally, we note that the random sequence is assigned to
each host by the AP during association. Therefore the AP
knows the random sequence associated with each host and thus
can solve (2) by using a proper sensing matrix in decoding. In
addition, unlike many other centralized approaches, CS-MAC
requires no sophisticated membership management at the AP.
If a host leaves without notice, it is equivalent to the host
not requesting for channel access. Since compressive sensing
almost only concerns the number of nonzero components, a
small increase in the total number of unknowns N resulting
from loose membership management will almost not change
the required number of measurements M .

B. Multi-winner contention for multiple grants

For exact recovery, the number of measurements M needs
to be set based on the sparsity K, the number of requesting
hosts. In the worst case where the network is very busy, K
can be as high as N when all hosts need channel access.
Therefore, without an adaptation scheme, a fixed large M
would be required to support a potentially large K, resulting
in inefficiency when in reality K is expected to be small.
Furthermore, a larger M would not be practical if the longer
measurement period exceeds the channel coherence time.

We propose to use a distributed control scheme to limit
the sparsity K that CS-MAC needs to handle at any time,
allowing CS-MAC to use a small fixed M . The basic idea
is to use a random access protocol which stipulates the

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 50 100 150 200

S
u

c
c
e

s
s
 p

ro
b

a
b

ili
ty

Number of hosts (N)

K=1
K=2

K=3
K=4
K=5
K=6

Fig. 2: Advantages of multi-winner contention. The probability
of successful resolution of contention increases dramatically
when K grows from 1 to 5.

hosts to send requests with some probability p. p can be
adjusted based on the network contention level: if collisions
occur when more than K hosts send the requests, p will be
reduced to avoid future collisions; otherwise p is increased
for the hosts to take advantage of the unsaturated channel.
The classic additive-increase-multiplicative-decrease (AIMD)
principle can be employed to adjust p to ensure fairness among
hosts. Note that the collisions can be detected by the AP when
the decoding of compressive requests fails. The AP then can
notify the hosts of the collision using the schedule bitmap so
that they can adjust the requesting probability accordingly. We
set the AIMD parameters similar to those in Idle Sense [10]:
the probability is increased by 0.001 and decreased by 1

1.2 for
every adjustment.

It is possible that such a random access scheme suffers
from excessive collisions and delivers low MAC efficiency. For
example, slotted ALOHA only achieves at best approximately
36% efficiency due to collisions. CS-MAC, however, does not
suffer from the issue because multiple requesting hosts can be
resolved for each compressive requests. To see this, we can
derive the probability Ps that the requesting hosts are identified
successfully as:

Ps =
K∑

i=1

(
N

i

)
pi(1− p)(N−i) (3)

Figure 2 shows the maximal Ps under different sparsity
limit K and different number of hosts N . We can make
the following observations. First, Ps remains almost constant
under a varying number of hosts. Second, when K = 1
(corresponding to slotted ALOHA), the maximal Ps is only
0.36 as expected. However, when K = 5 the maximal Ps is
dramatically increased to 0.9. This suggests that collisions are
a lot less likely to occur when more than one winner is chosen
in a contention. Also, a small number of winners is sufficient
to mitigate the inefficiency significantly, and thus K needs
not to be large. This can assure that the transmission time of
compressive requests will be under channel coherence time.
In our CS-MAC implementation, we set M=20 for K=5.

C. Synchronizing concurrent transmissions

To form compressive measurements from concurrent trans-
missions, all hosts need to be synchronized to the symbol-
level. Fine-grained synchronization between hosts in such

a distributed setting is generally a difficult task. CS-MAC
instead only requires loose synchronization between hosts. It
uses the request solicitation message as a reference signal.
Assume a 300m radio range. Given this propagation delay,
timing misalignments between transmitted symbols will be
capped at 2µs [16].

To overcome the 2µs misalignment, we use a long symbol
length of 5.12µs duration to ensure that the transmitted sym-
bols always overlap, and the AP can safely take compressive
measurements. Note that although the symbol is much longer
than that in a perfectly synchronized scenario (e.g., in this case
each symbol can be only 50ns long with a 20MHz bandwidth),
the incurred overhead is still small due to the small number
of symbols required for compressive requests. Given that CS-
MAC only needs M = 20 symbols for compressive requests,
the compressive requests span approximately 100µs duration.
Since K = 5 hosts can be resolved and scheduled for data
transmission after the compressive requests, CS-MAC on aver-
age only adds 20µs overhead to each data transmission, which
corresponds to only two backoff slots in 802.11. Furthermore,
the 100µs duration of the compressive requests is well below
the 10-20ms channel coherence time, and thus (2) still holds.

D. Protocol overhead

Table I lists the parameter values of CS-MAC. Detailed
descriptions of individual control packets are omitted due to
space limitation. Compressive sensing decoding may incur a
significant overhead. For example, when linear programming
is used to perform `1-norm minimization, the computational
complexity is roughly O(N3) or higher. Reducing the decod-
ing complexity has been a subject of intensive research in
recent years [6]. Currently the best state-of-the-art algorithm
can lower the decoding complexity down to O(N log N

K)
[5] at the expense of a relatively weak error guarantee for
the recovered solution. Here we use O(N2) to approximate
decoding complexity. This means the decoding time will be
about 20µs with a 2GHz CPU when N=200.

Based on Table I, and assuming the underlying physical
layer runs 802.11g (54Mbps), the overhead for CS-MAC to
send a data packet is 67.1µs excluding the overhead of random
backoff and collisions in multi-winner contention. For 802.11
DCF, the overhead is 80.1µs without including the cost of
random backoff and collisions. If the RTS-CTS mechanism is
turned on, the overhead further goes up to 145.1µs. We can
see that while CS-MAC is a centralized approach for medium
access control, its overhead is still comparable to basic 802.11
DCF, which only permits distributed random access.

TABLE I: Parameter values of CS-MAC

Request solicitation 14 bytes Decoding 20 µs
Compressive request 102.4 µs Schedule bitmap 37 bytes
ACK bitmap 37 bytes PHY header 20 µs

E. Performance gains of CS-MAC and system considerations

CS-MAC is a centralized MAC protocol, and thus has
important gains over conventional CSMA-based protocols that

are distributed in nature.

Hidden terminals. The classic hidden terminal problem arises
when two hosts associated with the same AP cannot hear each
other. As a result, they cannot detect ongoing transmissions
and will interfere with each other. Throughput drops signifi-
cantly when hidden terminals are present [7]. Current 802.11
protocol adopts the RTS-CTS exchange to avoid collisions,
however its overhead is so high that RTS-CTS is often turned
off. The hidden terminal problem arises because of a lack of
global information at each host. Thus it is naturally solvable
using a central scheduling approach such as CS-MAC. The
scheduler guarantees a dedicated time slot for a host to send
packets without interference. In an environment with multiple
APs, there could be more complex hidden terminal scenarios
where RTS-CTS cannot even function correctly [11], or ex-
posed terminal scenarios which cause channel underutilization
[7]. These problems can be solved by running CS-MAC on a
central scheduler coordinating among the APs.

Short-term fairness. It is well-known that the binary expo-
nential backoff scheme in 802.11 DCF delivers poor short-
term fairness [10]. In general, to achieve good short-term
fairness, one needs to estimate the network traffic load over
small time intervals to prevent a single host from taking
an unproportionally large portion of the channel. In a basic
scenario where every host can hear each other, Idle Sense
[10] enforces the fairness by maintaining equal transmis-
sion probability at every host in a distributed fashion. The
network load is estimated by observing the number of idle
slots between transmissions. However, this estimation becomes
difficult when hidden terminals exist. In this case, one may
need to introduce additional control mechanisms to propagate
load information [11]. CS-MAC takes a similar approach
as Idle Sense that the hosts request for the channel with
some probability. The network load then can be estimated by
observing the number of requesting hosts, and the AP can
simply use a broadcast to regulate host request probability.
As a result, CS-MAC can achieve good short-term fairness
regardless of hidden terminals in the sense of 802.11 DCF.

QoS. Centralized approaches can ease the implementation of
quality of service (QoS) policies. For example, DOCSIS [4],
the protocol for cable Internet access, is known for its ability
to perform QoS scheduling for multimedia applications. We
expect CS-MAC to deliver similar QoS capability since it takes
a similar request/grant method. Take EDCF [3] in 802.11e as
an example: EDCF provides differentiated service support by
prioritizing flows in the network through adjustments to the
contention window size for each flow. However, configuring
priority-level parameters to achieve QoS is not obvious. In
[18], proportional differentiation is proposed such that the ratio
of channel sharing between different priority levels are to be
set. To implement this policy, CS-MAC simply grants more
transmission slots to higher priority flows.

Coexisting with 802.11. CS-MAC may coexist with 802.11.
When conventional 802.11 DCF hosts join the network, they

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

E
x
a

c
t

R
e

c
o

v
e

ry
 R

a
te

Number of Concurrent Transmissios (M)

K=1
K=2
K=3
K=4
K=5

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

E
x
a
c
t
R

e
c
o
v
e
ry

 R
a
te

Number of Concurrent Transmissions (M)

K=1
K=2
K=3
K=4
K=5

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

-15 -10 -5 0 5 10 15 20 25 30

E
x
a
c
t
R

e
c
o
v
e
ry

 R
a
te

SNR (dB)

K=1, M=5
K=2, M=7

(c)

Fig. 3: Experiment results on hardware prototype. (a) Recovery performance for compressive requests in the 8-node scenario,
and that in (b) the 16-node scenario. (c) Recovery performance under different SNR in the 8-node scenario.

 10

 15

 20

 25

 30

 35

1 2 3 4 5

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

K

Fig. 4: Impact of multi-winner contention. The aggregated
throughput of CS-MAC in a 40-node scenario can reach
30Mbps when K increases from 1 to 5.

will not be granted any channel access under CS-MAC as
they will not participate in CS-MAC requesting. We can
solve this problem by having the CS-MAC AP also perform
CSMA before sending the request solicitation under CS-MAC.
In other words, the AP contends with 802.11 hosts for the
channel, and thus gives room for 802.11 hosts.

IV. COMPRESSIVE SENSING RECOVERY ON HARDWARE
PROTOTYPE

To demonstrate the practicality of analog compressive re-
quests combined over air and their recovery by compressive
sensing decoding, we implement these functions on software-
defined radios. Our testbed has 9 USRP-N200 nodes dis-
tributed in an area of 2m x 2m, equipped with the WBX
daughterboards. The nodes operate with a 0.78MHz bandwidth
center at 916MHz. For fast prototyping, we calibrated the
nodes before the experiments to ensure that there is no
frequency offset. In practice, the AP’s frequency can be used
as a reference and the calibration can be done after receiving
the request solicitation.

Among the 9 nodes, one node serves as the AP and the
other 8 nodes serve as the hosts. Being near the AP, the hosts
have a 20-30dB SNR. We randomly pick K hosts to request
for channel access, and see if we can use compressive sensing
decoding to recover the requests from the received signals. We
use the l1-MAGIC package [2] to perform sparse recovery.
The detection threshold for requests is set to 10dB to avoid
false positive detection. Optimal threshold setting involves
error and false positive/negative analysis, and needs further

study.
Figure 3(a) shows the results of the experiment. When K=1,

we can recover the requests exactly with M=5 concurrent
transmissions or more. This is consistent with the M∼4K
estimate on the required measurements stated earlier. For
2<K≤5, we need 8 measurements for 100% recovery rate,
but when fewer measurements are used, as M increases,
we still can observe the increase in recovery rate. Next, we
want to see how the recovery performs in a larger network
setting. Due to limited hardware availability, we use the 8
USRP-N200 nodes to emulate a 16-node scenario. A single
physical node will act as two different virtual nodes. The radio
signals transmitted by the two virtual nodes are assumed to be
perfectly combined without any noise. The virtually combined
signal is then transmitted by the physical node. The results are
shown in Figure 3(b). When K=2 and 3, requests are always
recovered with 9 and 12 measurements, respectively.

To check the performance under varying SNRs, we vary
the transmission power in the 8-node scenario. Using K=1,
we set M=5, the minimum measurements required for exact
recovery as observed in Figure 3(a). Figure 3(c) shows the re-
sults. Compressive requests achieves good performance when
SNR is higher than 15dB, a reasonable SNR requirement in
wireless LANs. Similar performance is observed when K=2,
M=7. Note that this parameter setting cannot guarantee 100%
recovery as indicated by Figure 3(a), and thus shows a slightly
worse performance.

V. PERFORMANCE SIMULATION

To test a larger set of conditions, we implement CS-MAC
with an event-driven software simulator. In the simulations,
we assume the physical layer runs 802.11g (54Mbps), and
all hosts always have data to send. We first show the impact
of multi-winner contention in a 40-host scenario. Figure 4
shows the aggregated network throughput of CS-MAC with
different K. The aggregated throughput of CS-MAC when
K=1 is only 10Mbps due to the high collision probability.
In contrast, the throughput is increased to 30Mbps by setting
K=5 when collisions become less likely to occur. For all other
simulations, K is set to 5 as described in Section III-B.

Next we compare CS-MAC with Idle Sense [10] and 802.11
DCF in scalability to number of hosts, fairness, and QoS.

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

T
h
ro

u
g

h
p
u
t

(M
b
p

s
)

Number of Hosts (N)

CS-MAC
Idle Sense

802.11 DCF

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

J
a

in
 I
n
d

e
x

Averaging Window Size (ms)

CS-MAC
Idle Sense

802.11 DCF

(b)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000

T
h
ro

u
g
h
p
u
t
R

a
ti
o

Elapsed Time (ms)

CS-MAC
Idle Sense

802.11 DCF

(c)

Fig. 5: Software simulation results. (a) CS-MAC aggregated throughput with a varying number of hosts. (b) Short-term fairness
[12]. (c) Proportional differentiated service for QoS.

Figure 5(a) shows the aggregated throughput of CS-MAC
with a varying number of hosts. CS-MAC can scale to a
network with 200 hosts without losing much of its efficiency,
while 802.11 DCF loses its efficiency due to the increased
number of collisions. Figure 5(b) shows the short-term fairness
when N=40. CS-MAC achieves similar performance with Idle
Sense. We note that when hidden terminals are introduced in
the simulations, the throughput of both Idle Sense and 802.11
DCF drops significantly. If we enable RTS-CTS, they still
suffer from poor short-term fairness due to the lack of correct
network load estimation. (Performance plots of are not shown
here due to space limitation.)

Lastly, Figure 5(c) shows the performance results of a
simple implementation of a proportional differentiated service
QoS policy. We want to have a particular host in the 10-
host collection to have throughput three times higher than
the rest. For 802.11 DCF and Idle Sense, due to the lack
of central coordination, we implement the policy by setting
the contention window of the host to be three times smaller
than other; however this implementation fails to achieve the
correct ratio for both of the protocols. In contrast, CS-MAC
can realize the ratio easily by AP scheduling.

VI. CONCLUSION

CS-MAC of this paper uses a central controller to schedule
hosts. It is easy to see that a centralized approach can
conveniently avoid hidden terminal problems, assure QoS and
enhance fairness. However, it can be difficult to devise an effi-
cient implementation for a centralized scheme due to the need
of gathering global information from all hosts. In this paper,
we note that compressive sensing can change the equation.
Since host requests are expected to be sparse, they can now
be recovered with far fewer measurements than before. This
can fundamentally lead to a shift towards centralized MAC
approaches for wireless LANs.

While in this paper we have developed the basic concepts
of CS-MAC and demonstrated its working under lab settings,
we recognize that much further work is needed. In particular,
a better understanding of the robustness of CS-MAC for
networks with larger propagation delays and larger variation
in host SNR is necessary. We also need to develop models
for optimal choices of K and M for the contention period

and for optimal design of the measurement matrix of (2) to
accommodate more users. Finally, we need to devise advanced
synchronization mechanisms to allow shortened symbol time
for the contention period. See MIMO/CON on using compres-
sive sensing to weaken the synchronization requirement [13].

ACKNOWLEDGEMENT

This material is in part based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-10-2-0180.
The U.S. Government is authorized to reproduce and distributed
reprints for Governmental purposes not withstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies of endorsements, either expressed or
implied, of Air Force Research Laboratory or the U.S. Government.

REFERENCES

[1] IEEE standard 802.11-2007.
[2] l1-MAGIC. Available at www.l1-magic.org.
[3] IEEE 802.11e/D5.0. 2003.
[4] Cable television laboratories, inc. data-over-cable service interface spec-

ifications, in radio frequency interface specification. 2004.
[5] R. Berinde, P. Indyk, and M. Ruzic. Practical near-optimal sparse

recovery in the l1 norm. In Allerton 2008.
[6] R. Berinde et al. Combining geometry and combinatorics: A unified

approach to sparse signal recovery. In Allerton08.
[7] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: a

media access protocol for wireless LANs. In SIGCOMM 1994.
[8] E. Candès. Compressive sampling. In Proceedings of the International

Congress of Mathematicians, volume 3, pages 1433–1452, 2006.
[9] M. Davenport, M. Duarte, Y. Eldar, and G. Kutyniok. Introduction to

compressed sensing. Electrical Engineering, pages 1–68, 2011.
[10] M. Heusse. Idle sense: an optimal access method for high throughput

and fairness in rate diverse wireless LANs. In SIGCOMM 2005.
[11] Y. Jian and S. Chen. Can CSMA/CA networks be made fair? In

MobiCom 2008.
[12] C. Koksal, H. Kassab, and H. Balakrishnan. An analysis of short-term

fairness in wireless media access protocols. In SIGMETRICS 2000.
[13] T.-H. Lin and H. T. Kung. Concurrent channel access and estimation

for scalable multiuser MIMO networking. Harvard Univ., [online] 2012,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:9299797.

[14] D. Needell and J. Tropp. Cosamp: Iterative signal recovery from incom-
plete and inaccurate samples. Applied and Computational Harmonic
Analysis, 26(3):301–321, 2009.

[15] O. Sharon and E. Altman. An efficient polling MAC for wireless LANs.
IEEE/ACM TON, 9(4):439–451, 2001.

[16] K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and Y. Zhang.
Fine-grained channel access in wireless LAN. In SIGCOMM 2010.

[17] S. Tarsa et al. Performance gains in conjugate gradient computation
with linearly connected gpu multiprocessors. In USENIX HotPar’12.

[18] Q. Xue and A. Ganz. Proportional service differentiation in wireless
LANs using spacing-based channel occupancy regulation. In MM 2004.

