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Introduc<on	
  

§  Dynamic	
  spectrum	
  access	
  (DSA)	
  with	
  cogni6ve	
  radios	
  
–  Alleviates	
  inefficient	
  spectrum	
  alloca6on	
  and	
  licensing	
  

§  Accurate	
  low-­‐latency	
  spectrum	
  sensing	
  most	
  important	
  to	
  
maximize	
  DSA	
  benefits	
  

§  Conven6onal	
  spectrum	
  analyzer	
  
–  Can	
  be	
  ideal	
  spectrum	
  sensor	
  
–  Measures	
  amplitude	
  of	
  signals	
  over	
  !me	
  and	
  converts	
  to	
  power	
  

magnitudes	
  across	
  frequency	
  
–  FFT	
  at	
  the	
  heart	
  of	
  modern	
  spectrum	
  analyzer	
  equipment	
  

•  Expense	
  of	
  FFT	
  ⟹	
  true	
  boYleneck	
  is	
  to	
  keep	
  up	
  with	
  Nyquist	
  sampling	
  	
  
»  E.g.,	
  1-­‐MHz	
  channel:	
  2	
  ×	
  106	
  ×	
  sample	
  size	
  bps	
  ⟶	
  40	
  Mbps	
  (if	
  20-­‐bit	
  sample)	
  	
  	
  



Network-­‐based	
  Spectrum	
  Analysis	
  

§  Distributed	
  spectrum	
  sensing	
  
–  Spectrum	
  analyzer	
  &	
  measurers	
  separate	
  en66es	
  but	
  networked	
  

§  Simple,	
  in	
  situ	
  compression	
  of	
  measurement	
  data	
  at	
  
acquisi6on	
  

–  Compressive	
  sensing	
  encode	
  

§  In-­‐network	
  processing	
  of	
  data	
  
–  Combine	
  mul6ple	
  compressed	
  measurements	
  

§  Recovery	
  of	
  original	
  data	
  
–  Undo	
  in-­‐network	
  data	
  processing	
  &	
  compressive	
  sensing	
  decode	
  



Case	
  for	
  Distributed	
  Spectrum	
  Sensing	
  (1)	
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Case	
  for	
  Distributed	
  Spectrum	
  Sensing	
  (2)	
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Challenges	
  

§  Naïve	
  FFT	
  spectrum	
  analysis	
  boYlenecked	
  by	
  high	
  data	
  rate	
  
of	
  Nyquist	
  sampling	
  

–  Use	
  of	
  mul6ple	
  spectrum	
  sensors	
  each	
  monitoring	
  a	
  sub-­‐band,	
  we	
  
have	
  mi6gated	
  this	
  problem	
  

§  How	
  to	
  minimize	
  network	
  communica6on	
  cost	
  of	
  sensor	
  
measurements	
  propaga6ng	
  network	
  

§  Fine-­‐grained	
  spectral	
  analysis	
  of	
  wideband	
  spectrum	
  



Problem	
  Statement	
  

What	
  is	
  the	
  size-­‐reducing	
  opera<on	
  θ	
  that	
  makes	
  
network-­‐based	
  analyzer	
  feasible?	
  	
  

2

around the corresponding frequency index in the spectrum.
Spectrum analyzers designate resolution bandwidth b = B/N

to refer the spacing between two consecutive frequency com-
ponents. Resolution bandwidth determines the granularity of
an analysis—that is, the smaller the resolution bandwidth, the
finer the granularity.

The computational complexity of an N -point FFT is in
O(N logN) time, and a few kHz resolution bandwidth for
the 1-MHz band will result N to be as large as 512 (FFT
commonly performed in a power of 2). Sometimes, creating
a new snapshot may not require full N measurements per
every analysis cycle if some prior knowledge on a channel
or signals is given. The real challenge would be analyzing a
wideband spectrum of several orders of magnitude larger than
the 1-MHz example. A naı̈ve solution could lead to a network
bandwidth requirement as large as hundreds of Gbps, which
is much beyond what a wireless networking technology can
support in the foreseeable future.

B. Problem Statement

Imagine sensor nodes in a wireless network with base
station as illustrated in Fig. 1. We use a term “system backend”
or simply “system” to designate a control entity responsible
to run the spectrum analyzer daemon. We denote “sensor”
a node that performs sampling in the time domain and pro-
vides measurements to the system, and there are P sensors
employed by the system. Suppose that a spectrum under
analysis has a total bandwidth Btot. The system partitions the
spectrum into J subchannels with bandwidths, B1, . . . , BJ ,
such that Btot =

�J
i=1 Bi. For simplicity, assume adjacent

subchannels do not overlap. (It is relatively straightforward
to extend our framework for overlapping scenarios.) There
is a communication protocol P used between the system
and a node to administer the node as one of the sensors.
The system dispatches a measurement assignment, denoted in
(fl, Bl), to sensor node l. This means that sensor l should
tune to fl, the center frequency of the assigned subchannel,
and start sampling according to its bandwidth Bl. Assuming
equipartition of the spectrum (i.e., Bi = B for all i), sensor l
yields a vector of time-domain measurements xl periodically
where dim(xi) = N .

In this system model, the sensor measurements can be first
transmitted to the base station before delivered to the system
backend. If there are exactly P = J sensor nodes with each
measuring one of J subchannels uniquely, we have a total of
L =

�J
i=1 dim(xi) = J × N measurements constituting x

(all xi’s) for the entire spectrum. Our objective is to minimize
the total number of measurements L transmitted to the system
well under J ×N samples per each cycle.

We clarify that there are two types of nodes, a sensor or
network node, based on functionalities in the system. Sensor
nodes produce measurements in the time domain and transmit
either directly to the base station, for example, as depicted
by ‘white’ circles in Fig. 2(a) or to a network node that can
relay the measurements for others as in Fig. 2(b). We assert
that sensor nodes are end-nodes and not meant to forward

Spectrum under analysis with total bandwidth Btot 
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Fig. 1. A wideband spectrum (e.g., Btot ≈ a few GHz) under analysis
is partitioned for collective measurement efforts by multiple sensor nodes.
Spectral analysis on the measured data takes place at the potentially distant
system backend.

other nodes’ measurements. On the other hand, network nodes
can forward the measurements received from others, using
multi-hop relays to the base station as represented by ‘black’
circles in Fig. 2(b). Network nodes play a role that helps save
the uplink bandwidth to the base station by combining or
encoding multiple sets of measurements received from other
nodes to eventually reduce the total measurements to the
base station. Under this model, our goal is to recover almost

exact (i.e., incurring an error below some small threshold
�) frequency response of the spectrum under analysis as if
the frequency response were constructed by running FFT on
Nyquist sampling.

We model the communication cost of our network-based
spectrum analyzer as the total number of measurements re-
ceived by (or transmitted to) the base station, consisting of all
measurements directly from sensor nodes and through network
nodes. Therefore, we wish to:

argmin
θ

J�

i=1

dim(yi = θ(xi)) s. t. �X(fk)− X̂(fk)��2 ≤ �,

where θ(.) is a size-reducing function we seek, which makes
dim(yi) � dim(xi) ∀i ∈ {1, · · · , J}. X(.) is the actual
frequency response of x, and X̂(.) the estimate reconstructed
from the compressed measurements yi. fk is a frequency
component index in J ×N -point FFT, where 0 ≤ k < J ×N .
The constraint is a performance requirement stipulating the
accuracy of the reconstructed frequency response such that the
Euclidean (�2) norm of the frequency response error should be
bound within some small constant �.

C. Our Contribution

The main contribution of this paper is the practical, network-
based wideband spectrum analyzer system and in-network data
processing and recovery schemes. In particular, we propose
the use of compressive sensing [5] in each sensor node’s
sampling operation with pre-distributed sensing matrices. We

J:	
  #	
  of	
  par66ons	
  in	
  the	
  spectrum	
  
xi:	
  raw	
  measured	
  data	
  from	
  par66on	
  i	
  
yi:	
  compressive	
  measurement	
  of	
  xi	
  
X:	
  frequency	
  response	
  of	
  original	
  x	
  =	
  {xi}∀i	
  	
  
X:	
  frequency	
  response	
  of	
  restored	
  x	
  
ε:	
  some	
  small	
  error	
  requirement	
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Solu<on	
  Approach	
  (1)	
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Solu<on	
  Approach	
  (2)	
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Reminder:	
  Compressive	
  Sensing	
  

§  Encode:	
  CN	
  ⟶	
  CM	
  

–  Simple	
  &	
  data-­‐blind	
  ⟹	
  N:M	
  compression	
  (M	
  <<	
  N)	
  for	
  sparse	
  signal	
  
§  Decode	
  

–  Available	
  sparsifying	
  basis	
  (Ψ)	
  determines	
  M	
  ≥	
  c·∙K·∙log(N/K)	
  
•  Sparsity	
  K	
  revealed	
  by	
  Ψ	
  	
  

–  L1-­‐minimiza6on	
  (e.g.,	
  linear	
  programming):	
  min║s║1	
  s.t.	
  y	
  =	
  ΦΨ–1s	
  	
  

Encode 

Φ
=y x
M×N 

N×1 
M×1 

Ψ-­‐1
 sΦ
=y 

Ψ
 s=x
(K-sparse) 

N×N N×1 

Decode 



How	
  to	
  Separate	
  Sum	
  of	
  Compressed	
  Measurements?	
  

∑	
  

y1	
  =	
  Φx1	
  	
  

y2	
  =	
  Φx2	
  	
  y	
  =	
  Φx1	
  +	
  Φx2	
  +	
  ...	
  +	
  ΦxP	
  	
  

yP	
  =	
  ΦxP	
  	
  
...	
  

Generalized	
  P-­‐way	
  sum	
  

Joint	
  Decoding	
  Algorithm	
  	
  

= Ψ1
–1 

s1	
  

Φ y 

Ψ–1 
(Overcomplete	
  basis)	
  

Compressive	
  sensing	
  decode	
  on	
  y	
  =	
  (Φ	
  Ψ–1)	
  s	
  to	
  solve	
  for	
  s1,	
  s2,	
  ...,	
  sP	
  jointly	
  	
  

...	
  

s2	
  

sP	
  

Ψ2
–1 ΨP

–1 ...	
  
Must	
  solve	
  	
  
for	
  P×N	
  
unknowns	
  
in	
  one-­‐shot	
  

Can	
  we	
  do	
  be@er?	
  



Ini<al	
  Approxima<on	
  by	
  Least	
  Squares	
  

§  Require	
  	
  
–  {Q1,	
  Q2,	
  ...,	
  QP}	
  ≜	
  dis!nct	
  sparsifying	
  bases	
  for	
  each	
  channel	
  

•  Q	
  can	
  be	
  es6mated	
  from	
  Rx	
  =	
  E[xxH]	
  =	
  Q	
  Λ	
  QH	
  

§  Leading	
  components	
  have	
  largest	
  eigenvalues	
  
§  Remove	
  non-­‐leading	
  components	
  un6l	
  we	
  have	
  

overdetermined	
  system	
  
–  More	
  equa6ons	
  than	
  unknowns:	
  dim(y)	
  >	
  #	
  of	
  unknowns	
  
–  Least	
  squares	
  does	
  this	
  job	
  well	
  

0	
   0	
   0	
  
Keep	
  only	
  several	
  leading	
  
eigenvectors	
  of	
  Qi	
  

Equivalent	
  to	
  
keeping	
  variables	
  at	
  
leading	
  posi6ons	
  
only	
  (others	
  are	
  
mul6plied	
  by	
  zeros)	
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the basis estimation, the system directs sensor nodes with a
longer measurement period. Preparation Phase needs not be
scheduled too frequently for analyzing modulated RF signals
as we can expect that the locations of dominant eigenvectors
(i.e., leading principal components) in the covariance matrix
of a subchannel change slowly or remain relatively stationary
over time.

How KLT basis can be estimated: We adopt a technique
that integrates compressive sensing with using optimal KLT
basis [18]. Here, we summarize the technique. The KLT basis
Q is computed from a sample autocorrelation matrix Rx =
E[xxH], where x contains discrete channel measurements over
time. Similarly, the autocorrelation matrix of the compressive
measurements y is: Ry = E[yyH]. By Definition 1, Ry =
E[ΦxxHΦT] = ΦE[xxH]ΦT. So, Ry = ΦRxΦ

T. Since ΦT

is not a square matrix, using its pseudo-inverse (ΦT)†, we
obtain:

Ry(Φ
T)† = ΦRx (3)

Eq. (3) suggests that we have been compressively sensing Rx

in Ry(ΦT)†, which is already captured by y = Φx to encode
the original channel measurements x.

Following the above reasoning, we conclude that a KLT
basis Q can be recovered via compressive sensing, comprised
in four steps:

1) Decode X (DFT of x) from y = (ΦF−1)X where F−1

is the inverse DFT matrix;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1

l

�l
i=1

xixH

i ;
4) Obtain Q from the eigenvalue decomposition Rx =

QΛQH.

B. Initial Approximation via Least Squares Recovery

The KLT basis estimation can identify dominant eigen-
components by examining Λ whose diagonals are the eigen-
values of the channel autocorrelation Rx. When compressive
measurements arrive (as a P -way sum), the system first
sets up an overdetermined system of equations specified by
Definition 4, using only several dominant components per
each subchannel mixed in the P -way sum. To set up the
overdetermined equations, the system leverages its knowledge
on the locations of the leading eigen-components of the
subchannels. We compute the initial approximation by the least
squares, a method well-known for overdetermined equations.

Definition 4: The initial approximation determines a solu-

tion by the least squares method to an overdetermined system

of equations:

y = Φ [Q̃1 Q̃2 · · · Q̃P ]





s̃1

s̃2
.
.
.

s̃P




(4)

where y is the P-way sum of compressive measurements, Q̃i is

zero-filled truncated from the i-th KLT basis Qi such that Q̃i

contains only αi nonzero columns of dominant eigenvectors

corresponding to the first αi leading eigenvalues.

C. Iterative Refinement via Compressive Sensing Decoding

We refine the initial approximation through iterative relax-
ation(s) based on compressive sensing. We will relax only one

si at a time by systematically eliminating (P − 1) yi’s with
back-substituting (P − 1) s̃i’s from using the result of the
initial approximation. For example, we relax s1 by solving:

y = Φ [Q1 Q̃2 · · · Q̃P ]





s1
ˆ̃s2
...
ˆ̃sP




(5)

where the rest ˆ̃si’s are the back-substituted initial approxi-
mate. It is important to distinguish this system of equations,
which is underdetermined, from the overdetermined system in
Definition 4. We use the �1-minimization decoding, which is
popular in compressive sensing, and relax all N unknowns
in s1. After relaxing s1, we relax the next, say s2. For s2,
we back-substitute s1 with ŝ1 (which was just relaxed) and
s̃3, . . . , s̃P with ˆ̃s3, . . . , ˆ̃sP from the initial approximation:

y = Φ [Q1 Q2 Q̃3 · · · Q̃P ]





ŝ1

s2
ˆ̃s3
...
ˆ̃sP





(6)

This process iterates for all P si’s. Note that another stage
of P relaxations can take place. The new stage uses the result
of the relaxations from the previous stage.

V. ALGORITHMS

In this section, we first look into a joint decoding algorithm
that can recover the original signals from the sum of compres-
sive measurements. Next, we present our algorithms for initial
approximation and iterative refinement, which we described in
the previous section. We argue that the latter algorithms can
achieve better accuracy than the joint decoding while using
fewer measurements.

A. Joint Decoding Algorithm

For simplicity, consider 2-way combined compressive mea-
surements y = y1 + y2 = Φx1 +Φx2. Joint decoding is a
technique to recover x1 and x2 from y in one shot (hence,
the term joint). Decoding one of the signals, say x1, from y is
trivial if y2 is known, because we can decode y−y2 = Φx1.
But how can we recover the original signals without explicit
availability of additional measurements to separate one signal
from another?

Simply put, joint decoding leverages the overcomplete
representation used in, for example, blind source separation
[19]. Using an overcomplete basis Ψ = [Ψ1Ψ2] for the
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  by	
  CS	
  Decode	
  

§  Compressive	
  sensing	
  decodes	
  underdetermined	
  system	
  
–  More	
  unknowns	
  than	
  equa6ons	
  

§  Relax	
  si’s	
  in	
  descending	
  order	
  of	
  their	
  L1-­‐norm	
  
–  Compressive	
  sensing	
  works	
  beYer	
  on	
  largest-­‐first	
  decoding	
  principle	
  
–  No	
  need	
  to	
  solve	
  for	
  more	
  than	
  N	
  unknowns	
  at	
  once	
  

•  N	
  ≜	
  length	
  of	
  original,	
  uncompressed	
  measurements	
  (xi’s)	
  on	
  channel	
  i	
  	
  

§  Can	
  be	
  repeated	
  in	
  another	
  stage	
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the basis estimation, the system directs sensor nodes with a
longer measurement period. Preparation Phase needs not be
scheduled too frequently for analyzing modulated RF signals
as we can expect that the locations of dominant eigenvectors
(i.e., leading principal components) in the covariance matrix
of a subchannel change slowly or remain relatively stationary
over time.

How KLT basis can be estimated: We adopt a technique
that integrates compressive sensing with using optimal KLT
basis [18]. Here, we summarize the technique. The KLT basis
Q is computed from a sample autocorrelation matrix Rx =
E[xxH], where x contains discrete channel measurements over
time. Similarly, the autocorrelation matrix of the compressive
measurements y is: Ry = E[yyH]. By Definition 1, Ry =
E[ΦxxHΦT] = ΦE[xxH]ΦT. So, Ry = ΦRxΦ

T. Since ΦT

is not a square matrix, using its pseudo-inverse (ΦT)†, we
obtain:

Ry(Φ
T)† = ΦRx (3)

Eq. (3) suggests that we have been compressively sensing Rx

in Ry(ΦT)†, which is already captured by y = Φx to encode
the original channel measurements x.

Following the above reasoning, we conclude that a KLT
basis Q can be recovered via compressive sensing, comprised
in four steps:

1) Decode X (DFT of x) from y = (ΦF−1)X where F−1

is the inverse DFT matrix;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1

l

�l
i=1

xixH

i ;
4) Obtain Q from the eigenvalue decomposition Rx =

QΛQH.

B. Initial Approximation via Least Squares Recovery

The KLT basis estimation can identify dominant eigen-
components by examining Λ whose diagonals are the eigen-
values of the channel autocorrelation Rx. When compressive
measurements arrive (as a P -way sum), the system first
sets up an overdetermined system of equations specified by
Definition 4, using only several dominant components per
each subchannel mixed in the P -way sum. To set up the
overdetermined equations, the system leverages its knowledge
on the locations of the leading eigen-components of the
subchannels. We compute the initial approximation by the least
squares, a method well-known for overdetermined equations.

Definition 4: The initial approximation determines a solu-

tion by the least squares method to an overdetermined system

of equations:

y = Φ [Q̃1 Q̃2 · · · Q̃P ]





s̃1

s̃2
.
.
.

s̃P




(4)

where y is the P-way sum of compressive measurements, Q̃i is

zero-filled truncated from the i-th KLT basis Qi such that Q̃i

contains only αi nonzero columns of dominant eigenvectors

corresponding to the first αi leading eigenvalues.

C. Iterative Refinement via Compressive Sensing Decoding

We refine the initial approximation through iterative relax-
ation(s) based on compressive sensing. We will relax only one

si at a time by systematically eliminating (P − 1) yi’s with
back-substituting (P − 1) s̃i’s from using the result of the
initial approximation. For example, we relax s1 by solving:

y = Φ [Q1 Q̃2 · · · Q̃P ]





s1
ˆ̃s2
...
ˆ̃sP




(5)

where the rest ˆ̃si’s are the back-substituted initial approxi-
mate. It is important to distinguish this system of equations,
which is underdetermined, from the overdetermined system in
Definition 4. We use the �1-minimization decoding, which is
popular in compressive sensing, and relax all N unknowns
in s1. After relaxing s1, we relax the next, say s2. For s2,
we back-substitute s1 with ŝ1 (which was just relaxed) and
s̃3, . . . , s̃P with ˆ̃s3, . . . , ˆ̃sP from the initial approximation:

y = Φ [Q1 Q2 Q̃3 · · · Q̃P ]





ŝ1

s2
ˆ̃s3
...
ˆ̃sP





(6)

This process iterates for all P si’s. Note that another stage
of P relaxations can take place. The new stage uses the result
of the relaxations from the previous stage.

V. ALGORITHMS

In this section, we first look into a joint decoding algorithm
that can recover the original signals from the sum of compres-
sive measurements. Next, we present our algorithms for initial
approximation and iterative refinement, which we described in
the previous section. We argue that the latter algorithms can
achieve better accuracy than the joint decoding while using
fewer measurements.

A. Joint Decoding Algorithm

For simplicity, consider 2-way combined compressive mea-
surements y = y1 + y2 = Φx1 +Φx2. Joint decoding is a
technique to recover x1 and x2 from y in one shot (hence,
the term joint). Decoding one of the signals, say x1, from y is
trivial if y2 is known, because we can decode y−y2 = Φx1.
But how can we recover the original signals without explicit
availability of additional measurements to separate one signal
from another?

Simply put, joint decoding leverages the overcomplete
representation used in, for example, blind source separation
[19]. Using an overcomplete basis Ψ = [Ψ1Ψ2] for the

Relax	
  s1	
  
1.  Back-­‐subs6tute:	
  yʹ′	
  =	
  y	
  –	
  Φ[Q2s2	
  +	
  ...	
  +	
  QPsP]	
  

using	
  ini6al	
  approximates	
  of	
  s2,	
  ...,	
  sP	
  
2.  Do	
  compressive	
  sensing	
  decode	
  with	
  	
  

yʹ′	
  =	
  (Φ	
  Q1)	
  s1	
  to	
  obtain	
  refined	
  s1	
  

~	
   ~	
   ~	
   ~	
  ^	
   ^	
  



Evalua<on	
  in	
  Lab	
  Testbed	
  of	
  SW-­‐defined	
  Radios	
  	
  

100BaseT	
  

(f1,B)	
  

Spectrum	
  analyzer	
  
•  Collects	
  in-­‐network	
  combined,	
  

compressed	
  measurements	
  
•  8⨯512-­‐point	
  FFT	
  

(f5,B)	
  

Four	
  sensor	
  nodes	
  (USRP2/USRP-­‐N200)	
  with	
  WBX	
  RF	
  daughterboards	
  	
  

(f2,B)	
  (f6,B)	
   (f3,B)	
  (f7,B)	
   (f4,B)	
  (f8,B)	
  

•  Measure	
  8	
  channels	
  from	
  UHF	
  white	
  space	
  	
  
fi	
  =	
  {512.5,	
  537.5,	
  562.5,	
  587.5,	
  612.5,	
  637.5,	
  662.5,	
  687.5}	
  MHz	
  

•  Each	
  channel	
  with	
  B	
  =	
  25	
  MHz	
  bandwidth	
  

Network	
  node	
  (simulated)	
  
•  Combines	
  mul6ple	
  compressed	
  

measurements	
  in-­‐network	
  



Some	
  Details	
  

§  Sensing	
  &	
  recovery	
  methods	
  
1.  Compressive	
  sensing	
  only	
  (no	
  combining)	
  
2.  P-­‐way	
  combined	
  compressed	
  measurements	
  for	
  P	
  =	
  2,	
  4,	
  8	
  

§  M	
  =	
  #	
  of	
  compressed	
  measurements	
  (per	
  channel)	
  
–  Varied	
  from	
  26	
  (20x	
  compression)	
  to	
  308	
  (1.67x)	
  

§  Error	
  metric	
  

–  Average	
  normalized	
  frequency	
  response	
  error	
  per	
  sample	
  
–  L	
  =	
  8⨯512	
  =	
  4096	
  
–  fk	
  ∈	
  [500,700)	
  MHz	
  

8

frequency response for the entire spectrum contributed by all

USRPs.

For compressive sensing, we pre-generated a set of Φ matri-

ces and stored in each USRP. For each subchannel, the USRPs

could take compressive measurements using configurable M ,

which we varied from 26 (M/N = 5 % or 20x compression)

to 308 (60 % or 1.67x). USRPs used the same Φ under

each configuration. We also saved uncompressed original data

for evaluative purposes. The uplink transmission to the base

station from an USRP was simulated over a fixed Ethernet, as

precise wireless uplink behaviors (assuming no packet losses)

should hardly affect what we examined (i.e., number of total

measurements and decoding accuracy).

The USRPs were coarsely synchronized, and each USRP’s

measurement start and end times cannot be determined exactly.

This is similar to a swept-tuned spectrum analyzer that mea-

sures a narrow subchannel one at a time, staying for a short

duration before moving to next and cycling the entire spec-

trum. The USRPs (unfortunately) incur a 2-second, hardware-

related delay when changing radio frequency, resulted from

driving a voltage controlled oscillator (VCO).

B. Description of Experiments

We evaluated the following schemes:

1) No mixing. USRPs perform compressive sensing on

their assigned subchannels and transmit the compressive

measurements directly to the base station, i.e., there are 8

transmissions to the base station per one complete cycle

of measurements for the entire spectrum;

2) P -way combined compressive measurements. Varying

P = 2, 4, 8, USRPs mix their compressive mea-

surements, thus there are 8/P transmissions per one

complete cycle.

We compared the decoding performance of the proposed

algorithm to joint decoding for P = 8. Note that for no

mixing case the proposed algorithm needs not be used, as each

subchannel can be recovered individually by the standard �1-

minimum decoder.

C. Error Metric

We use the following error metric to evaluate the accuracy

of our decoding algorithm:

ξ =
1

L

L�

k=1

�X(fk)− X̂(fk)��2
�X(fk)��2

(7)

where X(fk) is the frequency response of the spectrum under

analysis from the Nyquist sampling (no compression and

no manipulation of original data), and X̂(fk) the recovered

frequency response from a scheme we mentioned in Section

VI.B. Note frequency indices fk ∈ [500, 700)MHz with

k = 0, . . . , L − 1, following the discrete Fourier analysis

convention. Note also that the error metric ξ is normalized
(by the true value) per-sample mean.

D. Decoding Accuracy and Complexity
With varying number of compressive measurements for

each scheme, we counted the total number of measurements

received by the base station while computing the error metric.

Fig. 8 presents the number of measurements plotted against

the error metric ξ reflecting the accuracy of reconstructed

frequency responses. The 8-way combining scheme achieved a

5-fold saving in communication bandwidth for the same accu-

racy by no combining scheme. When we used the proposed de-

coding algorithm for P -way combined schemes, we applied 2
stages of iterative refinements. The proposed algorithm proved

to be better than the joint decoding in accuracy. In Fig. 9,

we plot frequency responses (i.e. spectrum analyzer display)

of the spectrum constructed from uncompressed original time

samples (4096 measurements), compressed but no combining

scheme (832 measurements, 4.9x compression), and 8-way

combined (208 measurements, 20x compression) for visual

comparison.

The proposed algorithm was also better in computational

complexity. To decode 8-way combined measurements, the

joint decoding requires to operate on 8×512 = 4096 variables

at once, whereas the proposed algorithm operates on 40

unknowns (i.e., each αi = 5) with the least squares and 2

stages of J = 8 relaxations (each decodes N = 512 variables).

The �1-minimum decoding has complexity of O(N3
) [13],

and the joint decoding requires O(P 3N3
) while the proposed

algorithm has only O(2PN3
) excluding the least squares in

the initial approximation. The least squares solve for
�P

i=1 αi

unknowns, which is about orders of magnitude fewer than PN

and therefore not a contributing factor.

E. Effect of Iterative Refinements
Fig. 10 depicts the error improvement versus the number

of refinement stages applied for 8-way combining (i.e., P =

8). The total number of measurements received by the base

station per one complete cycle, Mtot, were 50, 100, and 200.

Note that zero iterative (refinement) stage means the initial

approximation only. Error improvement becomes more signifi-

cant for smaller Mtot, which suggests that more computations

in decoding could compensate insufficient measurements to

some degree but could not overcome completely. There is a

diminishing return on the error improvements, and the return

is saturated faster for larger Mtot.

VII. CONCLUSION

We have described a network-based spectrum analyzer that

operates over distant sensor nodes providing the measurements

to construct fine-grained spectral information. Overcoming the

network communication cost as we scale up the number of

sensor nodes has been critical to our approach. To address

this, we have devised a recovery algorithm that accompanies a

simple, additive in-network combining scheme for compressed

measurements from multiple sensors. Our approach makes

an important assumption that discrete measurements obtained

by sensors bring out sparsity in the frequency domain or in

a custom basis. Designing sparsity-preserving discretization
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§  Total	
  #	
  of	
  measurements	
  transmiYed	
  ∝	
  communica6on	
  cost	
  
§  P-­‐way	
  in-­‐network	
  combining	
  could	
  reduce	
  measurements	
  up	
  to	
  P-­‐fold	
  

–  Given	
  error	
  budget,	
  #	
  of	
  measurements	
  can	
  remain	
  constant	
  un6l	
  some	
  limit	
  
–  This	
  limit	
  depends	
  on	
  sparsity	
  of	
  channels	
  in	
  spectrum	
  

§  Proposed	
  algorithm	
  achieves	
  similar	
  accuracy	
  performance	
  as	
  joint	
  
decoding	
  while	
  requiring	
  P	
  6mes	
  less	
  unknowns	
  to	
  solve	
  concurrently	
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•  Error	
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  more	
  significant	
  with	
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•  Small	
  gain	
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  accuracy	
  axer	
  2	
  stages	
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  compression	
  

8-­‐way	
  combined	
  



Summary	
  
§  Network-­‐based	
  spectrum	
  analysis	
  

–  Distributed	
  spectrum	
  sensors	
  employed	
  by	
  distant	
  analyzer	
  operate	
  over	
  network	
  
–  Key	
  is	
  to	
  overcome	
  network	
  communica6on	
  cost	
  to	
  move	
  spectrum	
  measurements	
  

§  Our	
  approach	
  
–  Compressive	
  sensing	
  encoding	
  at	
  sensor	
  nodes	
  
–  Simple	
  in-­‐network	
  summing	
  of	
  mul6ple	
  compressed	
  measurements	
  to	
  further	
  

reduce	
  overhead	
  at	
  network	
  nodes	
  

§  New	
  recovery	
  algorithm	
  
–  Least	
  squares	
  on	
  leading	
  principal	
  components	
  to	
  separate	
  individual	
  measurements	
  

from	
  the	
  sum	
  
–  Itera6ve	
  relaxa6on	
  by	
  compressive	
  sensing	
  decode	
  on	
  each	
  individual	
  data	
  

§  Conclusion:	
  sensors	
  can	
  be	
  added	
  without	
  addi<onal	
  communica<on	
  cost	
  
–  Hold	
  true	
  un6l	
  some	
  limit	
  determined	
  by	
  sparsity	
  
–  Sparsity	
  =	
  true	
  measure	
  for	
  channel	
  informa6on	
  content	
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Remark	
  on	
  Sparsity	
  and	
  Discre<za<on	
  

§  Discrete	
  measurements	
  performed	
  by	
  sensors	
  preserve	
  or	
  
bring	
  out	
  sparsity	
  of	
  original	
  signal	
  in	
  frequency	
  domain	
  or	
  in	
  
a	
  custom	
  basis	
  

–  This	
  is	
  fundamental	
  premise	
  of	
  our	
  approach	
  

§  Design	
  of	
  beYer	
  sparsity-­‐inducing	
  discre6za6on	
  schemes	
  is	
  
challenging	
  but	
  can	
  hugely	
  enhance	
  our	
  approach	
  



CS	
  Recovery	
  of	
  Complex	
  Signals	
  

§  y	
  =	
  Φx	
  =	
  (ΦΨ-­‐1)x	
  
–  x	
  =	
  N×1	
  complex-­‐valued	
  
–  y	
  =	
  M×1	
  complex-­‐valued	
  
–  Φ	
  =	
  M×N	
  real-­‐valued	
  
–  Ψ	
  =	
  N×N	
  complex-­‐valued	
  

§  y	
  =	
  Φ[xR+j·∙xI]	
  =	
  ΦΨ-­‐1[XR+j·∙XI]	
  =	
  Φ[ΨR
-­‐1+j·∙ΨI

-­‐1][XR+j·∙XI]	
  
–  j	
  =	
  sqrt(-­‐1)	
  

§  We	
  want:	
  yʹ′	
  =	
  AXʹ′	
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Decode	
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