Scaling Network-based Spectrum Analyzer with

Constant Communication Cost

Youngjune Gwon H. T. Kung

ok

18]

Presented at the 32"9 |[EEE International Conference on Computer
Communications (INFOCOM’13) in Turin, Italy

April 16, 2013



" Dynamic spectrum access (DSA) with cognitive radios
— Alleviates inefficient spectrum allocation and licensing

" Accurate low-latency spectrum sensing most important to
maximize DSA benefits

= Conventional spectrum analyzer

— Can be ideal spectrum sensor

— Measures amplitude of signals over time and converts to power
magnitudes across frequency

— FFT at the heart of modern spectrum analyzer equipment

 Expense of FFT = true bottleneck is to keep up with Nyquist sampling
» E.g., 1-MHz channel: 2x10°xsample size bps — 40 Mbps (if 20-bit sample)



Network-based Spectrum Analysis

" Distributed spectrum sensing
— Spectrum analyzer & measurers separate entities but networked

" Simple, in situ compression of measurement data at
acquisition
— Compressive sensing encode

" |n-network processing of data
— Combine multiple compressed measurements

" Recovery of original data
— Undo in-network data processing & compressive sensing decode



Case for Distributed Spectrum Sensing (1)
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Case for Distributed Spectrum Sensing (2)
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Measure disjoint bands and aggregate — Our Focus




Challenges

" Naive FFT spectrum analysis bottlenecked by high data rate
of Nyquist sampling

— Use of multiple spectrum sensors each monitoring a sub-band, we
have mitigated this problem

= How to minimize network communication cost of sensor
measurements propagating network

" Fine-grained spectral analysis of wideband spectrum



Problem Statement

What is the size-reducing operation 0 that makes
network-based analyzer feasible?

J
argmin ) dim(y; = 0(x;)) s.t. [X(fr) = X(fi)lle <€
i=1

J: # of partitions in the spectrum

X;: raw measured data from partition i

y;: compressive measurement of x;

X: frequency response of original x = {x;};
X: frequency response of restored x

g: some small error requirement




Problem lllustrated




Solution Approach (1)
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Solution Approach (2)
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Compressive sensing (CS)
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Compressive sensing (CS) encoding and in-network combining of compressed data




Reminder: Compressive Sensing
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— Simple & data-blind = N:M compression (M << N) for sparse signal

=  Decode

— Available sparsifying basis (W) determines M > c:-K:log(N/K)
Sparsity K revealed by W

— L1-minimization (e.qg., linear programming): min H S ” ,Sty=0W1s

O




How to Separate Sum of Compressed Measurements?

Generalized P-way sum / y, = Ox,
y:(Dx1+(DX2+...+(DXP <—@<Vz=CDXz
Yp = OX;
Joint Decoding Algorithm I
S, Must solve
— -1 cee -1 for PxN
y - q) wz wP . g unknowns
. in one-shot
WP-1 Sp
(Overcomplete basis) _
Compressive sensing decode ony = (O W) s to solve for sy, s,, ..., Sp jointly

Can we do better?



Initial Approximation by Least Squares

S2 Equivalent to

Yy = b [Ql Q2 ce QP] . keep.mg varl-a-bles at
. leading positions

) only (others are

> multiplied by zeros)

Keep only several leading
eigenvectors of Q,

= Require

- {Q,, Q,, ..., Q,} = distinct sparsifying bases for each channel
* Qcan be estimated from R = E[xx"] = QAQ"

" Leading components have largest eigenvalues

" Remove non-leading components until we have
overdetermined system

— More equations than unknowns: dim(y) > # of unknowns
— Least squares does this job well




Iterative Refinement by CS Decode
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52| el
S ~ . o e ~ elax sl ~ A ~ N
y=2 [Ql Qo QP] . 1. Back-substitute: y’' =y — ®[Q,S, + ... + Q,S,]
' using initial approximates of s, ..., s,
§P 2. Do compressive sensing decode with

- - y = (DPQ,)s, to obtain refined s,

"  Compressive sensing decodes underdetermined system
— More unknowns than equations

= Relaxs/s in descending order of their L1-norm
— Compressive sensing works better on largest-first decoding principle

— No need to solve for more than N unknowns at once
* N 2 length of original, uncompressed measurements (xs) on channel i

" (Can be repeated in another stage



Evaluation in Lab Testbed of SW-defined Radios

Spectrum analyzer <<<<< )>>>>
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Four sensor nodes (USRP2/USRP-N200) with WBX RF daughterboards

e Measure 8 channels from UHF white space
f;=1{512.5, 537.5, 562.5, 587.5, 612.5, 637.5, 662.5, 687.5} MHz

e Each channel with B =25 MHz bandwidth




Some Details

" Sensing & recovery methods
1. Compressive sensing only (no combining)
2. P-way combined compressed measurements for P=2, 4, 8

" M =# of compressed measurements (per channel)
— Varied from 26 (20x compression) to 308 (1.67x)

" Error metric T

(fk)HEQ
Z HX fk)Hez

=1

— Average normalized frequency response error per sample
— [ =8x512 =4096
— f, €[500,700) MHz



Error Performance

< 5% error <10% error < 20% error
¥ CS only (no combining) W 2-way “4-way ® 8-way

"  Total # of measurements transmitted «« communication cost

=  P-way in-network combining could reduce measurements up to P-fold
— Given error budget, # of measurements can remain constant until some limit
— This limit depends on sparsity of channels in spectrum

" Proposed algorithm achieves similar accuracy performance as joint
decoding while requiring P times less unknowns to solve concurrently
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Summary

= Network-based spectrum analysis
— Distributed spectrum sensors employed by distant analyzer operate over network
— Key is to overcome network communication cost to move spectrum measurements

"= Qurapproach
— Compressive sensing encoding at sensor nodes

— Simple in-network summing of multiple compressed measurements to further
reduce overhead at network nodes

= New recovery algorithm

— Least squares on leading principal components to separate individual measurements
from the sum

— Iterative relaxation by compressive sensing decode on each individual data

" Conclusion: sensors can be added without additional communication cost
— Hold true until some limit determined by sparsity
— Sparsity = true measure for channel information content



Supporting Materials



Remark on Sparsity and Discretization

" Discrete measurements performed by sensors preserve or
bring out sparsity of original signal in frequency domain or in
a custom basis

— This is fundamental premise of our approach

" Design of better sparsity-inducing discretization schemes is
challenging but can hugely enhance our approach



CS Recovery of Complex Signals

= y=0x = (OW1)x
— X = Nx1 complex-valued
— vy = Mx1 complex-valued
— O = MxN real-valuec
— W= NxN complex-valued

" y= CD[XR+j'X|] = CDLIJ_l :XR+j'X|] = Cl)[LI’,R_L"/.'LIJfl][XR'l'./.'X|]
— Jj=sqrt(-1)

= We want:y = AX’
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Decode y’' = AX’
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