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Summary & Results

• Swings in wireless signal quality paralyze higher-layer applications – browsers stall, 
media players skip, etc. -- up-to 80% of TCP connections at cell towers are stalled

• To predict signal quality, we actively measure links and use data-driven modeling 
to capture interactions between signals and their environment

• Compared to loss-rate, Markov-chain, and heuristic link modeling, sparse coding 
finds more stable predictive signatures by collapsing variations into a few states

Our data-driven model enables on-the-fly adaptation to a device’s 
wireless environment

We predict packet losses over wireless links in real time by applying 
sparse coding and support vector machines (SVMs)

• No static network stack, no matter how well-planned, can handle the variability of 
everyday wireless links, e.g. subway tunnels, offices with elevators, etc. 

• Our system probes links and computes link-state predictions on-device; by holding 
packets likely to be lost, we boost TCP throughput up-to 4x for a 5% power 
overhead over commercial 802.11 and carrier networks

• SILQ (state-informed link-layer queuing) runs on general Linux and Android devices
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Everyday wireless networks struggle with fluctuating link quality, for 
example in subway tunnels, elevators, old buildings, hilly terrain, etc.

Wireless Packet Loss in Everyday Scenarios
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Wireless signals degrade due to line-of-sight occlusion, reflections off 
metal, attenuation through building materials, antenna nulls, etc.

Wireless Packet Loss in Everyday Scenarios

Subtle properties like device orientation and open/closed doors make coarse 
metrics like location insufficient to predict individual packet losses

Rural Signal Propagation

Indoor Signal Propagation

Urban Signal Propagation



Not only is it difficult for carriers to ensure consistent signal strength, 
but just a few lost data packets can paralyze an application

Motivating Scenario – 3G Cellular Links on the Boston Subway

Throughput of a TCP File Transfer Over Boston Subway

A temporary dead-
zone causes TCP 

packets to be lost

The connection is
stalled despite good 

signal quality

By modeling and predicting temporary outages, we improve performance for 
higher-layer network applications by preempting data loss
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Experiments and Data Collection

To build a general link model, we collect data in three scenarios: 1) the 
Boston subway, 2) airborne links over rural farmland, ….
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Experiments and Data Collection

… and 3) an active indoor office environment capturing attenuation 
from building construction, fire-proof doors, an elevator, network 

interference, etc.
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A Sparse-Coding Link Model

Wireless link models in the literature use physical simulations or data-
driven statistics – we take the latter approach and use clustering to 

reduce state space/training data requirements

Environment 
Knowledge

Training 
Data

Physical simulations

• Two-Ray Interference
• Geometric Occlusion
• Distance Attenuation

Statistical models

• Loss-Rate
• Markov-Chain burst 

models

Link Modeling Techniques

Location-Based Stats 
Models

• Wi-Fi SLAM
• Location-Specific 

Markov Burst Models



Measurement Data and Predictive Model

We measure links by sending small UDP probes and recording successful 
receptions. Signatures that precede upcoming gaps predict transmissions 

that are likely to fail
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A Sparse-Coding Link Model
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Common states (e.g. 
identified by clustering) 
change across networks 

and environments
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Packet Loss Models
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State FSM

Sparse Coding Link 
Model

Sparse coding finds a 
universal dictionary of 

features that combine to 
express diverse link states 

A key limitation of data-driven models is the complexity and volume of 
training data required to capture all possible link states



A Sparse-Coding Link Model
Link primitives discovered by sparse coding reflect canonical patterns 
that describe link transitions, temporary outages, and network effects 

like queuing
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State-Informed Link-Layer Queuing (SILQ) Architecture

Online, our system probes links, matches measurements to canonical 
primitives, and predicts 100ms outages – we then hold packet 

transmissions that are likely to fail
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For TCP, SILQ causes connections to wake up quickly after outages, 
boosting 3G throughput on the Boston subway by up-to 4x

Motivating Scenario – 3G Cellular Links on the Boston Subway

Dead-zones are pre-
dicted, data packets 

held, and loss avoided

The connection wakes up 
quickly when the link is 

physically restored

SILQ + Linux TCP
Predicted Link State:      

Off        On
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SILQ Performance

In an indoor office, SILQ improves Wi-Fi throughput by 2x, preventing 
connections from dying in an elevator or when passing through fire-

proof doors

Dead-zone caused 
by fire-proof doors

Interruptions caused 
by elevator ride

Linux TCP

SILQ + Linux TCP

a.

b.
Predicted Link State:      

Off        On



SILQ Performance Summary

SILQ’s gains are largest in the harshest environments where links 
fluctuate most

Environment Network Type Throughput 
Gain

Reduction in 
Perf. Variation

MBTA Red Line 3G Cellular 4x --
Indoor Office 802.11 (Wi-Fi) 2x 3x
Rural with Nearby 
Ground Structures

802.11 (Wi-Fi) 1.2x --

Rural Open-Field 802.11 (Wi-Fi) 1.0x 4x



Reducing SILQ Overheads
Sparse-coded prediction statistics are more resilient to low-energy, less-

frequent probing than heuristic and rate-based predictors

Sparse Coding
Heuristic 
Loss Rate Threshold

Max. Possible Data Rate 
(After Probe Overhead)

779 kbps 845 kbps 992 kbps 995 kbps

Effect of Increasing SILQ Probe Interval  on TCP 
Throughput



SILQ Performance Summary

SILQ’s power overhead is 4% above a data connection – only  1% energy 
is spent computing link predictions, with the rest spent servicing probes

Power Consumption for HTC One (M8) Smartphone



SILQ Current Status

SILQ scales to 20 Mbps, runs on Linux and Android devices, and has 
been deployed on  commercial 802.11 (Wi-Fi) and 3G cellular networks



Conclusion

Data-driven learning is key to addressing difficult networking scenarios

Sparse coding improves over other link models by finding a state model 
that is tolerant to measurement variation

A learning pipeline based on offline big-data clustering and online
prediction offers the design flexibility necessary for mobile devices

• Machine Learning is quickly becoming successful in wireless, e.g. SIGCOMM best-
paper by Keith Winstein, other MobiHoc talks

• Link variability is a hugely important, interesting problem, Verizon: “top-3 technical 
problem”, Intel: “single greatest challenge for 5G”, Akamai: top priority in 2015

• Unlike prior models, canonical features port across diverse networks and scenarios
• Only a small number of statistics need to be tuned in feature space

• Expensive unsupervised learning to find structure in big data can be performed in 
datacenters, with lighter supervised SVM predictors tuned to small data on device

• Sacrificing some bandwidth for state measurement pays off many times over
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