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ABSTRACT
We introduce State-Informed Link-Layer Queuing (SILQ),
a system that models, predicts, and avoids packet delivery
failures caused by temporary wireless outages in everyday
scenarios. By stabilizing connections in adverse link con-
ditions, SILQ boosts throughput and reduces performance
variation for network applications, for example by prevent-
ing unnecessary TCP timeouts due to dead zones, elevators,
and subway tunnels. SILQ makes predictions in real-time by
actively probing links, matching measurements to an over-
complete dictionary of patterns learned offline, and classify-
ing the resulting sparse feature vectors to identify those that
precede outages. We use a clustering method called sparse
coding to build our data-driven link model, and show that
it produces more variation-tolerant predictions than tradi-
tional loss-rate, location-based, or Markov chain techniques.

We present extensive data collection and field-validation
of SILQ in airborne, indoor, and urban scenarios of practical
interest. We show how offline unsupervised learning discov-
ers link-state patterns that are stable across diverse networks
and signal-propagation environments. Using these canonical
primitives, we train outage predictors for 802.11 (Wi-Fi) and
3G cellular networks to demonstrate TCP throughput gains
of 4x with off-the-shelf mobile devices. SILQ addresses de-
livery failures solely at the link layer, requires no new hard-
ware, and upholds the end-to-end design principle to enable
easy integration across applications, devices, and networks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless net-
working, 802.11 (Wi-Fi), cellular data networks, TCP, sparse
coding, data-driven model learning

1. INTRODUCTION
Wireless networks struggle to cope with link fluctuations

in everyday scenarios. Any user who has accessed in-flight
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Figure 1: Packet loss rates over a 3G cellular net-
work are shown on the subway in Boston, MA. Tem-
porary dead zones in tunnels cause connection time-
outs that leave links under-utilized, even when the
train comes above-ground.

Wi-Fi, checked a smart phone on an elevator, or browsed
the web on a train can attest to frustrating pockets of dis-
mal throughput. Such disruptions result from the drastic
changes in signal propagation that occur as users travel
through complex environments with varying sources of multi-
path reflection, distances to base stations, line-of-sight oc-
clusions, and interference. Generous provisioning of network
infrastructure is the de-facto solution in practice, but more
flexible and scalable strategies are needed [1].

Addressing delivery failure at the link layer is attractive
because it shields higher layers of the network stack from
transient link variations without changing radio hardware [2,
3]. When packet delivery is stable, applications and proto-
cols like TCP realize higher throughput with lower variation,
simplifying design and improving user experience [4]. How-
ever, predicting wireless link state at the scale of individual
packets is difficult in real-world scenarios where steady-state
assumptions like stable loss rates or location-dependence
have limited efficacy. For example, we see in indoor ex-
periments that the relationship between physical location
and packet loss can change without warning if a coworker
politely holds open a metal door, extending a link’s range.
These effects are common, especially in environments where
construction predates pervasive wireless communication.

In response, we present State-Informed Link-Layer Queu-
ing (SILQ), a system that uses data-driven learning to miti-
gate the destabilizing effects of wireless link loss. SILQ pre-
dicts link state at the 100ms time-scale to anticipate tempo-



rary outages and buffer packets accordingly. Real-time pre-
dictions are made by actively probing links, matching the
resulting measurement sequences to an overcomplete dictio-
nary of prominent patterns learned offline, and then classify-
ing these sparse feature vectors to determine if they precede
an outage. By preempting transmissions that are unlikely
to succeed, SILQ reduces performance degradation caused
when higher layers of the network stack react adversely to
missing packets, for instance when TCP times out in a sub-
way tunnel. Unlike prior cross-layer approaches to this prob-
lem, SILQ does not break connections in the middle of the
network or modify transport protocols [4, 5, 6].

SILQ’s prediction model improves upon past data-driven
link models by expressing state as a linear combination of
a few canonical packet-loss patterns, called features. This
sparse linear model cuts away noise and restores missing
data to improve statistical accuracy in the face of real-world
data variations [7]. More-stable feature vectors can then
be classified with a linear Support Vector Machine (SVM)
to identify outages [8]. This method produces stable pre-
dictions looking further ahead in time than standard tech-
niques like regression [9]. We demonstrate that this noise-,
variation-, and deletion-tolerant model is computationally
simple enough for real-time operation on mobile devices, and
also supports the design flexibility to trade prediction accu-
racy for bandwidth and power improvements.

We build our predictive link model by first learning a dic-
tionary of link-state features offline. Training data consists
of UDP packet receptions recorded in three scenarios:

• An Unmanned Aerial Vehicle (UAV) flying over rural
farmland

• Users walking throughout an active office building and
riding an elevator

• Users traveling through a city on the subway

We show that features captured by sparse coding, a form
of unsupervised clustering [10], reflect the effects of line-of-
sight occlusions, radio range limitations, and interference.
Furthermore, we show that features are often universal across
rural, urban, indoor, outdoor, high mobility, and low mobil-
ity links. In contrast, we find that our supervised SVM
outage-predictors are specific to an environment, though
predictions remain accurate over days, weeks, and months.

This paper presents a full implementation of SILQ on
off-the-shelf Linux and Android devices, and validates it
in the field over 802.11b/g and 3G cellular networks. We
compare our sparse-coding link model to traditional mod-
eling approaches based on loss-rate and heuristics in terms
of both statistical accuracy and network throughput under
predictive queuing. Ultimately, we show that SILQ boosts
throughput in an indoor office by 2x when used with Linux
TCP, while achieving 4x lower variation. SILQ further im-
proves throughput by 4x on the Boston subway where 3G
coverage is spotty. Finally, we show that the power overhead
of our approach can be reduced to only 4-5% above a base-
line data connection by updating predictions less frequently
when the link is in a steady state.

2. TEST SCENARIOS
We begin by describing our UAV, indoor office, and ur-

ban subway scenarios. In each environment, we collect ini-
tial link measurements by transmitting 66-byte (66B) UDP

Forest	
  	
  
Nodes	
  

Open-­‐Field	
  
Nodes	
  

Ground-­‐	
  	
  
Structure	
  
Nodes	
  

UAV	
  
	
  Node	
  

Airborne	
  Scenario	
  	
  

Open-­‐Field	
  Node	
  	
  
Loca4on	
  

Forest	
  Node	
  	
  
Loca4on	
  

Ground-­‐Structure	
  	
  
Node	
  Loca4on	
  

Figure 2: Our UAV’s flight path over fields and
farmland in upstate New York is shown. Ground re-
ceivers are placed in three locations to capture the
link characteristics of an open field, dense forest, and
parking lot with surrounding ground structures.

probe packets every 1ms from a mobile node to a nearby
base station that logs sequence numbers. We detect lost
probes from non-sequential receptions and construct con-
tiguous streams of probe deliveries, called “traces.” These
high-granularity traces are used to build a link model in Sec-
tion 4, though we introduce an adaptive probing mechanism
in Section 5.1 to reduce SILQ’s runtime probing overheads.

In our experiments, transmitters and receivers are all off-
the-shelf mobile devices. For 802.11 measurements in the
UAV and indoor office scenarios, we use an array of laptops,
Mobile Internet Devices (MIDs), and BeagleBone Blacks de-
pending on weight, power, and portability restrictions. Each
accesses the wireless medium using a T-Link TL-WN727
USB dongle, and we disable hardware retransmissions by
sending packets in broadcast mode. For subway experi-
ments, we access the 3G cellular network with an Android
smartphone or by tethering nodes to an Apple iPhone 6. In
this case, we cannot disable ARQ with cell towers, though
the effect is constant throughout data.

Given the speed and range of our UAV links, we transmit
at 1Mbps modulation for best symbol resilience. In order to
compare results across environments, we rate-limit links in
the office and subway to 1Mbps. In practice, SILQ has been
scaled to 20Mbps and deployed on commercial 802.11, 3G,
and LTE cellular networks.

2.1 UAV Air-to-Ground Communication
Our UAV scenario consists of a fixed-wing SIG Rascal 110

flying a dumbell shaped pattern over an airfield in upstate
New York on precipitation-free days, as shown in Figure 2.
Autopilot maintains a consistent flight path to within 15m
across laps, while keeping altitude steady at 100m and ve-
locity at 20m/s. The property spans forest and farmland,
contains fewer than 50 ground structures or cars at any time,
and is free of 802.11 interference. Data collection is con-
ducted over 802.11b with a single broadcast transmitter at-
tached face-down to the UAV’s wing.
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Figure 3: Our walking tour throughout an active
office is shown in blue. Links are attenuated by con-
crete and brick, and obstructed by fire-proof doors
and an elevator car.

Ground receivers are placed in identical orientations in
three groups throughout the property to capture different
signal-propagation characteristics:

1. Field nodes at the end of the runway have clean line-of-
sight to the UAV during most of the flight. For them,
packet loss is driven primarily by radio range.

2. Ground structure nodes are placed in a parking lot
partially surrounded by several 5m-tall metal build-
ings. Between 4 and 6 cars are parked within 10m
of nodes, and vehicle positions change across flights.
These structures create line-of-sight occlusions and mul-
tipath reflections that affect packet delivery depending
on geometry and UAV position.

3. Forest nodes are placed in a grove of fir trees at the end
of the runway. They capture similar link conditions to
field nodes, though uneven ground, trees, branches,
and leaves affect line-of-sight transmission.

This UAV scenario is of both experimental and opera-
tional interest. First, the simple interference-free environ-
ment is ideal for conducting controlled wireless experiments
to serve as building blocks for more complicated scenarios.
Second, UAV wireless communication has commercial appli-
cations in bridge and crop inspection, rural Internet relay,
package delivery, and a myriad of military scenarios.

2.2 Indoor Office
Our indoor office scenario is shown in Figure 3. A user

carries a laptop throughout an office building while transmit-
ting data to an 802.11 access point in a second-floor office.
For each experiment, the user repeats a walking tour that
crosses a footbridge to a nearby building and then returns
for an elevator ride down three floors to the basement.

All experiments are conducted during high-traffic daytime
hours when the building is used by several hundred students
and faculty. We observe strong fluctuations in link quality
due to signal attenuation through brick and concrete, as well
as blockages from fire-proof doors and the elevator car. We

also observe that signals are powerful enough to reach sev-
eral floors to the basement, but that links can be blocked
at ranges as short as 15m should fire doors occlude trans-
mission. For this scenario, our data includes cross-channel
interference from the building’s 802.11 network.

2.3 Subway
Our subway scenario is shown in Figure 1. A user trav-

els between Cambridge and Boston, MA in a train car that
passes both below and above ground. Train speed varies
depending on track conditions, and precise positioning is
unknown within tunnels. The user transmits data from a
mobile device to a server accessed via a first-hop 3G cellular
connection and subsequent hops over wired Internet. We
observe that round trip delays average 150ms and fluctu-
ate within a manageable distribution. Queuing delays cause
UDP probe packets to arrive in bursts of roughly consistent
length and spacing.

As illustrated in Figure 1, we observe many regions of
poor reception, but also extended regions of excellent recep-
tion when 3G repeaters are nearby or the subway crosses
an above-ground bridge. This scenario is completely uncon-
trolled and is used to validate SILQ’s methodology in an
everyday situation of particular aggravation to the authors.

3. PREDICTIVE LINK-STATE MODELING
In order to implement predictive queueing, we first build

a model of wireless packet delivery for our three scenar-
ios. In the literature, link models typically reflect two ap-
proaches: physical models that use signal propagation to
explain packet loss, and data-driven models that mathe-
matically capture those effects with statistics like correla-
tion between packet receptions. The former group includes
distance-based attenuation, two-ray interference, and geo-
metric occlusion models [11, 12, 13], while the latter in-
cludes loss-rate and Markov-chain models that reproduce
distributions of consecutive receptions [14, 15, 16]. Though
physics-driven methods are intuitive, they require detailed
environment-specific information as inputs. On the other
hand, generic data-driven models can require training data-
sets that grow exponentially with temporal scale.

These two extremes are sometimes blended by location-
based statistical models [17, 18]. However, we find that
location information is generally a poor predictor of indi-
vidual packet losses. For example, we observe in our UAV
experiments that slight changes to antenna orientation drive
major swings in link loss. We also see that the location of
a single car close to ground-structure nodes causes drastic
changes in packet loss behavior due to multipath reflection.
Indoors, we see that loss characteristics change when doors
are closed or metal objects are moved within offices. And in
the subway, location information is not even available once
the train descends underground. For these reasons, we pur-
posefully eschew location information in pursuit of a more
accurate, general packet loss model.

Our data-driven link model combines unsupervised sparse
coding, a form of clustering, with supervised Support Vec-
tor Machine (SVM) classification. This approach is closely
related to state-of-the-art learning systems for vision and
speech recognition that capture complicated features while
tolerating non-Gaussian data variations [19]. Though ours
is the first sparse-feature model for wireless packet transmis-
sion to our knowledge, other learning techniques are gaining



traction in networking scenarios. At the transport layer,
game-theoretic simulations can discover TCP protocols tai-
lored to network conditions [20]. At the physical layer, learn-
ing has been used to adapt forward-error-correction (FEC)
to congestion in simulation [21]. Our approach stands out
both by our use of sparse feature representation to cope with
real-world measurement artifacts, as well our emphasis on
live, online operation aboard mobile devices.

3.1 A Sparse Coding Link Model
Sparse coding is an unsupervised clustering method that

solves for an overcomplete matrix of recurring patterns in
training data. We call that matrix a dictionary and its
column vectors features [10, 22]. Under this framework, a
data vector can be approximated as a linear combination
of features. By constraining the number of features used,
approximations are represented by sparse coefficient vectors
with only a few non-zero entries. For data with noise or
non-Gaussian variations like deletions, sparse approxima-
tions latch measurements to exemplar patterns, truncating
weakly expressed information and restoring missing values.
This process improves variation-tolerance in subsequent sta-
tistical analysis.

3.1.1 Offline Dictionary Training
We learn dictionaries offline from a large set of link traces,

effectively exploiting past data to improve statistical accu-
racy for future data. Several formulations for dictionary
training exist [23]; we use an optimization method based
on the Least Absolute Shrinkage and Selection Operator
(LASSO) that relaxes sparse coding’s constraint on the num-
ber of non-zero feature coefficients by instead penalizing the
sum of coefficient magnitudes [24]:

min
α,D

1

2
||x−Dα||22 + λ||α||1 (1)

where D is a w × m dictionary containing m features of
length w, x a normalized binary measurement vector rep-
resenting the outcomes of w back-to-back probe transmis-
sions, α its sparse feature representation, and λ a tunable
positive value. To implement dictionary training, we seg-
ment field traces into T windows of w measurements xt for
t = 1...T . This objective produces qualitatively similar re-
sults to sparse coding but is convex, yielding stable, accurate
solutions for D.

3.1.2 Online Measurement Encoding
While LASSO is effective for offline dictionary learning, it

is too computationally intensive to compute sparse codes in
real-time on mobile devices. Therefore, we use a D found
by LASSO and solve for α online according to:

min
α,D

||x−Dα||22 s.t. ||α||0 ≤ k (2)

with k a hard sparsity threshold. This alternative formula-
tion can be greedily solved by Matching Pursuit (MP) [25]
using a series of inner-product tests that iteratively select k
features to reduce a residual. MP has O(mw) complexity
and we show in Section 6.4 that feature encoding is a negli-
gible part of SILQ’s running time.

Our sparse-feature-based link model is related to state
models like Markov chains in the literature [14, 16]. The
process of learning a dictionary by clustering can be thought

of as a data-driven method for reducing the space of possi-
ble states in the model. For example, if we train a dic-
tionary with many features and a small penalty parameter
(e.g. m ≈ 200 and λ ≈ 0.1), then D captures templates
of frequently occurring link states. New link measurements
are then matched to the closest template by setting k = 1.
However, if the number of dictionary features is chosen to
be small and lambda is chosen to be large (e.g. m ≈ 20 and
λ ≈ 4), then training will extract a small number of the most
prominent patterns in each training example. This produces
a set of more-general features that can be combined to enu-
merate observed link states, for example by encoding with
k = 8. We call these features primitives. In Section 4, we
will show that these latter linear-combinational models gen-
eralize well across networks and environments, addressing a
key limitation of traditional wireless link models.

3.2 Outage Prediction With SVMs
Using learned link primitives, we can build a predictive

statistical model for all sorts of link-layer events that af-
fect network performance. In this work, we use bulk data
transport via TCP as an application vehicle to demonstrate
SILQ’s gains and define the prediction target to be any up-
coming sequence of 192 probe measurements containing a
single delivery failure. This represents back-to-back trans-
mission failures of 1500B MTU data packets sent at 1Mbps
with the Linux default 7 ARQ retries, assuming a round-
trip time less than 100ms. Since most TCP implementa-
tions can recover quickly from a single packet drop using
fast-retransmit, we instead try to detect these two-packet
outages. We note that video streaming and transaction pro-
cessing are other candidate applications for SILQ with po-
tentially different prediction targets.

To implement binary event prediction, we use a linear
SVM classifier, which finds a separating plane between train-
ing data belonging to two classes, designated by class labels;
later, new data vectors are compared to the separating plane
using an inner-product and threshold test to predict their
class membership. Since SVM training data in our applica-
tion requires both sparse feature vectors and corresponding
labels, it is considered a supervised technique. To derive
labels yt for our data, we annotate a subset of traces from
each environment, setting yt = 1 when an outage followed
the measurement vector in the trace and yt = 0 otherwise.
In Section 4.2, we show how to optimize over SVM configu-
ration parameters.

4. TRAINING MODELS

4.1 Learned Link Primitives
We first train dictionaries on field-collected traces using

LASSO and examine the link primitives discovered in each of
our scenarios. We learn separate dictionaries of size m = 20
with λ = 4 from each type of receiver: UAV field nodes,
UAV forest nodes, UAV ground-structure nodes, indoor of-
fice nodes, and subway nodes. Figure 4 shows several fea-
tures found often in each trace, with dips reflecting patterns
of delivery failure and peaks capturing delivery successes.

We see that primitives learned across UAV ground re-
ceiver types are similar. Taken together, they capture ex-
amples of abrupt changes to the link, gradual transitions,
intermittent packet drops, and temporary outages lasting
10’s of milliseconds. When we examine the distributions of



nonzero coefficients in each trace’s sparse representations,
we find that field and forest nodes more often map to long
runs of delivery successes or smooth gradual changes in link
quality. This aligns with our experiment configuration, in
which these nodes have the best connectivity, are far from
any structures that can suddenly occlude line-of-sight trans-
mission, and are affected mostly by radio range limitations.
In contrast, the coefficients computed for ground-structure
nodes more-often map to abrupt transitions as buildings
block line-of-sight until the UAV is immediately overhead.

Primitives learned in the office environment bear a strik-
ing resemblance to those learned from UAV receivers. We
see a mixture of temporary outages affecting strong links,
as well as abrupt on-to-off and off-to-on transitions. These
links exhibit a greater degree of noisy variation than UAV
nodes, possibly due to 802.11 cross-channel interference from
the building’s wireless network.

Subway atoms reflect the same general shapes, but promi-
nently exhibit regular 10ms-long oscillations in delivery. Ac-
cording to log files, average probe inter-arrival times over the
3G network display 10ms bursts of back-to-back deliveries,
likely due to queueing delays. This means that unsupervised
learning captures primitives reflecting both wireless-link and
network effects.

UAV (car) UAV (field) Elevator Subway 

UAV	
  Ground-­‐Structure	
   UAV	
  Field	
   Indoor	
  Office	
   Subway	
  

Link-­‐State	
  Primi>ves	
  By	
  Environment	
  

Figure 4: Common link primitives learned from dif-
ferent environments using LASSO with m = 20 and
λ = 4 are shown. They capture fast and slow link
transitions as well as bursts of delivery successes.

4.1.1 Separating Network Effects
As discussed in Section 3.1, sparse feature models can be

configured either to match link states to a single template,
or to express them as linear combinations of primitives. The
practical result of this choice can be seen by comparing the
primitives in Figure 4 to the template in Figure 5 learned
from subway data using m = 200 and λ = 0.1. We see that
templates simultaneously represent the concurrent effects of
wireless link loss and network queuing delays. This contrasts
with models based on linear combinations of primitives that
automatically separate these effects.

This observation highlights the power of applying sparse
coding to link modeling: our approach naturally expresses
complicated network measurements in a simple, well-separated
vector of high-level information – statistics can then be com-
puted relative to this meta-information. In addition to sup-
porting stable, intuitive statistical models, our method uses
data-driven learning to identify link states that generalize

Link-­‐State	
  Template	
  from	
  Subway	
  Environment	
  

Figure 5: A link-state template learned from subway
data is shown. The effects of link loss and bursts due
to network delays are captured together, contrasting
with Figure 4 where they are separated into different
primitives.
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Figure 6: The effect of outage-detection sensitiv-
ity on TCP is illustrated. Detectors that forward
data aggressively run a high risk of timeout. Those
that forward conservatively rarely time out, but of-
ten under-utilize the link.

beyond just their training data, reducing the need for ex-
tensive data collection in new scenarios.

4.2 Tuning an SVM Predictor for Temporary
Link Outages

We next show how to tune a linear SVM to predict out-
ages from sparse-coded link measurements. Fundamentally,
SVMs separate classes of data by solving for a max-margin
separator between training examples of each class. When
used for detection, this allows us to obtain a tradeoff be-
tween true positive and false positive rates by shifting the
SVM separator toward one class or another.

Within SILQ, a predictor’s sensitivity ultimately affects
realized network performance. Figure 6 illustrates this re-
lationship in the context of an outage predictor and TCP
throughput. Predictors tuned to forward packets aggres-
sively raise few alarms, achieving low false positives but also
low true positives. The result is a fast sending rate but a high
risk of TCP timeout when outages are not well-predicted. At
the other end of the spectrum are predictors tuned to for-
ward data conservatively by raising many alarms, leading to
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Figure 7: Throughput is shown at various points
on our outage detector’s ROC profile, empirically
demonstrating the relationship described in Figure
6 in our indoor office scenario. We also see that
training parameters such as encoding sparsity k af-
fect the ROC profile of our outage detector.

a high true positive rate but also many false positives. These
detectors rarely let timeouts happen, but severely underuti-
lize links in good conditions.

In Figure 7, we show the empirical effect that prediction
sensitivity has on throughput, measured in our indoor office
scenario with the methodology of Section 6.2. We see that
aggressive models achieve poor average throughput with a
high standard deviation – while they opportunistically grab
all available sending opportunities, they also often time out
and cause throughput to drop to zero for a long period of
time. However, overly conservative models end up realizing
lower throughput since they fail to send often enough when
the link is usable.

We also see in Figure 7 that optimizing over sparse cod-
ing parameters like m, λ, and k changes the resulting SVM
predictor’s ROC profile. For example, if we set m = 20, but
k = 2, then the detector is strictly worse than setting k = 4.

Guided by these results, we reason that the best link
model in terms of TCP throughput should maximize cor-
rect outage predictions while ensuring plenty of sending op-
portunities. We implement this by choosing the model that
maximizes outage recall, provided non-outage (i.e. sending
opportunity) recall is above a threshold of 0.75. Varying m,
λ, k, and the SVM’s test threshold, we train dictionaries and
SVMs while holding out a subset of traces for evaluation to
obtain m = 20, λ = 4, and k = 4 as our best configura-
tion. Examining our optimized link model, we notice that
the SVM heavily weights three particular dictionary primi-
tives, suggesting that TCP throughput is highly sensitive to
a small number of link states.

4.3 Transferring Features
While some link-state primitives may be unique to a par-

ticular environment, Section 4.1 showed that similar features
are found among scenarios. Intuitively, these should repre-
sent common drivers of link loss like range effects in large
open environments or abrupt transitions due to occlusions.
We next empirically verify that learning captures canonical

link characteristics that are common across diverse environ-
ments.

For Figure 8, we learn primitives from a single scenario
and use them to compute sparse feature representations and
train outage predictors in a different scenario. We not only
see that primitives generalize well across environments, but
that some amount of data diversity actually improves outage
recall, possibly serving as a defense against overfitting. We
note that this trend does not hold when we use a template
model – for example, we find that templates from the office
scenario do not accurately characterize the queuing effects
of the subway, hurting recall.

We also found that SVM separators do not port as well as
dictionaries across scenarios, since the precise relationships
between link states over time are environment-dependent.
For example, a fast subway train may produce shorter tem-
poral correlation between a degrading link and an upcoming
outage than in the office scenario. However, we saw that
SVMs trained on months-old data still provided good per-
formance in the field, suggesting that such relationships are
fundamentally stable. Since SVM training is less compu-
tationally intensive and requires less data than dictionary
training, SILQ implements this function on-device to allow
fast adaptation to new environments.

UAV Indoor)Office Urban)Subway

UAV 0.81 0.82 0.74
Indoor)Office 0.83 0.79 0.79

Urban)Subway 0.81 0.81 0.73

SVM)Training)&)Test
Environments

Dict.)Training)
Environment

Outage-­‐Predic-on	
  Recall	
  when	
  Transferring	
  Primi-ves	
  	
  

Figure 8: Outage-prediction recall is reported when
dictionary primitives are learned in one scenario and
applied in another. This establishes that learned
link primitives are often universal across environ-
ments and networks.

5. SILQ ARCHITECTURE
To demonstrate throughput gains from the predictions of

our sparse-coding link model, we implement SILQ for Linux
and Android devices. At runtime, SILQ nodes each mea-
sure their outgoing links by transmitting UDP probes at a
regular interval. Reception reports are then bounced back
to senders, piggybacked on probes traveling in the opposite
direction. After a regular measurement interval (100ms for
all results in this paper), each SILQ node computes a link
prediction using the prior w measurements. If an outage is
predicted, SILQ holds all data packets at the link layer until
a new prediction indicates otherwise.

5.1 Measurement Protocol
SILQ’s measurement protocol is shown in Figure 9. Nodes

maintain a bitmap Linkin marking the last w incoming probes
relative to the most recent, denoted Seqin. An arriving
probe’s sequence number is compared against Seqin to de-
tect delivery failures before updating Linkin and Seqin. Our
UDP probes use 69B to carry a reception report consisting
of Linkin as a 3B bitmap and Seqin as a 2B unsigned short.

Nodes also maintain a round-trip-time estimate dRTT to
detect lost reception reports. For example, if Seqout = 20
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Figure 9: SILQ’s measurement protocol piggybacks
reception reports containing a bitmap of incoming
probe receptions on outgoing probes. Senders use
estimated round-trip-time dRTT to detect lost recep-
tion reports.

probes are sent and only the first report successfully bounces
back, the sender must compute how many reports should
have arrived: Seqout − dRTT

w
100ms

= 19. This means that bi-
directional probing captures asymmetric link effects, except
when many reception reports are lost at the end of an inter-
val. In this case, we make the conservative assumption that
the link is off in both directions. In practice, we find that
disruptions due to dRTT fluctuation resolve after one or two
missed 100ms windows, even on a crowded carrier network.

5.1.1 Managing Probing Overheads
Probing consumes both power and network bandwidth, re-

sources that must be balanced against measurement fidelity.
For example, in Section 6, Figures 12 and 14 show us that
sending 20 probes per 100ms consumes 22% of bandwidth
for a 1Mbps link and 9% additional battery for a laptop with
a power-hungry USB radio.

Beyond simply reducing probe rate, we introduce a strat-
egy for managing overhead by updating predictions less-
frequently when the link is in a stable steady-state. This
steady-state sleep mode detects sustained strong-connectivity
or sustained outage by 3 consecutive all-1 or all-0/missing
link reports, respectively. In this mode, SILQ updates pre-
dictions every tSleepms using a single round of probing. We
set tSleep so that regular prediction will resume in two cases:

Case 1: Good-to-Bad Transition When a good link
degrades, outgoing data will be vulnerable to loss due to a
stale state prediction. We therefore compute the portion of
SILQ’s sending queue at risk and set tSleep to ensure toler-
able loss:

tSleep = dTX ∗ (QSILQ − PMin)− dRTT (3)

where PMin is the minimum number of packets that must be
delivered to maintain the connection, QSILQ is the current
send-queue size, dTX is the transmission time of an MTU
data packet, and dRTT is the time needed for a full link

report to bounce back. For example, TCP uses a triple-
duplicate-ACK to trigger fast recovery, so we set PMin = 3.
With dRTT = 110ms, dTX = 12ms, and a sending queue of
QSILQ = 50 packets, we can set tsleep = 454ms.

Case 2: Bad-to-Good Transition When the link is un-
available, we can save power by turning the wireless radio
off and waking periodically to check link status. In this case,
a large tsleep risks underutilizing the link by slowing SILQ’s
reaction time. We tune this quantity empirically – for exam-
ple we see an average 3s delay between restored connectivity
and SILQ’s first predicted sending opportunity in our office
scenario and conservatively set tSleep = 900ms to ensure that
the link is checked every 1s.

Network	
  
Applica/on	
  

Data	
  Channel	
   Control	
  Channel	
  

User	
  space	
  
Kernel	
  space	
  

Link	
  State	
  
Updates	
  

Predic7ons	
  

FSM	
  

Outgoing	
  
Data	
  Packets	
  

Incoming	
  
Data	
  Packets	
  

Link	
  State	
  Bitmap	
  

Outgoing	
  	
  
Probes	
  

Incoming	
  
Probes	
  

[	
  Outgoing	
  Packet	
  Queue	
  ]	
  

‘Forward’	
  	
  

SILQ	
  

SILQ	
  So=ware	
  Architecture	
  

Wireless	
  Medium	
  

ne?ilter_queue	
  

SILQ::ctrlChan	
  SILQ::dataChan	
  

Figure 10: The SILQ architecture consists of logi-
cally separated data and control channels that iso-
late link measurement protocols from data forward-
ing protocols. In our testbed, both access the same
wireless medium using the same interface.

5.2 Software Architecture & Implementation
SILQ’s software architecture is shown in Figure 10. It is

implemented in user space for Linux and Android devices us-
ing netfilter_queue to administer packets within the ker-
nel. Each node runs both data channel and control channel
controllers – the data channel controller holds or forwards
packets based on the current predicted link state, while the
control channel controller is responsible for probing and pro-
viding measurements to a finite-state machine (FSM) link-
model module. The logical separation between channels sim-
plifies probing and data-delivery protocols, however both
access the same wireless medium using the same wireless
interface for all results in this paper.

SILQ’s FSMs are modular, allowing us to compare sparse
coding to traditional modeling approaches in the field. We
implement NO_OP (i.e. always-forward), Loss Rate Thresh-
old, Heuristic Hold, and Sparse Coding FSMs. For all but
the NO_OP FSM, trivial all-0 measurement vectors always
predict outage, and trivial all-1 measurement vectors predict
no-outage. For Loss Rate Threshold and Heuristic Hold, we
use a “conservative” parameter to require back-to-back no-
outage predictions before turning a bad link back on. This
stabilization procedure is needed for loss-rate and heuris-
tic predictors to achieve any throughput gains in the field.
In contrast, we optimize the sparse coding FSM for stable
prediction using the statistical methods of Section 4.2.



6. SYSTEM EVALUATION
We evaluate SILQ in the UAV, office, and subway scenar-

ios by measuring TCP throughput, power consumption, and
CPU utilization. For these experiments, we train dictionar-
ies and SVMs as in Section 4 and then transfer a large file
from a mobile device to a remote server via TCP. We com-
pare raw TCP to SILQ using predictions from sparse cod-
ing, loss-rate threshold, and heuristic models. Our heuristic
holds data packets if all probes in a previous window are
lost, representing the simplest method of coping with the
long out-of-range regions in our UAV and subway tests. We
empirically tune a loss-rate threshold and “conservative” pa-
rameters for comparison methods to maximize throughput.

Our baseline TCP protocol is the Linux default TCP Cu-
bic. We enable SACK-enhanced F-RTO for resilience over
wireless links, use 9 keep alive probes, and allow 15 back-to-
back timeouts before terminating a connection. Our wireless
adapters use 7 ARQ retries for data packets, while we disable
ARQ for probes over 802.11 links.

To control for differences in link quality, we compare over-
all throughput for different experiments using total data
transferred divided by the total number of transmission op-
portunities for data packets. To illustrate the effect of small
changes in experiment parameters like walking speed, Fig-
ures 11(a) and 11(b) plot loss rate for two runs in our office
scenario using faint green, yellow, and red bars. We see that
the durations of both outages and regions with strong con-
nectivity differ, biasing total throughput by affording more
transmission opportunities during the run shown in Fig-
ure 11(a) independent of network protocol. Our comparison
metric corrects for this effect in post-processing by counting
only stable regions with back-to-back probe deliveries in our
throughput denominator.

6.1 UAV Throughput in Emulation
Due to logistical barriers related to personnel, budget, and

weather, we validate throughput in the UAV scenario using
a lightweight link emulator. During emulated flights, SILQ
runs on our UAV payload and ground nodes, while probe
and data packets are sent over wired interfaces to a central
controller that replays field traces. The emulation controller
forwards packets to their destination only if a packet recep-
tion was recorded in the field trace. We emulate a 1Mbps
link and compare 1500B MTU data packets against 12 back-
to-back 1ms probes to reflect a 12ms transmission time. An
error in any probe causes the data packet to be dropped.
The controller simulates both ARQ and CSMA. Emulated
traces are held out of the training datasets used for dictio-
nary and SVM training.

We find that SILQ boosts throughput by 22% over a raw
TCP connection for links to ground-structure nodes. This
improvement from 529 kbps to 644kbps is attributed to the
high-quality predictions of our sparse coding link model, as
heuristic and loss-rate predictions hurt throughput by 5%
and 10%, respectively. For field and forest nodes, SILQ pro-
duces little benefit to average throughput, but yields an ex-
tremely low throughput deviation of 19kbps across flights.

Examining UAV links by type, we find that SILQ’s sparse-
coding predictions help most when link conditions vary of-
ten. Our learning approach successfully captures measure-
ment sequences with strong predictive power caused by the
complex geometry of nearby buildings and cars. In contrast,
when loss is intermittent at radio range extremes, ARQ is

Figure 11: TCP throughput is plotted against the
left axis in our indoor office scenario. For reference,
link loss is plotted against the right axis using faint
green, yellow, and red bars. Link-state predictions
are represented by pink and white markers at the
top of each plot. SILQ’s optimal, aggressive, and
conservative forwarders behave as anticipated, and
TCP connections wake up quickly with SILQ.

enough to fix isolated losses. In all cases, we found that loss-
rate and heuristic predictors underperform sparse coding –
our heuristic only captures coarse outages lasting hundreds
of milliseconds, while loss-rate predictions map both outages
and intermittent losses to a single metric.

6.2 Indoor Elevator/Office Environment
Next, we deploy SILQ in our indoor office environment.

For these experiments, wireless links are stable when users
are close to an access point, but exhibit both abrupt out-
ages due to fire doors and gradual degradation caused by an
elevator car.

Averaging five runs, SILQ improves throughput by 2x over
a raw TCP connection, while reducing throughput variation
by 4x. Predictions from our sparse coding model produce
15% higher throughput than the heuristic and 50% higher
throughput than loss-rate predictions. We found it difficult
to tune either comparison prediction-method to perform well
over the entire walking tour – unlike sparse-coding, neither
could cope with both abrupt link transitions and gradual
link degradation using a single configuration. Figure 12
shows that sparse-coding predictions are also more resilient
to lower probe rates than heuristic or loss-rate models. In
Section 6.4, we show that this allows us to better match
SILQ’s power consumption to available resources.

Figure 11 shows a closer look at SILQ’s performance over
example runs in the indoor office. For reference, we plot
link loss against the right axis using faint green and red
bars. When appropriate, SILQ’s link state predictions are
shown at the top of a plot, with a pink marker indicating
that the link is predicted to be on, and whitespace showing
a predicted outage. TCP throughput is plotted against the
left axis using black and blue shaded curves.
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Figure 12: Average throughput in our indoor office
scenario is shown as we reduce probe rate. Predic-
tions from a sparse coding model are more resilient
to low probe rates than heuristic or loss rate models.

In Figure 11(a), we see that TCP times out as soon as link
conditions degrade and does not wake up until several min-
utes later. This causes the mobile device to miss sending op-
portunities during nearly 40% of the tour. In contrast, Fig-
ure 11(b) shows SILQ running with our best-tuned sparse-
coding model, which predicts impending outages well and
causes TCP to wake up rapidly. We also show SILQ’s per-
formance when our SVM outage predictor is tuned accord-
ing to the True Positive/False Positive tradeoffs discussed
in Section 4. We see how the more aggressive forwarder in
Figure 11(c) sends often, but times out due to its optimism
about link state. In contrast, the conservative forwarder in
Figure 11(d) misses large portions of sending opportunities
in an effort to avoid timeouts.

6.3 Real-World Subway Environment
Our subway scenario validates SILQ “in the wild”. This

scenario exhibits a great deal of uncontrolled complexity
– mobile nodes experience fast changes in velocity, sud-
den occlusions from tunnels, spotty connectivity to 3G re-
peaters, and competing wireless traffic. This scenario serves
to demonstrate the strength of SILQ’s end-to-end design
since no code alterations or network configuration changes
were needed for the system to function.

Figure 13 compares raw TCP to SILQ with a sparse cod-
ing predictor over subway rides between the Harvard Square
and Charles-MGH stops. Note that Figure 13(a) represents
an inbound trip from Harvard to Charles-MGH, and Figure
13(b) represents an outbound trip between the two stops in
the opposite order. While a raw TCP connection times out
for minutes at a time, SILQ utilizes nearly every available
sending window and improves throughput by 4x over a six
minute train ride.

6.4 Profiling CPU & Battery Overheads
Finally, we profile SILQ’s performance on two of our ex-

perimental devices: a Lenovo X200 laptop running a 1.86GHz
Intel Core 2 Duo processor with a T-Link TL-WN722N USB
wireless radio, and an HTC One (M8) smartphone running
a 2.36GHz Qualcomm Snapdragon 801 ARM processor with
onboard Wi-Fi. We run SILQ on each device with only base-
line background-process activity. Throughout, screens are
kept at their default brightness. On the laptop, we create
network data traffic by transferring a large file via TCP to
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Figure 14: In our office environment, our steady-
state sleep mode reduces power consumption to 4%
and 5% above an active data connection, depending
on device. This method forgoes predictions when
the link is in a steady-state.

a remote server. On the phone, we have a user request pop-
ular web pages at a rate of roughly one site per 4 seconds.
For both devices, we measure CPU utilization and battery
consumption by averaging over 30 seconds.

We observe that SILQ uses only 2% CPU on the Intel chip,
and 4% on the smartphone. Less than 1% of SILQ’s run-
time is spent computing predictions, with most time spent
servicing packets. Using a dictionary of 30 atoms for w = 20
probes per interval, SILQ’s memory footprint is 972KB.

Figure 14 shows SILQ’s power consumption for each de-
vice. We see that lower probe rates reduce SILQ’s power
overhead significantly – for example, by 14% on the laptop
and 6% on the phone when we drop from 20 to 14 probes
per 100ms. We also report savings from our steady-state
sleep mode in the indoor office environment. Since our de-
vices prevent us from easily powering radios on and off with-
out re-associating with access points, this savings is calcu-
lated in post-processing from SILQ’s logs, based on recorded
steady-state regions. When we compare SILQ’s battery con-
sumption overhead using the steady-state sleep mode to the
power consumed by an active data connection, we see that
our method only costs an additional 4% and 5% per device,
utltimately for a 2-4x boost in throughput.

7. CONCLUSION
This paper presented SILQ, a link layer queuing system

that uses machine learning to predict link outages so that
packet loss can be avoided. Using sparse coding, we demon-
strated that a link model based on combinations of sim-
ple primitives makes better use of training data and leads
to higher quality predictions than models requiring steady-
state assumptions about link quality. SILQ can be easily de-
ployed on Linux and Android devices, and has been demon-
strated to achieve up to 4x throughput gains in scenarios of
practical interest.
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Figure 13: We compare a raw TCP connection to TCP atop SILQ using predictions from a sparse-coding link
model during inbound and outbound subway rides. Over a 3G cellular network, raw TCP times out quickly
and misses many sending opportunities. With SILQ, timeout is avoided and throughput increases by 4x.
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