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Motivation
*  Representational power of single-layer
feature learning is limited to simple tasks
*  Deep architectures allow us to decompose
hierarchy of complex data (e.g., human face)
into layers of features, with a feature at each
layer using the features of the layer below
» Best current practices use deep
architectures based on autoencoder,
restricted Boltzmann machine (RBM),
and convolutional neural network (CNN)

Deep Architecture Based on Sparse Coding

* Single-layer sparse coding performance
(according to Coates et al., 2011) is better
than or on par with RBM and CNN

» Sparse coding, due to its regularization on
sparsity, gives probably the most effective
(unsupervised) clustering method known
to date

*  Motivated by superior feature learning
performance of single-layer sparse coding,
we build a deep architecture based on sparse
coding

Challenges

1)  As going up layers, sparse coding increases
dimensionality

2)  Sparse coding makes an inherent
assumption on the input being non-sparse

3) Itis difficult to optimize all layers of sparse
coding jointly

Objective

‘We propose Deep Sparse-coded Network (DSN), a
deep architecture for sparse coding as a principled
extension from its single-layer counterpart

*  We propose a novel backpropagation
algorithm that is specific to multi-layer
sparse coding interlaced by spatial max
pooling

*  Using max pooling, we avoid linear cascade
of dictionaries and keep the effect of multi-
layering in tact

» Remedy problem of too many feature
vectors and preserve translational
invariance

*  We consider both /,-regularized LASSO/
LARS and greedy-/, OMP for sparse coding
methods
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* Greedy algorithm such as OMP can
minimize /; pseudo-norm, Alyl,

*  LASSO/LARS can be used to minimize /-
norm, Alyl,

Deep Sparse-coded Network (DSN)

4-layer DSN with two hidden layers of sparse coding, each of which can
learn corresponding level’s sparse code and train own dictionary
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Training algorithms for DSN
1) Pretraining via layer-by-layer sparse
coding and dictionary learning
- Compute sparse codes while learning
dictionary
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- Max pooling to aggregate sparse codes
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- Pooled sparse code is passed to next layer
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2) Training classifiers at the output layer
- Train weights in classifier/regressor
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3) Backpropagatlon
- Compute classifier error
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- Compute updated pooled sparse codes
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- Estimate sparse code via putback

H » Updated pooled sparse codes

are put back to locations at
the original sparse codes

- Down-propagate for

I ‘# e all hidden layers
U“k_v_)“ - Up-propagate using
Steps 1&2

Putback yields corrected
sparse codes y"'s

*  Sample 20,000 images uniformly from

*  Preprocess patches by ZCA-whitening

CIFAR-10 dataset
» 2,000 images per class
» Five folds for cross validation
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| Classification accuracy |

Autoencoder 69.8%

OMP (S = 0.1N) 75.3%

OMP (S = 0.2N) 76.9%

LARS (A =0.2) 78.4%

LARS (A =0.1) 80.1%

*S: number of non-zero items
In single-layer setting, sparse coding based
on LARS (with 2=0.1) achieved the best
single-layer accuracy at 80.1%

comparison between DSN and deep stacked
autoencoder (SAE)
| Classification accuracy |
Deep SAE (pretraining only) 71.8%
Deep SAE (pretraining+backprop) 78.9%
DSN-OMP (pretraining only) 79.6%
DSN-OMP (pretraining+backprop) 84.3%
DSN-LARS (pretraining only) 83.1%
DSN-LARS (pretraining+backprop) 87.5%

Conclusion and Future Work

-Multi-layering improves accuracy
performance for sparse coding by 3%, and
the proposed backpropagation additional 4%
-DSN-OMP with only pretraining is already
0.7% better than the backpropagation-
finedtuned deep SAE

Conclusion

* Introduce Deep Sparse-coded Network
(DSN), a deep architecture for sparse
coding

* Discuss benefit and training methods of
DSN including a novel backpropagation
algorithm that effectively traverses and
optimizes multiple layers of sparse coding
and max pooling

*  Report good classification performance on
medium-sized setup with CIFAR-10

Future Work
*  Experiment with DSN in larger datasets
(CIFAR-100, Caltech-101, and Caltech-256)
*  Test in broader scope for text, sounds, and
wireless signal classification tasks
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