

Classification on Compressed Data Approach

Objective

Motivation Experiments

Conclusion and Future Work

Sparse Coding
Represent x as a sparse linear combination of
basis vector in D

Deep Sparse-coded Network (DSN)
Youngjune Gwon, Miriam Cha, and H.T. Kung

•  Representational power of single-layer

feature learning is limited to simple tasks
•  Deep architectures allow us to decompose

hierarchy of complex data (e.g., human face)
into layers of features, with a feature at each
layer using the features of the layer below

Ø  Best current practices use deep
architectures based on autoencoder,
restricted Boltzmann machine (RBM),
and convolutional neural network (CNN)

•  Single-layer sparse coding performance

(according to Coates et al., 2011) is better
than or on par with RBM and CNN

Ø  Sparse coding, due to its regularization on
sparsity, gives probably the most effective
(unsupervised) clustering method known
to date

•  Motivated by superior feature learning
performance of single-layer sparse coding,
we build a deep architecture based on sparse
coding

Motivation

Deep Architecture Based on Sparse Coding

1)  As going up layers, sparse coding increases
dimensionality

2)  Sparse coding makes an inherent
assumption on the input being non-sparse

3)  It is difficult to optimize all layers of sparse
coding jointly

•  We propose a novel backpropagation

algorithm that is specific to multi-layer
sparse coding interlaced by spatial max
pooling

•  Using max pooling, we avoid linear cascade
of dictionaries and keep the effect of multi-
layering in tact

Ø  Remedy problem of too many feature
vectors and preserve translational
invariance

•  We consider both l1-regularized LASSO/
LARS and greedy-l0 OMP for sparse coding
methods

Challenges

Objective

We propose Deep Sparse-coded Network (DSN), a
deep architecture for sparse coding as a principled

extension from its single-layer counterpart

In single-layer setting, sparse coding based
on LARS (with λ=0.1) achieved the best

single-layer accuracy at 80.1%

Average 1-vs-all classification accuracy for
single-layer sparse coding and autoencoder

Average 1-vs-all classification accuracy
comparison between DSN and deep stacked

autoencoder (SAE)

-Multi-layering improves accuracy
performance for sparse coding by 3%, and

the proposed backpropagation additional 4%
-DSN-OMP with only pretraining is already

0.7% better than the backpropagation-
finedtuned deep SAE

5

A. Data processing and training for sparse coding

Instead of using the full CIFAR-10 dataset, we uniformly
sample 20,000 images and cut to five folds for cross validation.
We use four folds for training and the remaining fold for
testing. We enforce exactly 2,000 images per class. For output
layer, we have trained a 1-vs-all linear classifiers for each
of ten classes in CIFAR-10. Each datum in CIFAR-10 is a
32⇥32⇥3 color image. We consider a per-image feature vector
from densely overlapping patches drawn from a receptive field
with width w = 6 pixels and stride s = 2. Thus, each patch
(vectorized) has size N = 3 ⇥ 6 ⇥ 6 = 108. We preprocess
patches by ZCA-whitening before sparse coding. We use a
couple of different sparsity configurations for each LARS and
OMP. We configure hidden layer 1 sparse coding more densely
with � = 0.1 (regularization penalty) for LARS and S = 0.2N
(sparsity bound) for OMP. For hidden layer 2, we use � = 0.2
and S = 0.1N .

Figure 4 illustrates sparse coding and max pooling at hidden
layer 1. Each image is divided into four quadrants. For each
quadrant, there are four (pooling) groups of 9 patches. Hidden
layer 1 uses a dictionary size K

1

= 4N = 432 and max pool-
ing factor M

1

= 9. Hidden layer 1 produces {z(1)
I

, . . . , z
(4)

I

},
{z(5)

I

, . . . , z
(8)

I

}, {z(9)
I

, . . . , z
(12)

I

}, and {z(13)
I

, . . . , z
(16)

I

} (4
pooled sparse codes per quadrant), which will be passed to
hidden layer 2.

Figure 5 illustrates sparse coding and max pooling at hidden
layer 2. We use K

2

= 2K
1

= 864 and M
2

= 4. To
prevent further expansion of features, we have computed the
two averages and encoded the final per-image feature vector
�DSN = [mean(z(1)

II

, z
(2)

II

);mean(z(3)
II

, z
(4)

II

)]. Thus, the final
feature vector for DSN has a dimensionality 2K

2

= 1, 728.
For single-layer sparse coding, we have averaged z

(i)
I

’s per
quadrant and stacked them to form the final per-image feature
vector �SLSC , which also has 1,728 features.

B. Data processing and training for autoencoder

For fairness, we have matched the total number of trained
weights between the DSN and SAE schemes. Given an input
x 2 RN , an autoencoder layer [1] trains a set of encoding
weights that transforms x into the activations a 2 RH and
a set of decoding weights that recovers x̂, an estimate of
x, from a, all through backpropagation. Similar to sparse
coding, we use the encoding a as the feature vector for x. If
H < N , the autoencoder layer is forced to learn a compressed
representation of the input. Also, even when H > N (i.e.,
more hidden units than input dimension), we can still learn
meaningful features by imposing a sparsity constraint on a

such that only S ⌧ H neurons are activated. We have
experimented with both approaches and will report the best
result of the two for deep SAE.

TABLE I
AVERAGE 1-VS-ALL CLASSIFICATION ACCURACY FOR SINGLE-LAYER

SPARSE CODING AND AUTOENCODER

Classification accuracy
Autoencoder 69.8%
OMP (S = 0.1N) 75.3%
OMP (S = 0.2N) 76.9%
LARS (� = 0.2) 78.4%
LARS (� = 0.1) 80.1%

TABLE II
AVERAGE 1-VS-ALL CLASSIFICATION ACCURACY COMPARISON BETWEEN

DSN AND SAE

Classification accuracy
Deep SAE (pretraining only) 71.8%
Deep SAE (pretraining+backprop) 78.9%
DSN-OMP (pretraining only) 79.6%
DSN-OMP (pretraining+backprop) 84.3%
DSN-LARS (pretraining only) 83.1%
DSN-LARS (pretraining+backprop) 87.5%

C. Results

We report cross-validated 1-vs-all classification accuracy of
single-layer sparse coding, DSN, and deep SAE. In Table I,
we present the single-layer autoencoder and sparse coding
performances. For classification, we have used two standard,
off-the-shelf algorithms, SVM and logistic regression. The
table summarizes the better of the two. LARS with � = 0.1
has achieved the best single-layer accuracy at 80.1%.

In Table II, we compare the performance of DSN against
deep SAE in various configurations. All DSN schemes show
improvements from their respective single-layer configura-
tions. Optimization by backpropagation over the whole net-
work is critical for deep SAE as evidenced in the accuracy
gain of 7.7%, which is significantly higher than the 2%
gain from multilayering. For DSN, multilayering improves
about 3%, and the proposed backpropagation additional 4%.
Importantly, DSN-OMP with only pretraining is already 0.7%
better than the backpropagation-finetuned deep SAE. DSN-
OMP improves by 4.7% on backpropagation whereas the
improvement is slightly less for DSN-LARS with a 4.4% gain.
Overall, we find DSN-LARS the best performer.

V. CONCLUSION

Motivated by superior feature learning performance of
single-layer sparse coding, we have presented Deep Sparse-
coded Network (DSN), a deep architecture for sparse coding.
We have discussed the benefit of DSN and described training
methods including a novel backpropagation algorithm that
effectively traverses and optimizes multiple layers of sparse
coding and max pooling.

We stress that this paper limits to report an evaluation
of DSN that confirms superior classification accuracy in a

5

A. Data processing and training for sparse coding

Instead of using the full CIFAR-10 dataset, we uniformly
sample 20,000 images and cut to five folds for cross validation.
We use four folds for training and the remaining fold for
testing. We enforce exactly 2,000 images per class. For output
layer, we have trained a 1-vs-all linear classifiers for each
of ten classes in CIFAR-10. Each datum in CIFAR-10 is a
32⇥32⇥3 color image. We consider a per-image feature vector
from densely overlapping patches drawn from a receptive field
with width w = 6 pixels and stride s = 2. Thus, each patch
(vectorized) has size N = 3 ⇥ 6 ⇥ 6 = 108. We preprocess
patches by ZCA-whitening before sparse coding. We use a
couple of different sparsity configurations for each LARS and
OMP. We configure hidden layer 1 sparse coding more densely
with � = 0.1 (regularization penalty) for LARS and S = 0.2N
(sparsity bound) for OMP. For hidden layer 2, we use � = 0.2
and S = 0.1N .

Figure 4 illustrates sparse coding and max pooling at hidden
layer 1. Each image is divided into four quadrants. For each
quadrant, there are four (pooling) groups of 9 patches. Hidden
layer 1 uses a dictionary size K

1

= 4N = 432 and max pool-
ing factor M

1

= 9. Hidden layer 1 produces {z(1)
I

, . . . , z
(4)

I

},
{z(5)

I

, . . . , z
(8)

I

}, {z(9)
I

, . . . , z
(12)

I

}, and {z(13)
I

, . . . , z
(16)

I

} (4
pooled sparse codes per quadrant), which will be passed to
hidden layer 2.

Figure 5 illustrates sparse coding and max pooling at hidden
layer 2. We use K

2

= 2K
1

= 864 and M
2

= 4. To
prevent further expansion of features, we have computed the
two averages and encoded the final per-image feature vector
�DSN = [mean(z(1)

II

, z
(2)

II

);mean(z(3)
II

, z
(4)

II

)]. Thus, the final
feature vector for DSN has a dimensionality 2K

2

= 1, 728.
For single-layer sparse coding, we have averaged z

(i)
I

’s per
quadrant and stacked them to form the final per-image feature
vector �SLSC , which also has 1,728 features.

B. Data processing and training for autoencoder

For fairness, we have matched the total number of trained
weights between the DSN and SAE schemes. Given an input
x 2 RN , an autoencoder layer [1] trains a set of encoding
weights that transforms x into the activations a 2 RH and
a set of decoding weights that recovers x̂, an estimate of
x, from a, all through backpropagation. Similar to sparse
coding, we use the encoding a as the feature vector for x. If
H < N , the autoencoder layer is forced to learn a compressed
representation of the input. Also, even when H > N (i.e.,
more hidden units than input dimension), we can still learn
meaningful features by imposing a sparsity constraint on a

such that only S ⌧ H neurons are activated. We have
experimented with both approaches and will report the best
result of the two for deep SAE.

TABLE I
AVERAGE 1-VS-ALL CLASSIFICATION ACCURACY FOR SINGLE-LAYER

SPARSE CODING AND AUTOENCODER

Classification accuracy
Autoencoder 69.8%
OMP (S = 0.1N) 75.3%
OMP (S = 0.2N) 76.9%
LARS (� = 0.2) 78.4%
LARS (� = 0.1) 80.1%

TABLE II
AVERAGE 1-VS-ALL CLASSIFICATION ACCURACY COMPARISON BETWEEN

DSN AND SAE

Classification accuracy
Deep SAE (pretraining only) 71.8%
Deep SAE (pretraining+backprop) 78.9%
DSN-OMP (pretraining only) 79.6%
DSN-OMP (pretraining+backprop) 84.3%
DSN-LARS (pretraining only) 83.1%
DSN-LARS (pretraining+backprop) 87.5%

C. Results

We report cross-validated 1-vs-all classification accuracy of
single-layer sparse coding, DSN, and deep SAE. In Table I,
we present the single-layer autoencoder and sparse coding
performances. For classification, we have used two standard,
off-the-shelf algorithms, SVM and logistic regression. The
table summarizes the better of the two. LARS with � = 0.1
has achieved the best single-layer accuracy at 80.1%.

In Table II, we compare the performance of DSN against
deep SAE in various configurations. All DSN schemes show
improvements from their respective single-layer configura-
tions. Optimization by backpropagation over the whole net-
work is critical for deep SAE as evidenced in the accuracy
gain of 7.7%, which is significantly higher than the 2%
gain from multilayering. For DSN, multilayering improves
about 3%, and the proposed backpropagation additional 4%.
Importantly, DSN-OMP with only pretraining is already 0.7%
better than the backpropagation-finetuned deep SAE. DSN-
OMP improves by 4.7% on backpropagation whereas the
improvement is slightly less for DSN-LARS with a 4.4% gain.
Overall, we find DSN-LARS the best performer.

V. CONCLUSION

Motivated by superior feature learning performance of
single-layer sparse coding, we have presented Deep Sparse-
coded Network (DSN), a deep architecture for sparse coding.
We have discussed the benefit of DSN and described training
methods including a novel backpropagation algorithm that
effectively traverses and optimizes multiple layers of sparse
coding and max pooling.

We stress that this paper limits to report an evaluation
of DSN that confirms superior classification accuracy in a

•  Sample 20,000 images uniformly from
CIFAR-10 dataset

Ø  2,000 images per class	
Ø  Five folds for cross validation

•  Preprocess patches by ZCA-whitening
before sparse coding

Conclusion
•  Introduce Deep Sparse-coded Network

(DSN), a deep architecture for sparse
coding

•  Discuss benefit and training methods of
DSN including a novel backpropagation
algorithm that effectively traverses and
optimizes multiple layers of sparse coding
and max pooling

•  Report good classification performance on
medium-sized setup with CIFAR-10

Future Work
•  Experiment with DSN in larger datasets

(CIFAR-100, Caltech-101, and Caltech-256)
•  Test in broader scope for text, sounds, and

wireless signal classification tasks

Acknowledgement

This work is supported in part by gifts from the Intel
Corporation and in part by the Naval Supply Systems Command
award under the Naval Postgraduate School Agreements No.
N00244-15-0050 and No. N00244-16- 1-0018.

2

!"#$%&'()*+,-'./+**&,'0#1&$'23'

!"#$%&'()*+,-'./+**&,'0#1&$'43'

!!!"5#$%" 5#&%" 5#!$%"

6''
"

7#5'
"))8'

!!!"

9'#$%"

1'#$%" 1'#&%" 1'#!$%"

!!!"5#!$($%" 5#!$(&%" 5#&!$%"

7#5'
"))8'

!!!"

9'#&%"

1'#!$($%" 1'#!$(&%" 1'#&!$%"

!!!"5#!!!%" 5#!!!%" 5#"#!$%"

7#5'
"))8'

!!!"

9'#"%"

1'#!!!%" 1'#!!!%" 1'#"#!$%"

: : : '

7#5'
"))8'

:::'

9''#$%"

1''#$%" 1''#&%"

: : : '

: : : '

: : : '

6'
"

1''#!&%"

9'#!&%"

7#5'
"))8'

!!!"

9''#$%"

1''#!!!%" 1''#!!!%" 1''#$#!&%": : : '

: : : '

: : : '

(8#%%+;&$%'.<=>"=>'0#1&$3'

0#1&$'4'

0#1&$'?'

@#>AB&%'C$)D'E#F'6#>#'.G,"=>'0#1&$3'

0#1&$'H'

0#1&$'2'

Fig. 1. Deep Sparse-coded Network (DSN) with four layers

from unlabeled examples. Given an example x 2 RN , sparse
coding searches for a representation y 2 RK (i.e., the feature
vector for x) while simultaneously updating the dictionary
D 2 RN⇥K of K basis vectors by

min
D,y

kx�Dyk2
2

+ �kyk
1

s.t. kdik2  1, 8i (1)

where di is ith dictionary atom in D, and � is a regularization
parameter that penalizes over the `

1

-norm, which induces a
sparse solution. With K > N , sparse coding typically trains
an overcomplete dictionary.

A more direct way to control sparsity is to regularize on
the `

0

pseudo-norm kyk
0

, describing the number of nonzero
elements in y. However, it is known to be intractable to
compute the sparsest `

0

solution in general. The approach in
Eq. (1) is called least absolute shrinkage and selection operator
(LASSO) [7], a convex relaxation of the `

0

sparse coding that
induces sparse y’s. We use least angle regression (LARS) [8]
to solve the LASSO problem. We also consider orthogonal
matching pursuit (OMP) [9], a greedy-`

0

sparse coding al-
gorithm that computes an at-most S-sparse y extremely fast
by

min
D,y

kx�Dyk2
2

s.t. kyk
0

 S. (2)

III. DEEP SPARSE-CODED NETWORK (DSN)
A. Notation

We denote input vector x, its sparse code y, and the pooled
sparse code z. An ith input vector (patch) is designated as x(i).
Sparse coding layers are the “hidden” layers of DSN. We use
subscripted Roman numerals to indicate sparse coding layers.
For example, D

I

means the first hidden layer’s dictionary. Note
that the first hidden layer is the overall layer 2. Accordingly, y

I

is the sparse code computed at the first hidden layer with the
input x and D

I

, and z

I

the pooled sparse code over multiple
y

I

’s.

!"#$%&'
()*+,-'

.))/'

0J

1J
!

2J!
3#0&$'"45''
67+**&,'3#0&$'"8'

1J–1
!

Fig. 2. DSN layering module

B. Architectural Overview

Deep Sparse-coded Network (DSN) is a feedforward net-
work built on multilayer sparse coding. In Figure 1, we present
an exemplar 4-layer DSN. This is a deep architecture since
there are two hidden layers of sparse coding, each of which can
learn corresponding level’s feature representations and train
own dictionary of basis vectors. Similar to neural network,
layers 1 and 4 are the input and output layers. The input
layer takes in vectorized patches drawn from the raw data,
which will be sparse coded and max pooled, propagating up
the layers. The output layer consists of classifiers or regressors
specific to application needs.

Figure 2 depicts a stackable layering module to build
DSN. Sparse coding and pooling units together constitute
the module. The J th hidden layer (for J � II) takes in
pooled sparse codes zJ�1

’s from the previous hidden layer and
produces yJ using dictionary DJ . Max pooling yJ ’s yields
pooled sparse code zJ that are passed as the input for hidden
layer J + 1.

C. Algorithms

Hinton et al. [11] suggested pretrain a deep architecture
with layer-by-layer unsupervised learning and finetune via
backpropagation, a supervised algorithm popularized by neu-
ral network. We explain training algorithms for DSN using the
architecture in Figure 1.

1) Pretraining via layer-by-layer sparse coding and dic-
tionary learning: DSN takes in spatially contiguous patches
from an image or temporally consecutive patches from time-
series data to make the overall feature learning mean-
ingful. Optimally, patches are preprocessed by normal-
ization and whitening. The input layer is organized as
pooling groups of M

1

patches: {x(1),x(2), . . . ,x(M1)},
{x(M1+1),x(M1+2), . . . ,x(2M1)}, · · · . Sparse coding and dic-
tionary learning at hidden layer 1 compute sparse codes y(i)

I

’s

ŷ	=	arg	miny	ǁx	–	Dyǁ22	+	λ·ρ(y)	

Reconstruc.ve	error	 Regulariza.on	

•  Greedy algorithm such as OMP can
minimize l0 pseudo-norm, λǁyǁ0

•  LASSO/LARS can be used to minimize l1-
norm, λǁyǁ1

Deep Sparse-coded Network (DSN)
4-layer DSN with two hidden layers of sparse coding, each of which can
learn corresponding level’s sparse code and train own dictionary

Training algorithms for DSN
1) Pretraining via layer-by-layer sparse
coding and dictionary learning
-  Compute sparse codes while learning

dictionary
For hidden layer I:

-  Max pooling to aggregate sparse codes

-  Pooled sparse code is passed to next layer

2) Training classifiers at the output layer
-  Train weights in classifier/regressor

3) Backpropagation
-  Compute classifier error

-  Compute updated pooled sparse codes

-  Estimate sparse code via putback

Ø  Updated pooled sparse codes
are put back to locations at
the original sparse codes

- Down-propagate for
all hidden layers
- Up-propagate using
Steps 1&2

3

while learning D

I

jointly

{x(1), . . . ,x(M1)} DI�! {y(1)

I

, . . . ,y
(M1)

I

}

{x(M1+1), . . . ,x(2M1)} DI�! {y(M1+1)

I

, . . . ,y
(2M1)

I

}
...

Max pooling at hidden layer 1 aggregates multiple sparse
codes

{y(1)

I

, . . . ,y
(M1)

I

} max pool�! z

(1)

I

...

Hidden layer 1 passes the pooled sparse codes {z(1)
I

, z
(2)

I

, . . . }
to hidden layer 2. Sparse coding and dictionary learning
continue at hidden layer 2 using z

I

’s as input

{z(1)
I

, . . . , z
(M2)

I

} DII�! {y(1)

II

, . . . ,y
(M2)

II

}
...

Pooling groups at hidden layer 2 consist of M
2

pooled sparse
codes from hidden layer 1. Max pooling by M

2

yields

{y(1)

II

, . . . ,y
(M2)

II

} max pool�! z

(1)

II

...

Pretraining completes by producing dictionaries {D
I

2
RN⇥K1 ,D

II

2 RK1⇥K2} and the highest hidden layer’s
pooled sparse codes {z(1)

II

, z
(2)

II

, . . . } with each z

(j)
II

2 RK2 .
Max pooling is crucial for our DSN architecture. It reduces

the total number of features by aggregating sparse codes to
their max elements. More importantly, max pooling serves
as a nonlinear activation function in neural network. Without
nonlinear pooling, multilayering has no effect: x = D

I

y

I

and
y

I

= D

II

y

II

implies x = D

I

D

II

y

II

⇡ Dy

II

because linear
cascade of dictionaries is simply D ⇡ D

I

D

II

regardless of
total number of layers.

2) Training classifiers at output layer: DSN learns each
layer’s dictionary greedily during pretraining. The resulting
highest hidden layer output z

II

is already a powerful feature
for classification tasks. Suppose DSN output layer predicts a
class label l̂ = hw(�), where hw(.) is a standard linear classi-
fier or logistic/softmax regression that takes a feature encoding
� as input. Note that � is encoded on z

II

, but depends on DSN
setup. For instance, we may have � = [z(1)

II

; z

(2)

II

; z

(3)

II

; z

(4)

II

]
if the highest hidden layer yields four pooled sparse codes per
training example.

For simplicity, assume � = z

II

. A DSN classifier then
computes l̂ = hw(z

II

) = w

>· z
II

+ w
0

. We train the classifier
weight w = [w

1

. . . wK2]
> and the bias w

0

using labeled
examples {(X

1

, l
1

), . . . , (Xm, lm)} in a supervised process by
filling the input layer with patches from each example—the

ith example Xi consists of {x(1)

i ,x
(2)

i , . . . }, where x

(k)
i is the

kth patch—and working up the layers to compute z

II

’s that
are used to train the DSN classifiers.

3) Backpropagation: By now, we have the DSN output
layer with trained classifiers, and this is a good working
pipeline for discriminative tasks. However, we might further
improve the performance of DSN by optimizing the whole
network in a supervised setting. Is backpropagation possible
for DSN?

DSN backpropagation is quite different from conventional
neural network or deep learning architectures. We explain our
backpropagation idea again using the example DSN in Fig-
ure 1. The complete feedforward path of DSN is summarized
by

x

DI�! y

I

max pool�! z

I

DII�! y

II

max pool�! z

II

classify�! l̂

We define the loss or cost function for the DSN classification

J(z
II

) =
1

2

���l̂ � l
���
2

=
1

2
khw(z

II

)� lk2 (3)

Our objective now is to propagate the loss value down the
reverse path and adjust sparse codes. Fixing classifier weights
w, we back-estimate optimal z

⇤
II

that minimizes J(z
II

). To
do so, we perform gradient descent learning with J(z

II

) that
adjusts each element of vector z

II

by

z
II,k := z

II,k � ↵
@J(z

II

)

@z
II,k

(4)

where ↵ is the learning rate, z
II

= [z
II,1 z

II,2 . . . z
II,K2]

>,
and K

2

is the number of basis vectors in dictionary D

II

for
hidden layer 2. Since an optimal z⇤

II

is estimated by correcting
z

II

, the partial derivative is with respect to each element z
II,k

@J(z
II

)

@z
II,k

= [hw(z
II

)� l)]
@h(z

II

)

@z
II,k

= [hw(z
II

)� l]wk

Here, note our linear classifier hw(z
II

) = w
0

+ w
1

· z
II,1 +

· · · + wK2 · z
II,K2 . Therefore, the following gradient descent

rule adjusts z

II

to z

⇤
II

z
II,k := z

II,k + ↵ [l � hw(z
II

)]wk (5)

This update rule is intuitive because it down-propagates the
error [l � hw(z

II

)] proportionately to the contribution from
each z

II,k and adjusts accordingly.
Using the corrected z

⇤
II

, we can correct the unpooled original
y

II

’s to optimal y⇤
II

’s by a procedure called putback illustrated
in Figure 3. At hidden layer 2, we have performed max pooling
by M

2

. For putback, we need to keep the original M
2

y

II

’s
that have resulted z

II

in memory so that corrected values at z⇤
II

are put back to corresponding locations at the original sparse
codes y

II

’s and yield error-adjusted y

⇤
II

’s.
With y

⇤
II

, going down a layer is straightforward. By sparse
coding relation, we just compute z

⇤
I

= D

II

y

⇤
II

. Next, we do

3

while learning D

I

jointly

{x(1), . . . ,x(M1)} DI�! {y(1)

I

, . . . ,y
(M1)

I

}

{x(M1+1), . . . ,x(2M1)} DI�! {y(M1+1)

I

, . . . ,y
(2M1)

I

}
...

Max pooling at hidden layer 1 aggregates multiple sparse
codes

{y(1)

I

, . . . ,y
(M1)

I

} max pool�! z

(1)

I

...

Hidden layer 1 passes the pooled sparse codes {z(1)
I

, z
(2)

I

, . . . }
to hidden layer 2. Sparse coding and dictionary learning
continue at hidden layer 2 using z

I

’s as input

{z(1)
I

, . . . , z
(M2)

I

} DII�! {y(1)

II

, . . . ,y
(M2)

II

}
...

Pooling groups at hidden layer 2 consist of M
2

pooled sparse
codes from hidden layer 1. Max pooling by M

2

yields

{y(1)

II

, . . . ,y
(M2)

II

} max pool�! z

(1)

II

...

Pretraining completes by producing dictionaries {D
I

2
RN⇥K1 ,D

II

2 RK1⇥K2} and the highest hidden layer’s
pooled sparse codes {z(1)

II

, z
(2)

II

, . . . } with each z

(j)
II

2 RK2 .
Max pooling is crucial for our DSN architecture. It reduces

the total number of features by aggregating sparse codes to
their max elements. More importantly, max pooling serves
as a nonlinear activation function in neural network. Without
nonlinear pooling, multilayering has no effect: x = D

I

y

I

and
y

I

= D

II

y

II

implies x = D

I

D

II

y

II

⇡ Dy

II

because linear
cascade of dictionaries is simply D ⇡ D

I

D

II

regardless of
total number of layers.

2) Training classifiers at output layer: DSN learns each
layer’s dictionary greedily during pretraining. The resulting
highest hidden layer output z

II

is already a powerful feature
for classification tasks. Suppose DSN output layer predicts a
class label l̂ = hw(�), where hw(.) is a standard linear classi-
fier or logistic/softmax regression that takes a feature encoding
� as input. Note that � is encoded on z

II

, but depends on DSN
setup. For instance, we may have � = [z(1)

II

; z

(2)

II

; z

(3)

II

; z

(4)

II

]
if the highest hidden layer yields four pooled sparse codes per
training example.

For simplicity, assume � = z

II

. A DSN classifier then
computes l̂ = hw(z

II

) = w

>· z
II

+ w
0

. We train the classifier
weight w = [w

1

. . . wK2]
> and the bias w

0

using labeled
examples {(X

1

, l
1

), . . . , (Xm, lm)} in a supervised process by
filling the input layer with patches from each example—the

ith example Xi consists of {x(1)

i ,x
(2)

i , . . . }, where x

(k)
i is the

kth patch—and working up the layers to compute z

II

’s that
are used to train the DSN classifiers.

3) Backpropagation: By now, we have the DSN output
layer with trained classifiers, and this is a good working
pipeline for discriminative tasks. However, we might further
improve the performance of DSN by optimizing the whole
network in a supervised setting. Is backpropagation possible
for DSN?

DSN backpropagation is quite different from conventional
neural network or deep learning architectures. We explain our
backpropagation idea again using the example DSN in Fig-
ure 1. The complete feedforward path of DSN is summarized
by

x

DI�! y

I

max pool�! z

I

DII�! y

II

max pool�! z

II

classify�! l̂

We define the loss or cost function for the DSN classification

J(z
II

) =
1

2

���l̂ � l
���
2

=
1

2
khw(z

II

)� lk2 (3)

Our objective now is to propagate the loss value down the
reverse path and adjust sparse codes. Fixing classifier weights
w, we back-estimate optimal z

⇤
II

that minimizes J(z
II

). To
do so, we perform gradient descent learning with J(z

II

) that
adjusts each element of vector z

II

by

z
II,k := z

II,k � ↵
@J(z

II

)

@z
II,k

(4)

where ↵ is the learning rate, z
II

= [z
II,1 z

II,2 . . . z
II,K2]

>,
and K

2

is the number of basis vectors in dictionary D

II

for
hidden layer 2. Since an optimal z⇤

II

is estimated by correcting
z

II

, the partial derivative is with respect to each element z
II,k

@J(z
II

)

@z
II,k

= [hw(z
II

)� l)]
@h(z

II

)

@z
II,k

= [hw(z
II

)� l]wk

Here, note our linear classifier hw(z
II

) = w
0

+ w
1

· z
II,1 +

· · · + wK2 · z
II,K2 . Therefore, the following gradient descent

rule adjusts z

II

to z

⇤
II

z
II,k := z

II,k + ↵ [l � hw(z
II

)]wk (5)

This update rule is intuitive because it down-propagates the
error [l � hw(z

II

)] proportionately to the contribution from
each z

II,k and adjusts accordingly.
Using the corrected z

⇤
II

, we can correct the unpooled original
y

II

’s to optimal y⇤
II

’s by a procedure called putback illustrated
in Figure 3. At hidden layer 2, we have performed max pooling
by M

2

. For putback, we need to keep the original M
2

y

II

’s
that have resulted z

II

in memory so that corrected values at z⇤
II

are put back to corresponding locations at the original sparse
codes y

II

’s and yield error-adjusted y

⇤
II

’s.
With y

⇤
II

, going down a layer is straightforward. By sparse
coding relation, we just compute z

⇤
I

= D

II

y

⇤
II

. Next, we do

3

while learning D

I

jointly

{x(1), . . . ,x(M1)} DI�! {y(1)

I

, . . . ,y
(M1)

I

}

{x(M1+1), . . . ,x(2M1)} DI�! {y(M1+1)

I

, . . . ,y
(2M1)

I

}
...

Max pooling at hidden layer 1 aggregates multiple sparse
codes

{y(1)

I

, . . . ,y
(M1)

I

} max pool�! z

(1)

I

...

Hidden layer 1 passes the pooled sparse codes {z(1)
I

, z
(2)

I

, . . . }
to hidden layer 2. Sparse coding and dictionary learning
continue at hidden layer 2 using z

I

’s as input

{z(1)
I

, . . . , z
(M2)

I

} DII�! {y(1)

II

, . . . ,y
(M2)

II

}
...

Pooling groups at hidden layer 2 consist of M
2

pooled sparse
codes from hidden layer 1. Max pooling by M

2

yields

{y(1)

II

, . . . ,y
(M2)

II

} max pool�! z

(1)

II

...

Pretraining completes by producing dictionaries {D
I

2
RN⇥K1 ,D

II

2 RK1⇥K2} and the highest hidden layer’s
pooled sparse codes {z(1)

II

, z
(2)

II

, . . . } with each z

(j)
II

2 RK2 .
Max pooling is crucial for our DSN architecture. It reduces

the total number of features by aggregating sparse codes to
their max elements. More importantly, max pooling serves
as a nonlinear activation function in neural network. Without
nonlinear pooling, multilayering has no effect: x = D

I

y

I

and
y

I

= D

II

y

II

implies x = D

I

D

II

y

II

⇡ Dy

II

because linear
cascade of dictionaries is simply D ⇡ D

I

D

II

regardless of
total number of layers.

2) Training classifiers at output layer: DSN learns each
layer’s dictionary greedily during pretraining. The resulting
highest hidden layer output z

II

is already a powerful feature
for classification tasks. Suppose DSN output layer predicts a
class label l̂ = hw(�), where hw(.) is a standard linear classi-
fier or logistic/softmax regression that takes a feature encoding
� as input. Note that � is encoded on z

II

, but depends on DSN
setup. For instance, we may have � = [z(1)

II

; z

(2)

II

; z

(3)

II

; z

(4)

II

]
if the highest hidden layer yields four pooled sparse codes per
training example.

For simplicity, assume � = z

II

. A DSN classifier then
computes l̂ = hw(z

II

) = w

>· z
II

+ w
0

. We train the classifier
weight w = [w

1

. . . wK2]
> and the bias w

0

using labeled
examples {(X

1

, l
1

), . . . , (Xm, lm)} in a supervised process by
filling the input layer with patches from each example—the

ith example Xi consists of {x(1)

i ,x
(2)

i , . . . }, where x

(k)
i is the

kth patch—and working up the layers to compute z

II

’s that
are used to train the DSN classifiers.

3) Backpropagation: By now, we have the DSN output
layer with trained classifiers, and this is a good working
pipeline for discriminative tasks. However, we might further
improve the performance of DSN by optimizing the whole
network in a supervised setting. Is backpropagation possible
for DSN?

DSN backpropagation is quite different from conventional
neural network or deep learning architectures. We explain our
backpropagation idea again using the example DSN in Fig-
ure 1. The complete feedforward path of DSN is summarized
by

x

DI�! y

I

max pool�! z

I

DII�! y

II

max pool�! z

II

classify�! l̂

We define the loss or cost function for the DSN classification

J(z
II

) =
1

2

���l̂ � l
���
2

=
1

2
khw(z

II

)� lk2 (3)

Our objective now is to propagate the loss value down the
reverse path and adjust sparse codes. Fixing classifier weights
w, we back-estimate optimal z

⇤
II

that minimizes J(z
II

). To
do so, we perform gradient descent learning with J(z

II

) that
adjusts each element of vector z

II

by

z
II,k := z

II,k � ↵
@J(z

II

)

@z
II,k

(4)

where ↵ is the learning rate, z
II

= [z
II,1 z

II,2 . . . z
II,K2]

>,
and K

2

is the number of basis vectors in dictionary D

II

for
hidden layer 2. Since an optimal z⇤

II

is estimated by correcting
z

II

, the partial derivative is with respect to each element z
II,k

@J(z
II

)

@z
II,k

= [hw(z
II

)� l)]
@h(z

II

)

@z
II,k

= [hw(z
II

)� l]wk

Here, note our linear classifier hw(z
II

) = w
0

+ w
1

· z
II,1 +

· · · + wK2 · z
II,K2 . Therefore, the following gradient descent

rule adjusts z

II

to z

⇤
II

z
II,k := z

II,k + ↵ [l � hw(z
II

)]wk (5)

This update rule is intuitive because it down-propagates the
error [l � hw(z

II

)] proportionately to the contribution from
each z

II,k and adjusts accordingly.
Using the corrected z

⇤
II

, we can correct the unpooled original
y

II

’s to optimal y⇤
II

’s by a procedure called putback illustrated
in Figure 3. At hidden layer 2, we have performed max pooling
by M

2

. For putback, we need to keep the original M
2

y

II

’s
that have resulted z

II

in memory so that corrected values at z⇤
II

are put back to corresponding locations at the original sparse
codes y

II

’s and yield error-adjusted y

⇤
II

’s.
With y

⇤
II

, going down a layer is straightforward. By sparse
coding relation, we just compute z

⇤
I

= D

II

y

⇤
II

. Next, we do

3

while learning D

I

jointly

{x(1), . . . ,x(M1)} DI�! {y(1)

I

, . . . ,y
(M1)

I

}

{x(M1+1), . . . ,x(2M1)} DI�! {y(M1+1)

I

, . . . ,y
(2M1)

I

}
...

Max pooling at hidden layer 1 aggregates multiple sparse
codes

{y(1)

I

, . . . ,y
(M1)

I

} max pool�! z

(1)

I

...

Hidden layer 1 passes the pooled sparse codes {z(1)
I

, z
(2)

I

, . . . }
to hidden layer 2. Sparse coding and dictionary learning
continue at hidden layer 2 using z

I

’s as input

{z(1)
I

, . . . , z
(M2)

I

} DII�! {y(1)

II

, . . . ,y
(M2)

II

}
...

Pooling groups at hidden layer 2 consist of M
2

pooled sparse
codes from hidden layer 1. Max pooling by M

2

yields

{y(1)

II

, . . . ,y
(M2)

II

} max pool�! z

(1)

II

...

Pretraining completes by producing dictionaries {D
I

2
RN⇥K1 ,D

II

2 RK1⇥K2} and the highest hidden layer’s
pooled sparse codes {z(1)

II

, z
(2)

II

, . . . } with each z

(j)
II

2 RK2 .
Max pooling is crucial for our DSN architecture. It reduces

the total number of features by aggregating sparse codes to
their max elements. More importantly, max pooling serves
as a nonlinear activation function in neural network. Without
nonlinear pooling, multilayering has no effect: x = D

I

y

I

and
y

I

= D

II

y

II

implies x = D

I

D

II

y

II

⇡ Dy

II

because linear
cascade of dictionaries is simply D ⇡ D

I

D

II

regardless of
total number of layers.

2) Training classifiers at output layer: DSN learns each
layer’s dictionary greedily during pretraining. The resulting
highest hidden layer output z

II

is already a powerful feature
for classification tasks. Suppose DSN output layer predicts a
class label l̂ = hw(�), where hw(.) is a standard linear classi-
fier or logistic/softmax regression that takes a feature encoding
� as input. Note that � is encoded on z

II

, but depends on DSN
setup. For instance, we may have � = [z(1)

II

; z

(2)

II

; z

(3)

II

; z

(4)

II

]
if the highest hidden layer yields four pooled sparse codes per
training example.

For simplicity, assume � = z

II

. A DSN classifier then
computes l̂ = hw(z

II

) = w

>· z
II

+ w
0

. We train the classifier
weight w = [w

1

. . . wK2]
> and the bias w

0

using labeled
examples {(X

1

, l
1

), . . . , (Xm, lm)} in a supervised process by
filling the input layer with patches from each example—the

ith example Xi consists of {x(1)

i ,x
(2)

i , . . . }, where x

(k)
i is the

kth patch—and working up the layers to compute z

II

’s that
are used to train the DSN classifiers.

3) Backpropagation: By now, we have the DSN output
layer with trained classifiers, and this is a good working
pipeline for discriminative tasks. However, we might further
improve the performance of DSN by optimizing the whole
network in a supervised setting. Is backpropagation possible
for DSN?

DSN backpropagation is quite different from conventional
neural network or deep learning architectures. We explain our
backpropagation idea again using the example DSN in Fig-
ure 1. The complete feedforward path of DSN is summarized
by

x

DI�! y

I

max pool�! z

I

DII�! y

II

max pool�! z

II

classify�! l̂

We define the loss or cost function for the DSN classification

J(z
II

) =
1

2

���l̂ � l
���
2

=
1

2
khw(z

II

)� lk2 (3)

Our objective now is to propagate the loss value down the
reverse path and adjust sparse codes. Fixing classifier weights
w, we back-estimate optimal z

⇤
II

that minimizes J(z
II

). To
do so, we perform gradient descent learning with J(z

II

) that
adjusts each element of vector z

II

by

z
II,k := z

II,k � ↵
@J(z

II

)

@z
II,k

(4)

where ↵ is the learning rate, z
II

= [z
II,1 z

II,2 . . . z
II,K2]

>,
and K

2

is the number of basis vectors in dictionary D

II

for
hidden layer 2. Since an optimal z⇤

II

is estimated by correcting
z

II

, the partial derivative is with respect to each element z
II,k

@J(z
II

)

@z
II,k

= [hw(z
II

)� l)]
@h(z

II

)

@z
II,k

= [hw(z
II

)� l]wk

Here, note our linear classifier hw(z
II

) = w
0

+ w
1

· z
II,1 +

· · · + wK2 · z
II,K2 . Therefore, the following gradient descent

rule adjusts z

II

to z

⇤
II

z
II,k := z

II,k + ↵ [l � hw(z
II

)]wk (5)

This update rule is intuitive because it down-propagates the
error [l � hw(z

II

)] proportionately to the contribution from
each z

II,k and adjusts accordingly.
Using the corrected z

⇤
II

, we can correct the unpooled original
y

II

’s to optimal y⇤
II

’s by a procedure called putback illustrated
in Figure 3. At hidden layer 2, we have performed max pooling
by M

2

. For putback, we need to keep the original M
2

y

II

’s
that have resulted z

II

in memory so that corrected values at z⇤
II

are put back to corresponding locations at the original sparse
codes y

II

’s and yield error-adjusted y

⇤
II

’s.
With y

⇤
II

, going down a layer is straightforward. By sparse
coding relation, we just compute z

⇤
I

= D

II

y

⇤
II

. Next, we do

4

. . . "

Corrected(values(at(pooled((
sparse(code(are(put(back(to((
original(loca4ons(at((
corresponding(sparse(codes(y(

z*(

Putback(yields(corrected((
sparse(codes(y*’s((

Fig. 3. Putback corrects sparse codes y from z⇤

another putback at hidden layer 1. Using z

⇤
I

, we obtain y

⇤
I

’s.
Each pooling group at hidden layer 1 originally has M

1

y

I

’s
that need to be saved in memory.

With y

⇤
I

’s, we should now correct D

I

, not x, because it
does not make sense to correct given data input. Hence, down-
propagation of the error for DSN stops here, and we up-
propagate corrected sparse codes to finetune the dictionaries
and classifier weights. We consider two methods to adjust basis
vectors of the dictionaries. First method is to use rank-1 update
in batches. The idea is to compute the residual matrix that
isolates a contribution by each basis vector only. We update
each basis vector iteratively with the first principle component
computed via singular value decomposition of the residual
(i.e., the first column of matrix U). This method is also used
in the inner-loop of K-SVD [12].

Our second method uses online gradient descent. We define
the loss function with respect to D

I

J(D
I

) =
1

2
kD

I

y

⇤
I

� xk2
2

(6)

Adjusting D

I

requires to solve the following optimization
problem given examples (x,y⇤

I

)

min
dI,k

J(D
I

) s.t. kd
I,kk2

2

= 1 8k (7)

where d

I,k is the kth basis vector in D

I

. Taking the partial
derivative with respect to d

I,k yields

@J(D
I

)

@d
I,k

= (D
I

y

⇤
I

� x) y⇤
I,k

where y

⇤
I

=
⇥
y⇤
I,1 . . . y⇤

I,K1

⇤> and y

I

= [y
I,1 . . . y

I,K1]
>.

We obtain the update rule to adjust D
I

by gradient descent

d

I,k := d

I,k � �(D
I

y

⇤
I

� x) y⇤
I,k (8)

We denote the corrected dictionary D

⇤
I

. We redo sparse coding
at hidden layer 1 with D

⇤
I

followed by max pooling. Similarly
at hidden layer 2, we update D

II

to D

⇤
II

by

d

II,k := d

II,k � �(D
II

y

⇤
II

� z

†
I

) y⇤
II,k (9)

where z

†
I

is the pooled sparse code over M
1

y

†
I

’s from sparse
coding redone with D

⇤
I

. Using corrected dictionary D

⇤
II

, we
also redo sparse coding and max pooling at hidden layer 2. The
resulting pooled sparse codes z

†
II

are the output of the highest
hidden layer, which will be used to retrain the classifier hw.
All of the steps just described are a single iteration of DSN
backpropagation. We run multiple iterations until convergence.

The corrections made during down-propagation for DSN
backpropagation are summarized by

z

II

GD�! z

⇤
II

putback�! y

⇤
II

DII�! z

⇤
I

putback�! y

⇤
I

.

The corrections by up-propagation follow

D
I

GD�! D⇤
I

SC�! y†
I

max pool�! z†
I

GD�! D⇤
II

SC�! y†
II

max pool�! z†
II

GD�! hw

where GD stands for gradient descent, and SC sparse coding.
We present the backpropagation algorithm for general L-layer
DSN in Algorithm 1.

Algorithm 1 DSN backpropagation
require Pretrained {D

I

,D
II

, . . . ,DL�2

} and classifier hw

input Labeled training examples {(X
1

, l
1

), . . . , (Xm, lm)}
output Fine-tuned {D⇤

I

,D⇤
II

, . . . ,D⇤
L�2

} and classifier h⇤
w

1: repeat
2: subalgorithm Down-propagation
3: for J := L� 2 to I
4: if J == L� 2
5: Compute classifier error ✏(i) = l(i) � hw(z

(i)
J

) 8i
6: Compute z

⇤(i)
J

by z
(i)
J,k:=z

(i)
J,k + ↵ · ✏(i) · wk 8i, k

7: else
8: Compute z

⇤(i)
J

= D
J+1

y
⇤(i)
J+1

8i
9: end

10: Estimate y
⇤(i)
J

from z
⇤(i)
J

via putback 8i
11: end
12: end
13: subalgorithm Up-propagation
14: for J := I to L� 2
15: if J == I
16: Compute D⇤

I

by Eq. (8)
17: Compute y

†(i)
I

by sparse coding with D⇤
I

8i
18: Compute z

†(i)
I

by max pooling 8i
19: else
20: Compute D⇤

J

by Eq. (9)
21: Compute y

†(i)
J

by sparse coding with D⇤
J

8i
22: Compute z

†(i)
J

by max pooling 8i
23: end
24: end
25: Retrain classifier hw with {z†(i)L�2

, l(i)} 8i
26: end
27: until converged

IV. EXPERIMENTS

We present a comparative performance analysis of single-
layer sparse coding, deep stacked autoencoder (SAE) [13],
and DSN on the multi-class image classification task using
CIFAR-10. Both SAE and DSN have 4 layers.

4

. . . "

Corrected(values(at(pooled((
sparse(code(are(put(back(to((
original(loca4ons(at((
corresponding(sparse(codes(y(

z*(

Putback(yields(corrected((
sparse(codes(y*’s((

Fig. 3. Putback corrects sparse codes y from z⇤

another putback at hidden layer 1. Using z

⇤
I

, we obtain y

⇤
I

’s.
Each pooling group at hidden layer 1 originally has M

1

y

I

’s
that need to be saved in memory.

With y

⇤
I

’s, we should now correct D

I

, not x, because it
does not make sense to correct given data input. Hence, down-
propagation of the error for DSN stops here, and we up-
propagate corrected sparse codes to finetune the dictionaries
and classifier weights. We consider two methods to adjust basis
vectors of the dictionaries. First method is to use rank-1 update
in batches. The idea is to compute the residual matrix that
isolates a contribution by each basis vector only. We update
each basis vector iteratively with the first principle component
computed via singular value decomposition of the residual
(i.e., the first column of matrix U). This method is also used
in the inner-loop of K-SVD [12].

Our second method uses online gradient descent. We define
the loss function with respect to D

I

J(D
I

) =
1

2
kD

I

y

⇤
I

� xk2
2

(6)

Adjusting D

I

requires to solve the following optimization
problem given examples (x,y⇤

I

)

min
dI,k

J(D
I

) s.t. kd
I,kk2

2

= 1 8k (7)

where d

I,k is the kth basis vector in D

I

. Taking the partial
derivative with respect to d

I,k yields

@J(D
I

)

@d
I,k

= (D
I

y

⇤
I

� x) y⇤
I,k

where y

⇤
I

=
⇥
y⇤
I,1 . . . y⇤

I,K1

⇤> and y

I

= [y
I,1 . . . y

I,K1]
>.

We obtain the update rule to adjust D
I

by gradient descent

d

I,k := d

I,k � �(D
I

y

⇤
I

� x) y⇤
I,k (8)

We denote the corrected dictionary D

⇤
I

. We redo sparse coding
at hidden layer 1 with D

⇤
I

followed by max pooling. Similarly
at hidden layer 2, we update D

II

to D

⇤
II

by

d

II,k := d

II,k � �(D
II

y

⇤
II

� z

†
I

) y⇤
II,k (9)

where z

†
I

is the pooled sparse code over M
1

y

†
I

’s from sparse
coding redone with D

⇤
I

. Using corrected dictionary D

⇤
II

, we
also redo sparse coding and max pooling at hidden layer 2. The
resulting pooled sparse codes z

†
II

are the output of the highest
hidden layer, which will be used to retrain the classifier hw.
All of the steps just described are a single iteration of DSN
backpropagation. We run multiple iterations until convergence.

The corrections made during down-propagation for DSN
backpropagation are summarized by

z

II

GD�! z

⇤
II

putback�! y

⇤
II

DII�! z

⇤
I

putback�! y

⇤
I

.

The corrections by up-propagation follow

D
I

GD�! D⇤
I

SC�! y†
I

max pool�! z†
I

GD�! D⇤
II

SC�! y†
II

max pool�! z†
II

GD�! hw

where GD stands for gradient descent, and SC sparse coding.
We present the backpropagation algorithm for general L-layer
DSN in Algorithm 1.

Algorithm 1 DSN backpropagation
require Pretrained {D

I

,D
II

, . . . ,DL�2

} and classifier hw

input Labeled training examples {(X
1

, l
1

), . . . , (Xm, lm)}
output Fine-tuned {D⇤

I

,D⇤
II

, . . . ,D⇤
L�2

} and classifier h⇤
w

1: repeat
2: subalgorithm Down-propagation
3: for J := L� 2 to I
4: if J == L� 2
5: Compute classifier error ✏(i) = l(i) � hw(z

(i)
J

) 8i
6: Compute z

⇤(i)
J

by z
(i)
J,k:=z

(i)
J,k + ↵ · ✏(i) · wk 8i, k

7: else
8: Compute z

⇤(i)
J

= D
J+1

y
⇤(i)
J+1

8i
9: end

10: Estimate y
⇤(i)
J

from z
⇤(i)
J

via putback 8i
11: end
12: end
13: subalgorithm Up-propagation
14: for J := I to L� 2
15: if J == I
16: Compute D⇤

I

by Eq. (8)
17: Compute y

†(i)
I

by sparse coding with D⇤
I

8i
18: Compute z

†(i)
I

by max pooling 8i
19: else
20: Compute D⇤

J

by Eq. (9)
21: Compute y

†(i)
J

by sparse coding with D⇤
J

8i
22: Compute z

†(i)
J

by max pooling 8i
23: end
24: end
25: Retrain classifier hw with {z†(i)L�2

, l(i)} 8i
26: end
27: until converged

IV. EXPERIMENTS

We present a comparative performance analysis of single-
layer sparse coding, deep stacked autoencoder (SAE) [13],
and DSN on the multi-class image classification task using
CIFAR-10. Both SAE and DSN have 4 layers.

4

. . . "

Corrected(values(at(pooled((
sparse(code(are(put(back(to((
original(loca4ons(at((
corresponding(sparse(codes(y(

z*(

Putback(yields(corrected((
sparse(codes(y*’s((

Fig. 3. Putback corrects sparse codes y from z⇤

another putback at hidden layer 1. Using z

⇤
I

, we obtain y

⇤
I

’s.
Each pooling group at hidden layer 1 originally has M

1

y

I

’s
that need to be saved in memory.

With y

⇤
I

’s, we should now correct D

I

, not x, because it
does not make sense to correct given data input. Hence, down-
propagation of the error for DSN stops here, and we up-
propagate corrected sparse codes to finetune the dictionaries
and classifier weights. We consider two methods to adjust basis
vectors of the dictionaries. First method is to use rank-1 update
in batches. The idea is to compute the residual matrix that
isolates a contribution by each basis vector only. We update
each basis vector iteratively with the first principle component
computed via singular value decomposition of the residual
(i.e., the first column of matrix U). This method is also used
in the inner-loop of K-SVD [12].

Our second method uses online gradient descent. We define
the loss function with respect to D

I

J(D
I

) =
1

2
kD

I

y

⇤
I

� xk2
2

(6)

Adjusting D

I

requires to solve the following optimization
problem given examples (x,y⇤

I

)

min
dI,k

J(D
I

) s.t. kd
I,kk2

2

= 1 8k (7)

where d

I,k is the kth basis vector in D

I

. Taking the partial
derivative with respect to d

I,k yields

@J(D
I

)

@d
I,k

= (D
I

y

⇤
I

� x) y⇤
I,k

where y

⇤
I

=
⇥
y⇤
I,1 . . . y⇤

I,K1

⇤> and y

I

= [y
I,1 . . . y

I,K1]
>.

We obtain the update rule to adjust D
I

by gradient descent

d

I,k := d

I,k � �(D
I

y

⇤
I

� x) y⇤
I,k (8)

We denote the corrected dictionary D

⇤
I

. We redo sparse coding
at hidden layer 1 with D

⇤
I

followed by max pooling. Similarly
at hidden layer 2, we update D

II

to D

⇤
II

by

d

II,k := d

II,k � �(D
II

y

⇤
II

� z

†
I

) y⇤
II,k (9)

where z

†
I

is the pooled sparse code over M
1

y

†
I

’s from sparse
coding redone with D

⇤
I

. Using corrected dictionary D

⇤
II

, we
also redo sparse coding and max pooling at hidden layer 2. The
resulting pooled sparse codes z

†
II

are the output of the highest
hidden layer, which will be used to retrain the classifier hw.
All of the steps just described are a single iteration of DSN
backpropagation. We run multiple iterations until convergence.

The corrections made during down-propagation for DSN
backpropagation are summarized by

z

II

GD�! z

⇤
II

putback�! y

⇤
II

DII�! z

⇤
I

putback�! y

⇤
I

.

The corrections by up-propagation follow

D
I

GD�! D⇤
I

SC�! y†
I

max pool�! z†
I

GD�! D⇤
II

SC�! y†
II

max pool�! z†
II

GD�! hw

where GD stands for gradient descent, and SC sparse coding.
We present the backpropagation algorithm for general L-layer
DSN in Algorithm 1.

Algorithm 1 DSN backpropagation
require Pretrained {D

I

,D
II

, . . . ,DL�2

} and classifier hw

input Labeled training examples {(X
1

, l
1

), . . . , (Xm, lm)}
output Fine-tuned {D⇤

I

,D⇤
II

, . . . ,D⇤
L�2

} and classifier h⇤
w

1: repeat
2: subalgorithm Down-propagation
3: for J := L� 2 to I
4: if J == L� 2
5: Compute classifier error ✏(i) = l(i) � hw(z

(i)
J

) 8i
6: Compute z

⇤(i)
J

by z
(i)
J,k:=z

(i)
J,k + ↵ · ✏(i) · wk 8i, k

7: else
8: Compute z

⇤(i)
J

= D
J+1

y
⇤(i)
J+1

8i
9: end

10: Estimate y
⇤(i)
J

from z
⇤(i)
J

via putback 8i
11: end
12: end
13: subalgorithm Up-propagation
14: for J := I to L� 2
15: if J == I
16: Compute D⇤

I

by Eq. (8)
17: Compute y

†(i)
I

by sparse coding with D⇤
I

8i
18: Compute z

†(i)
I

by max pooling 8i
19: else
20: Compute D⇤

J

by Eq. (9)
21: Compute y

†(i)
J

by sparse coding with D⇤
J

8i
22: Compute z

†(i)
J

by max pooling 8i
23: end
24: end
25: Retrain classifier hw with {z†(i)L�2

, l(i)} 8i
26: end
27: until converged

IV. EXPERIMENTS

We present a comparative performance analysis of single-
layer sparse coding, deep stacked autoencoder (SAE) [13],
and DSN on the multi-class image classification task using
CIFAR-10. Both SAE and DSN have 4 layers.

*S:	number	of	non-zero	items	

