BranchyNet: Fast Inference via Early Exiting
from Deep Neural Networks

ICPR 2016

Surat Teerapittayanon
Brad McDanel
H. T. Kung

Harvard John A. Paulson School of Engineering and Applied Sciences

OUTLINE

m Motivation and Background Linear
m Trend towards deeper networks Lm'ear
m Auxiliary network structures (GooglLeNet) i
C 3x3
m BranchyNet i
m Architecture Conv 3x8
m Training i_-_,m
m Inference
) Conv 3x3
m Experimental Results i
Ci
m Future Work o 50
m Conclusion
Conv 5x5
|

BranchyNet with 3 exits

TREND TOWARDS DEEPER NETWORKS

28.2

\ 16.4

\ 11%7,

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
Accuracy vs. Depth (ILSVRC workshop - Kaiming He)

AUXILIARY NETWORKS

DepthConcat

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

Conv Conv
1x1+1(S) [l 1x1+1(S)

DepthConcat

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S*

Conv
1x1+1(S)

[
3x3+1(S]

[Conv AveragePool
1x1+1(5) il 1x1+1(S) 5x5+3(V)
]

Auxiliary

DepthConcat Network

Section of GoogleNet

m GoogleNet introduces auxiliary
networks

m Provide regularization to main
network

m Improves accuracy ~ 1%

m Removed after training

m Only main network is used during
inference

m Can we leverage auxiliary networks to
address inference runtime of deeper
networks?

BRANCHYNET

m Easier input samples require lower

level features for correct classification onain
m Harder input samples require higher i-_“}-““{
level features H E
m Use early exit branches (auxiliary i Exit2 |1}
networks) to classify easier samples ! i]
1
m No computation performed at higher i Linear H
layers i i i
1
m Requires mechanism for determining i Conv 5x5 | 1
network confidence about a sample to H 1 i Early E’:‘
3 Bran
use exit Il Conv 5x5 E— ----- a-f----,l
. _ . . 1
m Jointly training the main and early exit L I Exit1 i
branches improves the quality of lower W~ =& = i ____________ :
branches i :
m Allowing more samples to exit at t---t----

earlier points BranchyNet (LeNet)

BRANCHYNET EXAMPLE: EASY SAMPLE

m New sample enters the network

{

Exit 2

Linear
| |

Conv 5x5

1
Conv 5x5

—— Exitl >
Conv 5x5

”,

BRANCHYNET EXAMPLE: EASY SAMPLE

m New sample enters the network
m Reaches Exit 1 *

Exit 2

Linear

- Confident?

Conv 5x5

Conv 5x5

—— Exitl >
Conv 5x5

BRANCHYNET EXAMPLE: EASY SAMPLE

m New sample enters the network

m Reaches Exit 1 *
m Determined “confident” Exit 2
| |
Linear
- Confident?
Yes
Conv 5x5

Conv 5x5

—— Exitl >
Conv 5x5

BRANCHYNET EXAMPLE: EASY SAMPLE

m New sample enters the network
m Reaches Exit 1 *
m Determined “confident” Exit 2
m Classifies sample —
o Linear
m No additional work performed at . Confident?
Yes
upper layers Cony 5x5

Conv 5x5

—— Exit1 -0
Conv 5x5

BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network

{

Exit 2

Linear
| |

Conv 5x5

1
Conv 5x5

—— Exitl >
‘ Conv 5x5

Z

BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network
m Reaches Exit 1 *

Exit 2

Linear

- Confident?

Conv 5x5

1
Conv 5x5 ﬂ

—— Exitl >
Conv 5x5

BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network

m Reaches Exit 1 *
m Determined “not confident” Exit 2
1
Linear
- Confident?
No
Conv 5x5

1
Conv 5x5 j

—— Exitl >
Conv 5x5

BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network

m Reaches Exit 1 *
m Determined “not confident” Exit 2 j
m Continues up the main network (no -
: Linear
re-computation of lower layers) »
Conv 5x5
e
Conv 5x5

—— Exitl >
Conv 5x5

BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network 7

m Reaches Exit 1 *

m Determined “not confident” Exit 2 j
| |

m Continues up the main network (no

re-computation of lower layers) Linlear
m Must exit (classify sample) as Exit 2 is Qony 555
final exit point —
Conv 5x5

—— Exitl >
Conv 5x5

MEASURING NETWORK CONFIDENCE

m Use entropy of softmax output to measure confidence

entropy(y) = > _yclogye,
ceC
where y is a vector containing computed probabilities for all possible
class labels and C is a set of all possible labels
m Choice of entropy versus other measures

Exit 1 Softmax Output

Entropy Entropy
0.3747 0s 1.3120

° =
= o

]

S
=
By

Softmgx Qutput
Softmax Output

gg
g g
s e
g 2

-l

<A

BRANCHYNET TRAINING

m Pretrain main network first
m Add exit branches and train again

m The final loss function is the weighted sum of losses of all exits

Lbranchynet y y; 0 ZWHL(yexwtnvy 0)

where N is the total number of exit points

m Early exit weights Wy y_q =1
m Last exit weight Wy = 0.3

BRANCHYNET INFERENCE

1. procedure BRANCHYNETFASTINFERENCE(X, T)
2 forn=1.Ndo

3 Z= fexitn(x)

4 y = softmax(z)

5 e = entropy(y)

6 if e < Ty then

7 return arg maxy

®

return arg maxy

Figure: BranchyNet Fast Inference Algorithm. x is an input sample, T is a vector
where the n-th entry T, is the threshold for determining whether to exit a sample
at the n-th exit point, and N is the number of exit points of the network.

NETWORKS AND DATASETS

m Network Architectures

m LeNet (on MNIST)
m AlexNet (on CIFAR-10)

*

Linear
- I
Exit 2 Linear
T 1
Conv 3x3
Linear T
§ Conv 3x3
T
Conv 55
1 Conv 3x3
Conv 5x5 T1 I
Conv 5x5
|—— Exit1l =p T
Conv 5x5
I Conv 5x5

Branchy-LeNet Branchy-AlexNet

RESULTS

m Points on the curve found by sweeping over values of T
m In the case of more than one early exit, we take combinations of T; values

m Accuracy improvement over baseline network (red diamond) due to joint
training

m Runtime improvements over baseline network due to classifying the
majority of samples at early exit points (no computation performed for
higher layers)

m As T values increase, more samples exit at the higher exit branches

- LeNet GPU > 80 AlexNet GPU
3 99. — 2 Q
(0] —
5 99.2 EXT (%) ® a 79¢ 1
U 991} Exit 1: 94.3% O
é Exit 2: 5.7% < 78f i
c 99.01 c
S 98.9} s |
© ©
.S 9881 =o== B-LeNet L 76 =o= B-AlexNet 1
= 987} ¥ B-LeNet kneel] @ 75 % B-AlexNet knee| |
& 9861 @ LeNet E ¢ AlexNet

98.5 L L L L L n I n QO 74 L L N L n
© 000204060810121416 1.8 0.5 1.0 15 20 25 3.0 35

Runtime (ms) Runtime (ms)

FUTURE WORK

m Automatically find the threshold values T for each exit branch

m Investigate alternative confidence measures other than softmax entropy
(e.g., OpenMax, GANS)

m Dynamically adjusting the weight of loss based on individual samples

m Easier samples have more weight at lower branches
m Harder samples have more weight at higher branches

CONCLUSION

m Introduce a mechanism to exit a percentage of samples at earlier points
in the network

m Jointly training these exit points improves accuracy which allows
additional samples to exit early

m Achieve a factor of 2-4x speedup compared to baseline single network
for our test case

m BranchyNet implementation written in Chainer and open source:
https://gitlab.com/htkung/branchynet

https://gitlab.com/htkung/branchynet

Thanks for your attention!
Comments and Questions?

RESULTS TABLE

Table: Selected performance results for BranchyNet on the different network
structures. The BrachyNet rows correspond to the knee points (denoted as green
stars in the previous slides).

Network Acc. (%)Time (ms)GainThrshld. T Exit (%)

CPU

GPU

LeNet 99.20
B-LeNet 99.25
AlexNet 78.38
B-AlexNet79.19
LeNet 99.20
B-LeNet 99.25
AlexNet 78.38
B-AlexNet79.19

3.37
0.62
9.56
6.32
1.58
0.34
3.15
1.30

5.4x 0.025 94.3,5.63

1.5x 0.0001, 0.0565.6, 25.2, 9.2

4.7x 0.025 94.3,5.63

2.4x 0.0001, 0.0565.6, 25.2,9.2

