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TREND TOWARDS DEEPER NETWORKS
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AUXILIARY NETWORKS
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Section of GoogleNet

m GoogleNet introduces auxiliary
networks

m Provide regularization to main
network

m Improves accuracy ~ 1%

m Removed after training

m Only main network is used during
inference

m Can we leverage auxiliary networks to
address inference runtime of deeper
networks?



BRANCHYNET

m Easier input samples require lower

level features for correct classification onain
m Harder input samples require higher i-_“}-““{
level features H E
m Use early exit branches (auxiliary i Exit2 |1}
networks) to classify easier samples ! i ]
1
m No computation performed at higher i Linear H
layers i i i
1
m Requires mechanism for determining i Conv 5x5 | 1
network confidence about a sample to H 1 i Early E’:‘
3 Bran
use exit Il Conv 5x5 E— ----- a-f----,l
. _ . . 1
m Jointly training the main and early exit L I Exit1 i
branches improves the quality of lower W~ =& = i ____________ :
branches i :
m Allowing more samples to exit at t---t----

earlier points BranchyNet (LeNet)



BRANCHYNET EXAMPLE: EASY SAMPLE
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BRANCHYNET EXAMPLE: EASY SAMPLE
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BRANCHYNET EXAMPLE: EASY SAMPLE
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BRANCHYNET EXAMPLE: EASY SAMPLE

m New sample enters the network
m Reaches Exit 1 *
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BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network
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BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network
m Reaches Exit 1 *

Exit 2

Linear

- Confident?

Conv 5x5

1
Conv 5x5 ﬂ

—— Exitl >
Conv 5x5




BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network
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BRANCHYNET EXAMPLE: HARD SAMPLE
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BRANCHYNET EXAMPLE: HARD SAMPLE

m New sample enters the network 7

m Reaches Exit 1 *
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MEASURING NETWORK CONFIDENCE

m Use entropy of softmax output to measure confidence

entropy(y) = > _yclogye,
ceC
where y is a vector containing computed probabilities for all possible
class labels and C is a set of all possible labels
m Choice of entropy versus other measures
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BRANCHYNET TRAINING

m Pretrain main network first
m Add exit branches and train again

m The final loss function is the weighted sum of losses of all exits

Lbranchynet y y; 0 ZWHL(yexwtnvy 0)

where N is the total number of exit points

m Early exit weights Wy y_q =1
m Last exit weight Wy = 0.3



BRANCHYNET INFERENCE

1. procedure BRANCHYNETFASTINFERENCE(X, T)
2 forn=1.Ndo

3 Z= fexitn(x)

4 y = softmax(z)

5 e = entropy(y)

6 if e < Ty then

7 return arg maxy

®

return arg maxy

Figure: BranchyNet Fast Inference Algorithm. x is an input sample, T is a vector
where the n-th entry T, is the threshold for determining whether to exit a sample
at the n-th exit point, and N is the number of exit points of the network.



NETWORKS AND DATASETS

m Network Architectures

m LeNet (on MNIST)
m AlexNet (on CIFAR-10)
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RESULTS

m Points on the curve found by sweeping over values of T
m In the case of more than one early exit, we take combinations of T; values

m Accuracy improvement over baseline network (red diamond) due to joint
training

m Runtime improvements over baseline network due to classifying the
majority of samples at early exit points (no computation performed for
higher layers)

m As T values increase, more samples exit at the higher exit branches
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FUTURE WORK

m Automatically find the threshold values T for each exit branch

m Investigate alternative confidence measures other than softmax entropy
(e.g., OpenMax, GANS)

m Dynamically adjusting the weight of loss based on individual samples

m Easier samples have more weight at lower branches
m Harder samples have more weight at higher branches



CONCLUSION

m Introduce a mechanism to exit a percentage of samples at earlier points
in the network

m Jointly training these exit points improves accuracy which allows
additional samples to exit early

m Achieve a factor of 2-4x speedup compared to baseline single network
for our test case

m BranchyNet implementation written in Chainer and open source:
https://gitlab.com/htkung/branchynet


https://gitlab.com/htkung/branchynet

Thanks for your attention!
Comments and Questions?



RESULTS TABLE

Table: Selected performance results for BranchyNet on the different network
structures. The BrachyNet rows correspond to the knee points (denoted as green
stars in the previous slides).

Network Acc. (%)Time (ms)GainThrshld. T Exit (%)

CPU

GPU

LeNet 99.20
B-LeNet 99.25
AlexNet 78.38
B-AlexNet79.19
LeNet 99.20
B-LeNet 99.25
AlexNet 78.38
B-AlexNet79.19

3.37
0.62
9.56
6.32
1.58
0.34
3.15
1.30

5.4x 0.025 94.3,5.63

1.5x 0.0001, 0.0565.6, 25.2, 9.2

4.7x 0.025 94.3,5.63

2.4x 0.0001, 0.0565.6, 25.2,9.2



