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Abstract—Spectrometers are widely used for characterizing
materials. Recently, filter-based spectrometers have been pro-
posed to lower the manufacturing cost by replacing optical
components with low-cost wavelength-selective filters, but at the
expense of possibly lowered signal quality. We present com-
pressive spectrometers which, based on the compressive sensing
principle, are able to recover signal with improved quality from
measurements acquired by a relatively small number of low-cost
filters. We achieve high quality recovery by leveraging the fact
that spectrometer measurements typically follow the shape of a
smooth curve with a few spikes. We validate our method with
real-world measurements, and release our dataset to facilitate
future research.

I. INTRODUCTION

Spectral analysis is a well-established technique used in
physics, chemistry, and biology. It provides detailed infor-
mation related to the chemical bonds of the molecule, and
thus can identify the compositions of the sample and their
concentrations [1] [2].

Conventional optics-based spectrometers are expensive due
to high-cost optics components and their large physical foot-
prints. Recently, miniature filter-based spectrometers [3] [4]
have emerged to provide cost and size advantages over optics-
based spectrometers. Instead of using dispersers, the new
approach employs a bank of wavelength-selective filters to
detect the corresponding spectrum. However, these miniature
spectrometers usually cannot resolve the spectrum at a fine-
gain level due to the difficulty of manufacturing filters with
small leaks, resulting in lower signal quality. Additionally,
many filters are needed in order to capture a large set of target
wavelengths.

To overcome the drawbacks of filter-based methods [5], our
proposed compressive spectrometers use a small number of
filters to capture information from multiple wavelengths at
the same time. Based on sparse signal recovery principles
in compressive sensing [6], we present a high-quality signal
reconstruction method that exploits the fact that spectrum
signal normally exhibits itself as a smooth curve with a few
spikes.

II. HYBRID MODEL OF SMOOTHNESS AND SPARSITY

Spectrum signal tend to be a smooth curve with a few spikes
of varying magnitudes. This is the result of several contribut-
ing factors throughout the sensing process, as illustrated in
Figure 1. We propose a signal model that treats the signal x
as the composition of a sparse component and a smooth one:
x = v + Ψz where v is smooth, Ψ is a sparsifying basis and

z is sparse. The measurements y is defined as y = Φx where
Φ is the sensing matrix.

The sparsity and smoothness assumption manifests as sepa-
rate regularization terms in the optimization problem for signal
reconstruction:

arg min
v,z

‖y − Φ(v + Ψz)‖22 + λ1‖z‖1 + λ2‖Av‖22 (1)

where A is a bidiagonal (1, -1) matrix such that Av captures
gradients in adjacent components of v. The choice of using
`2 norm rather than `1 norm for Av reflects the fact that v is
more likely to have many small changes instead of few large
ones. Note that (1) is convex and can be solved efficiently
with gradient descent methods [7].

III. EVALUATION

To evaluate our method, we collected a dataset [8] that
includes compressive spectrometer characteristics (see Fig-
ure 4) and spectrum of common plastic objects in the real
world (see Table I). Note that our dataset is much more
realistic compared to signals used in prior spectrometer signal
recovery experiments, which only focused on simple Gaussian-
like responses from simple LED sources.

We compare our hybrid method with state-of-the-art meth-
ods: conventional sparsity-based recovery method using a
sparse model in l1 [3] and the Tikhonov regularization method
in l2 (based on smoothness assumption) [4]. As shown in
Table II, our method achieves significant better performance
in minimizing recovery error than the state-of-the-artmethods
for our dataset. We consider the signal reconstruction er-
ror as a function of the number of filters (i.e., number of
measurements) used, where the sensing matrix Φ is drawn
from Gaussian distribution. As shown in Figure 2, our hybrid
method consistently delivers superior reconstruction quality.

IV. CONCLUSION

We propose compressive spectrometers that can have lower
manufacturing cost. This is because unlike conventional filter-
based spectrometers, our method does not require filters with
small leakage, and uses much fewer filters for signal recon-
struction.

Our method leverages the fact that spectrum signals tend to
exhibit a few spikes over a smooth curve. By enforcing sparsity
(for spikes) and smoothness in the signal recovery process,
we achieve low reconstruction error even under significant
compression (Figure 2). We validate our method with real
measurements from spectrometers, and release our dataset to
the community to facilitate research.
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Fig. 1. Several factors contribute to the final spectrum detected by a spec-
trometer. First, the light source is smooth and relatively broadband as shown
in (a) [9]. This source signal reflects off some surface that selectively absorbs
certain specific narrow bands depending on the surface material properties.
Then, the reflected signal is captured by the sensor with characteristics as
shown in (b) [10]. As a result, the signal acquired at the sensor would be
roughly smooth except around the narrowband wavelength segments absorbed
by the reflective surface.

TABLE I
NUMBER OF SAMPLES FROM EACH PLASTIC TYPE IN THE DATASET.

No.1 No.2 No.3 No.4 No.5 No.6 No.7 Total
(A) 10 13 7 11 11 11 2 65
(B) 20 20 20 20 40 20 20 160

Our spectrum signals are collected using a RED-Wave-NIRX-SR spectrometer
with SL1 tungsten lamp. In setting (A), we measure several spectrum from
different items within the same plastic type. This captures the inter and intra-
class variations of different plastic types. In setting (B), for each plastic type
we measure several spectrum of the same item with varying distance, location,
angle, etc. This captures the variations in measuring the same material.
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Fig. 2. Performance of different methods over number of measurements.
The parameters for each method are screened over different numbers of
measurements. Our proposed hybrid method outperforms methods that only
rely on either sparsity or smoothness. The dotted line shows the target error
for material classification.

TABLE II
COMPARISON OF RECONSTRUCTION ERROR USING REAL FILTERS

SC [3] TV [4] Hybrid Target
Error .021 .038 .013 .013

This table shows recovery error using Φ measured from a real spectrometer.
Due to the manufacturing process, the actual filters tend to be very smooth and
Φ is in fact quite coherent as shown in Figure 4. This specific spectrometer
has 64 filters, which correspond to 64 measurements. As a reference point,
we define the normalized variance between samples from the same object as
the target error.
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Fig. 3. Reconstructed signals under different methods (plastic type II). The
hybrid model is able to capture the valley more accurately (see the inset).
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Fig. 4. Examples of filter responses from a compressive spectrometer. The
filter characteristics matrix Φ (i.e., the sensing matrix) is measured using the
Oriel Cornerstone 130 monochromator at the wavelength interval between
1000nm and 1656nm. The signal resolution of the monochromator is 12nm.
We upsampled it to match the resolution of the ground-truth signals at 1nm.
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