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Abstract—Deep learning techniques, such as deep neural
networks (DNNs), have been used with success in many viral
classification problems associated with metagenomics, diagnosis
of viral infections, pharmacogenomics, phylogenetic analysis,
and others. However, deep learning algorithms require a large
number of math operations, and these computations themselves
can be a bottleneck for processing the vast number of virus
sequences in a short time. Currently, most works in this area use
basic DNNs in viral classification, and they are not optimized for
computational efficiency. This paper proposes a novel training
strategy that simultaneously minimizes both pruning and quan-
tization losses in training compressed models for reducing deep
learning computational complexity. In training a compressed
convolutional neural network (CNN), the scheme uses weight
quantization followed by pruning in each training iteration
rather than the pruning followed by quantization. The proposed
training strategy scheme has been applied to train compressed
models for efficient viral classification of 1600 sequences of four
types of viruses associated with three families and one realm.
A substantial reduction of DNN weights (77%) and operations
(58%) is demonstrated, while maintaining high classification
accuracy. These results show that the proposed new training
regime of weight quantization followed weight pruning for each
training iteration is superior to conventional approaches with
weight pruning epochs followed by weight quantization epochs.

Index Terms—Viral classification, deep learning, model com-
pression, model training, quantization, pruning.

I. INTRODUCTION

Recently there have been substantial works in using deep
learning (DL) techniques such as DNNs for tertiary analysis in
viral classification, viral host classification, and viral segments
classification [1]–[14]. Figure 1 depicts a use example of
applying DL to genome analysis. Note that the DL can be
applied before, during or after the secondary analysis.

Viral genome classification with DL is composed of two
cascaded stages, mapping and processing (see Figure 2). In
the mapping stage (or encoding stage), the genome sequence
is mapped to a feature space [15], [16], and in the processing
stage a DNN is used for classfication [1]–[4].

There are several mapping strategies reported in literature.
They include word composition [15], [16], number represen-
tation [2], [17], and use of digital signal processing techniques
such as discrete Fourier transform (DFT) [18], [19], one-
hot encoding [1], [3], [5], [7], [9], and others [4], [20],
[21]. In some cases, multiple mapping strategies are applied
sequentially, as presented in [15], [16], [18]. In the processing
stage, DNNs such as convolutional neural networks (CNN)

[2]–[6], [8], [9], and long-short term memory (LSTM) neural
networks [7], [9]–[12] have been used.

Figure 3 presents a common CNN approach in viral classi-
fication [2]. A virus genome sequence of length N is mapped
with one-hot encoding, and afterwords processed with a CNN.
The CNN is composed by L layers with C convolutional lay-
ers, C batch normalization layers, C ReLU layers, C pooling
layers, F fully connected layers, F − 1 dropout layers, and a
softmax layer, where L = 4C + 2F . CONV1D (Kk@Bk) is
the k-th convolutional layer with Kk one-dimensional kernels
of size Bk, MaxPool1D (Sk) is the max pooling layer with
stride Sk, FC (Pk) is k-th fully connected layer of size Pk,
and αk is the k-th dropout probability.

The DL approach for viral classification has a timely appli-
cation concerning the COVID-19 disease. The SARS-CoV-2
virus has been spreading around the world since the end of
2019. In March 2020, the World Health Organization declared
a SARS-Cov-2 pandemic. Controlling outbreaks requires the
elucidation of the taxonomic classification and the origin of the
virus (SARS-CoV-2) from the genomic sequence, for strategic
planning, containment, and treatment of the disease [22]–[24].

DL-based viral classification faces two challenges. First,
we need to process a massive number of genome sequences
created by next generator sequencing (NGS) [25]. Second, we
need to cope with a large number of parameters (weights) and
operations associated with DNN models. Prior works for viral
classification have not focused on these computational issues.

This work proposes a novel training scheme for compressed
DNN models, i.e., quantization followed by pruning for each
training iteration. Compared to conventional training methods
for compressed models, our proposed approach significantly
reduces the number of parameters and their bitwidth while
having a minimum impact on model accuracy.

Our model compression approach can enable efficient DL
processing in individual laboratories by using local GPUs,
thereby reducing the need to use the cloud for inference.
This procedure enhances the privacy and security of data and
reduces communication costs with the cloud.

II. RELATED WORKS

In [13], [14], a taxonomic classification for metagenomics
applications is proposed. Both works use segments of genome
(reads) as DL input (see Figure 1), and the DL output is
the number of the classes. In [13], DL models are used to
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Fig. 2: Use of deep learning in viral genome classification.

classify species and genus of the virus. In [14], a hierarchical
taxonomic classification for viral metagenomic data via DL,
called CHEER, is proposed. Similar to the work proposed
in [13], the CHEER framework classifies groups in the virus
taxonomy structure such as genus, family, and order.

Works in [1], [3], [8] use contigs as DL input (see Figure
1) for viral prediction and classification. In [1], [3] a DL
virus identification framework is proposed to recognize if the
input is a virus or not. The proposal presented in [1], called
ViraMiner, has a binary output (0 if is not a virus, and 1 if
yes) and the proposal presented in [3], called DeepVirFinder,
outputs a score between 0 and 1 for a binary classification
between virus and prokaryote. The work presented in [8]
differentiates phage, chromosomes, and plasmids, and the
output also is a score.

Sub-type virus identification is proposed in [2] and [5]. In
[2], a viral genome deep classifier uses a CNN to classify
several sub-types virus, including HIV, Dengue, Influenza, and
Hepatitis. In [5], a viral classification is proposed to identify
a coronavirus sub-type, including SARS-CoV-2, MERS-CoV,
SARS-CoV, and other viruses. The architecture of the CNNs
used in this work is based in [2], [5].

Table I shows a summary of the viral classification refer-
ences in terms of DNN structures. Note that DNNs applied to
viral classification is a novel topic, and none of work in Table
I uses model compression strategies yet in speeding up DNN
computation and making it efficient, as proposed in this paper.

III. MATERIALS AND METHODS

A. Data collection

In this study, a dataset consisting of the 1081 virus
sequences was downloaded from the National Center for
Biotechnology Information (NCBI) [26]. All downloaded se-
quences belong to three virus families (Alphasatellitidae,

TABLE I: Summary of the viral classification references in
terms of DNN structures in N and L (see N base pairs and
L neural network layers in Figure 3).

Reference
Number Input Numberof sequences size (N ) of layers (L)×1000

[2] (2019) 300 24700× 1× 1 25
[8] (2019) 20 1600× 1× 4 22
[1] (2019) 40 300× 1× 5 16
[5] (2020) 0.384 32029× 1× 1 5
[3] (2020) 1335 3000× 1× 4 6
[13] (2020) 10 150× 100× 1 10
[14] (2020) 60 248× 100× 1 12

Anelloviridae, and Tolecusatellitidae), and the Riboviria realm.
The length of the sequences used was between 1000 and 3500
base pair (bp). Table II shows a resume of the sequences used
in this work, and Figure 4 presents the frequency of these
sequences as a function of bp. The three virus families were
chosen randomly from the Virus-Host DB families (available
on August 14, 2020), and the Riboviria realm was chosen
because it includes viruses groups of interest to this study such
as Coronavirus, Ebola, HIV, Influenza, and the rabies virus.

TABLE II: Resume of the viruses sequences used in this work.

Name No. Taxonomy Min. seq. Max. seq.
seq. length length

Alphasatellitidae 92 Family 1001 1479
Anelloviridae 81 Family 2002 3371
Riboviria 771 Realm 1010 3498
Tolecusatellitidae 137 Family 1012 1436

In order to balance the number of sequences for each class,
400 sequences from the Riboviria realm were chosen ran-
domly, and for the other classes randomly selected sequences
were duplicated until there are 400 sequences. After this
procedure, a total of 1600 sequences were available (400 for
each virus class).

B. DNN architecture

This work uses a CNN architecture described in Table
III called the baseline architecture in this paper. Following
proposals in literature [1], [3], [5], [7], [9], this work used
the one-hot encoding (mapping stage) associated with CNN
(processing stage) as presented in Figure 3.
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Fig. 3: One-hot encoding and CNN applied to a viral classification problem.

Fig. 4: Histogram of the number of the sequences.

The CNN input length, N = 3500, has been chosen to
accommodate all input sequences presented in Table II. The
zero padding was used for sequences of length less than 3500.
The architecture size for single-precision float-point format
(32 bits) is presented in Table IV. The number of operations
(NOPs) of the CNN architecture, presented in Table III, has
about 0.54 Giga Operations (GOPs). However, considering
the bitwidth, there are about 0.539 × 32 ≈ 17.25 Giga-
bit operations (GbOPs). The total size of weights for the
architecture is about 46.62 Mbits. Note that for presentation
simplicity the NOPs × bitwidth is only a linear proxy for the
true float-point computation cost, i.e., it can be seen as a lower
bound.

IV. PROPOSED MODEL COMPRESSION SCHEME

Accelerating the execution of inference is crucial for bioin-
formatics applications, including viral classification. We note,
however, that direct use of large DNN architectures may
achieve only limited throughput due to excessive processing
requirements [27], [28]. This limitation is reflected in numer-
ous papers in the bioinformatic area reporting challenges and
issues related to the DNN’s high computational complexity
[2], [8], [11].

Accelerating DL computation has been a recent focus in
machine learning, and its literature has been gowning rapidly.
The acceleration strategies for inference acceleration can be

TABLE III: Architecture of the baseline CNN used in this
paper with C = 4 convolutional layers and F = 4 fully
connected layers (see Figure 3).

Layer Description Values
1 Input (N × 1× 5) N = 3500
2 Conv1D (K1@B1) K1 = 256 and B1 = 16
3 BatchNorm –
4 ReLU –
5 MaxPool1D (S1) S1 = 2
6 Conv1D (K2@B2) K2 = 64 and B2 = 32
7 BatchNorm –
8 ReLU –
9 MaxPool1D (S2) S2 = 2
10 Conv1D (K3@B3) K3 = 32 and B3 = 64
11 BatchNorm –
12 ReLU –
13 MaxPool1D (S3) S3 = 2
14 Conv1D (K4@B4) K4 = 32 and B4 = 128
15 BatchNorm –
16 ReLU –
17 MaxPool1D (S4) S4 = 2
18 FC (P1) FP1 = 64
19 Dropout (α1) α1 = 0.4
20 FC (P2) P2 = 32
21 Dropout (α2) α2 = 0.4
22 FC (P3) P3 = 16
23 Dropout (α3) α3 = 0.4
24 FC (P4) P4 = 4
25 SofMax 4 classes

TABLE IV: Architecture size of the baseline CNN in single-
precision float-point format (32 bits).

NOPs (GOPs) NOPs × bitwidth (GbOPs) Weights-size (Mbits)
0.539 17.25 46.62

classified into algorithm-based and system-based. Algorithm-
based acceleration approaches include parallel processing
(data and model parallelism), model compression (pruning of
weights, and quantization of weight and activation values),
sparsity exploitation (both value-level and bit-level sparsity),
and model reduction via approximation and learning [27],
[29]–[35]. System-based acceleration approaches include high-



bandwidth memory systems for minimizing memory access
time, hardware accelerators (ASIC and FPGA), distributed
computing systems [28], [36], [37], and compiler optimiza-
tions such as commons expression elimination [38].

A. Model compression

The algorithm-based strategy using model compression, a
focus of this work, is a common way to reduce the number
of DNN operations and, at the same time, have a minimum
impact to classification accuracy. The approach can improve
the DNN performance in bioinformatics analysis for a lab
facility that has only modest CPU/GPU computing resources.

Conventional compression approaches prune [29], [30], and
quantize [27], [31] model weights, with pruning followed
by quantization over training epochs [39], [40]. We denote
such a training scheme as ”P → Q epochs”. In this paper,
in contrast, we propose a novel model compression scheme
that simultaneously minimizes both pruning and quantization
losses during training with pruning followed by quantization
(P → Q iteration) or quantization followed by pruning
(Q→ P iteration) for each training iteration.

B. Weight compression by quantization

Figure 5 depicts the architecture of quantization-aware
training [27], [31]. In the schematic, n represents the n-th
iteration, z−1 is a unitary delay, W(n) represent the CNN
weights of the all layers, X(n) is the CNN input, Yref (n)
is the desired output (label), Y(n) is CNN output, E(n) is
the an error metric (loss) between Y(n) and Yref (n), and
G(n) represents the gradient metric of the all layers. In every
mini-batch a copy of weights, W(n), is quantized and passed
to the forward stage through of the variable C(n).

Forward

Weight update

Quantization

Gradient

Fig. 5: Quantization-aware training.

The compression by quantization produces low bitwidth
integers for representing weights. This is, W(n) is represented
by one of M discrete possible levels that can be represented
by b bits. There are many quantization techniques in literature,
as presented in [27], [31], [34], [35]. A common scheme is
uniform quantization, with M = 2b − 1. In this case, the
variable C(n) of the each k-th layer is expressed as

Ck(n) = Q (Wk(n), qk) =

⌈
Wk(n)

qk

⌋
× qk (1)

where Q(·, ·) is the quantization function, d · c is the round
operation, and qk, the scale factor, can be expressed as

qk =
max {|Wk(n)|}

2b−1 − 1
. (2)

Figures 6a, and 6b illustrate an example of the weights of the
second layer, W2(n), of the baseline CNN detailed in Table
III. The weights are presented before and after quantization
with b = 5 (M = 31), respectively.

(a) Before quantization. (b) After quantization.

Fig. 6: Example of the weights compression by quantization
with b = 5 (M = 31) applied to the second layer, W2(n), of
the baseline CNN detailed in Table III.

C. Weight compression by pruning

In pruning (see Figure 7), the weights for each k-th layer,
Wk(n), with small values (below a threshold) are reset to
zero, that is,

Ck(n) = P (Wk(n), βk) =

{
Wk(n) if |Wk(n)| ≥ βk
0 if |Wk(n)| < βk

(3)
where P (·, ·) is the pruning function, and βk is the pruning cut-
off threshold of the k-th layer. Figures 8a and 8b illustrate an
example of the weights of the second layer (first convolutional
layer), W2(n), of the baseline CNN detailed in Table III. The
weights are presented before and after pruning, respectively,
with the pruning cut-off threshold, βk = 0.5×σk. The variable
σk represents the standard deviation of the W2(n).

Forward

Weight update

Pruning

Gradient

Fig. 7: Pruning-aware training.

D. Proposed pruning followed by quantization iteration (P →
Q iteration)

The compression proposed by this work based on pruning
followed by quantization iteration, P → Q iteration, can be
expressed as

Ck(n) = Q (P (Wk(n), β) , q
′
k) (4)

where

q′k =
max {|Wk(n)|} − βk

2b−1 − 1
. (5)



(a) Weights before pruning. (b) Weights after pruning.

Fig. 8: Example of the weights compression by pruning
applied to the second layer, W2(n), of the baseline CNN
detailed in Table III (βk = 0.5× σk).

The diagram presented in Figure 9 illustrates P → Q iteration,
and Figures 10a, and 10b show an example of the weights of
the second layer, W2(n), of the baseline CNN detailed in
Table III. The weights are presented before and after P → Q
iteration, respectively.

Forward

Weight update

Quantization Pruning

Gradient

Fig. 9: Pruning followed by quantization iteration, P → Q
iteration, architecture.

(a) Weights before P → Q itera-
tion.

(b) Weights after P → Q itera-
tion.

Fig. 10: Example of the weights compression by P → Q
iteration applied to the second layer, W2(n), of the baseline
CNN detailed in Table III. We assume, βk = 0.5 × σk and
b = 5 (M = 31).

E. Proposed quantization followed by pruning iteration (Q→
P iteration)

Figure 11 shows the quantization followed by pruning
iteration, Q→ P iteration, architecture proposed in this work.
In each mini-batch, a copy of weight values is quantized using
Equation 1, and this information is passed to the forward
stage (see Figure 11). Based on the error metric (loss), E′(n),
the new gradient, G′(n), is computed and sent to the weight
update stage.

Forward

Weight update

Pruning

Weight update

Quantization

Forward

Gradient

Gradient

Fig. 11: Quantization followed by pruning iteration, Q → P
iteration, architecture.

After quantization, the quantized weight values are pruned
using Equation 3 and a new gradient, G(n), is calculated in
the same mini-batch. The new gradient, G(n), is computed
using the new error metric (loss), E(n). The Q→ P iteration
weights values sent to the forward stage for k-th layer can be
expressed as

Ck(n) = P (Q (Wk(n), qk) , βk) . (6)

With the new gradient, G(n), the weights are updated again
in the same mini-batch. Figures 12a and 12b show an example
of the weights compression, Q → P iteration, of the second
layer, W2(n), of the baseline CNN detailed in Table III. The
weights are presented before and after Q → P iteration with
pruning cut-off threshold, βk = 0.5×σk, and b = 5 (M = 31).

(a) Weights before Q → P itera-
tion.

(b) Weights after Q → P itera-
tion.

Fig. 12: Example of the weights compression by Q → P
iteration applied to the second layer, W2(n), of the baseline
CNN detailed in Table III. We assume, βk = 0.5 × σk and
b = 5 (M = 31).

V. RESULTS AND DISCUSSION

In order to show the advantages of the quantization followed
by pruning in viral classification, we demonstrate several
results with b = 8 bits quantization (M = 254) for different
values of cut-off threshold, βk, where βk = γ × σk for some
parameter γ. Use of a larger γ means more aggressive pruning.
The results were collected using the CNN presented in Figure
3 and the training strategies illustrated in Figures 9, and 11
for P → Q iteration and Q → P iteration, respectively.



These strategies were applied to classify the virus presented
in Table II, with 80% of the sequences (1280 sequences) for
training and 20% (320 sequences) for validation. The ratio
(80% : 20%) was maintained for each class. These training
experiments used mini-batches of size 64, and 35 epochs.

Figures 13 and 14 show the density of all CNN weights,
C(n), versus validation accuracy for several values of weights-
size (and γ), and NOPs (and γ), respectively. The density was
calculated as the number of the non-zero weights (in all layers)
over the number of weights (in all layers).

Fig. 13: Overall validation accuracy (for classes presented in
Table II) as a function of density of the CNN weights, C(n),
for several values of weights-size (and γ), with the density
being the fraction of nonzero weights in W(n) remaining.
Lower densities mean more aggressive model compression.
We note that Q → P iteration achieves higher accuracy than
P → Q iteration at similar densities.

Fig. 14: Overall validation accuracy (for classes presented in
Table II) as a function of density of the CNN weights, C(n),
for several values of NOPs (and γ).

As presented in figures 13 and 14, the value of the cut-off
threshold βk (or γ) impacts in the density reduction. Note that
Q→ P iteration compression can maintain the accuracy above
99% to low density values (< 20%), compared to the P →
Q iteration strategy. As illustrated in the graphs presented in
Figures 13 and 14, the Q → P iteration strategy, as opposed
to P → Q iteration, can maintain the accuracy above 99% for
a pruning cut-off threshold with γ = 1.5.

Figures 15 and 16 show the CNN weights-size (in Mbits),
and the CNN NOPs × bitwidth (in GbOPs) versus validation
accuracy for several values of CNN weights density C(n),
respectively. The graphs illustrated in Figures 15 and 16
show that the accuracy can be maintained even under severe
compression.

Fig. 15: Overall validation accuracy (for classes presented in
Table II) as a function of CNN weights-size (in Mbits), for
several values of CNN weights density C(n).

Fig. 16: Overall validation accuracy (for classes presented in
Table II) as a function of NOPs × bitwidth (in GbOPs), for
several values of CNN weights density C(n).

Figures 17, 18 and 19 show the curves of the density (in %),
weights-size (in Mbps), and NOPs (in GbOPs) as a function
of pruning cut-off threshold (βk = γ × σk), just for accuracy
above 99%. Q→ P iteration archives the higher compression
than P → Q iteration. Table V presents a summary of the
results presented in Figures 17, 18 and 19.

Based on the values presented in Table V, the highest
compression for the P → Q iteration strategy is about 62.6%
for density and weights-size, and 54.3% for NOPs. For the
Q→ P iteration strategy they are about 77.4% for density and
weights-size, and 58.4% for NOPs. The difference between
weights-size and NOPs reflects the architecture of the DNN
(number of convolutional and fully connected layers).

Regarding DL-based viral classifiers, Figure 20 shows the
confusion matrix for the results with the highest compression
Q→ P iteration strategy. The result indicates that a significant
reduction in DNN parameters (more than 77% for Q → P
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Fig. 17: Density (in %) as a function of pruning cut-off
threshold (βk = γ × σk).
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Fig. 18: Weights-size (in Mbps) as a function of pruning cut-
off threshold (βk = γ × σk).

iteration) and NOPs (more than 58% for Q→ P iteration) can
be achieved, and, at the same time, keeping up the accuracy.

Riboviria is a realm (set of several families), and this
permits a high genetic diversity. Note that differently from
the other classes (Alphasatellitidae, Anelloviridae, and Tole-
cusatellitidae), Riboviria has samples with all sequence length
range, i.e., the sequence length between 1010 and 3498 bp
(see Table II and Figure 5). This genetic diversity associated
with Ribovira explains the false positive in confusion matrix
presented in Figure 20.

It can be seen from the results that the strategy proposed
here can help significantly in areas associated with the analysis
of viral sequences in real-time such as metagenomics, diagno-
sis of viral infections, pharmacogenomics, and others. Based
on works presented in the literature, such as those presented
in [2], [5], [9], the structure proposed here can also be adapted
for longer viral sequences.

VI. COMPARISON WITH CONVENTIONAL APPROACH

In this section, we compare our proposed Q→ P iteration
scheme with the conventional P → Q epochs scheme [39],
[40]. Figure 21 shows the block diagram of the conventional
P → Q epochs compression approach. Figure 22 shows the
training time control, where switches SW1 and SW2 are
defined in Figure 21. Suppose that there are G epochs and
I iterations per epoch. As presented in Figure 22, the pruning
(P) and quantization (Q) actions apply to the first and second
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Fig. 19: NOPs (in GbOPs) as a function of pruning cut-off
threshold (βk = γ × σk).

TABLE V: Results with b = 8 bits quantization (M = 254)
for different values of cut-off threshold, where βk = γ × σk.

Comp.
γ

Density NOPs × bitwidth Weights-size
method (%) (GbOPs) (Mbits)

P → Q

0.50 66.10 3.00 7.71
0.75 49.07 2.38 5.72
1.00 35.89 1.88 4.18
1.25 24.70 1.37 2.88

Q→ P

0.50 63.38 3.10 7.39
0.75 47.07 2.58 5.37
1.00 36.44 2.08 4.25
1.25 20.20 1.75 2.35
1.50 14.32 1.29 1.67

halves of epochs, respectively:

SW2 =

{
A for epoch = 1 . . . G/2

B for epoch = G/2 + 1 . . . G.
(7)

For each epoch, pruning or quantization action is enabled just
the first iteration. For example, for the first half of epochs,
SW1 connected to the the pruning blocking has the following
settings:

SW1 =

{
A for iteration = 1

B for iteration = 2 . . . I.
(8)

In contrast, Figure 23 shows the training time control associ-
ated with our proposed P → Q iteration and Q→ P iteration
training schemes.

Figure 24 illustrates an example of the conventional weights
compression scheme, P → Q epochs, for the second layer,
W2(n), of the baseline CNN detailed in Table III. The weights
are presented before and after P → Q epochs with pruning
cut-off threshold, βk = 0.5 × σk and quantization settings
b = 5 (M = 31).

We compare the values of the weights distributions before
the pruning between the conventional P → Q epochs scheme
(see Figure 24a) and our proposed Q → P iteration scheme
(see Figure 12a). We note that the conventional scheme
(P → Q epochs) has many weights values spread inside the
cut-off range. Differently, our proposal (Q → P iteration)
concentrates all weights values at zero.

Figure 25 shows the confusion matrices for the results
related to the conventional P → Q epochs scheme with b = 8
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Fig. 21: Conventional scheme of pruning epochs followed by
quantization epochs, P → Q epochs, architecture.

(M = 254) and γ = 1.25, where βk = γ × σk. We compare
this result with the result shown in Figure 20, using the same
conditions and parameters. We note that the approach proposed
in this paper is superior to conventional compression strategy.

After we had designed our proposed compression schemes,
P → Q iteration and Q → P iteration, we became aware of
the CLIP-Q training method presented in [33]. The CLIP-Q
paper presents a scheme similar to our P → Q iteration, but
it does not consider schemes similar to our Q→ P iteration.
For the viral classification tasks of this paper, we demonstrate
that Q → P iteration has superior performance to P → Q
iteration (see Figures 13, 14, 15, and 16, Table V).

VII. CONCLUSION

We have proposed the Q → P iteration training scheme,
where quantization is followed by pruning per training iter-
ation, for training compressed models in accelerating deep
learning inference for viral classification. The proposed strat-
egy was applied to 1600 sequences of four groups of viruses
associated with three families and one realm. We have empiri-
cally demostrated that Q→ P iteration yields a more efficient
compressed model than P → Q iteration, per training iteration
for the viral classfication tasks considered. Our proposed
Q→ P iteration strategy is superior in prunning performance
to conventional P → Q epochs strategy, pruning epochs
followed by quantization epochs. The results were obtained
for an 8-bit quantized DNN compared to a single-precision

float-point (32-bit) DNN. As future work, we plan to extend
these results to other classification tasks.

ACKNOWLEDGMENT

Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-
perior (CAPES) for their financial support by CAPES-Print-
UFRN program and the finance code 001. The work was
also supported in part by the Air Force Research Laboratory
under award number FA8750-18-1-0112 and by a gift from
MediaTek USA.

REFERENCES

[1] A. Tampuu, Z. Bzhalava, J. Dillner, and R. Vicente, “Viraminer: Deep
learning on raw dna sequences for identifying viral genomes in human
samples,” PloS one, vol. 14, no. 9, p. e0222271, 2019.
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(a) Weights before P → Q
epochs.

(b) Weights after P → Q
epochs.

Fig. 24: Example of the weights conventional P → Q epochs
compression applied to the second layer, W2(n), of the
baseline CNN detailed in Table III. We use βk = 0.5 × σk
and b = 5 (M = 31).
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