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Abstract—The proposed saturation RRAM for in-memory
computing of a pre-trained Convolutional Neural Network (CNN)
inference imposes a limit on the maximum analog value output
from each bitline in order to reduce analog-to-digital (A/D)
conversion costs. The proposed scheme uses term quantization
(TQ) to enable flexible bit annihilation at any position for a
value in the context of a group of weights values in RRAM. This
enables a drastic reduction in the required ADC resolution while
still maintaining CNN model accuracy. Specifically, we show that
the A/D conversion errors after TQ have a minimum impact on
the classification accuracy of the inference task. For instance, for
a 64x64 RRAM, reducing the ADC resolution from 6 bits to 4
bits enables a 1.58x reduction in the total system power, without
a significant impact to classification accuracy.

Index Terms—analog computing; in-memory computing;
resistive RAM (RRAM); noise; analog-to-digital conversion
(A/D conversion); analog-to-digital converter (ADC);
dot-product computation; convolutional neural network (CNN)

I. INTRODUCTION

The widespread popularity of Convolutional Neural Net-
works (CNNs), coupled with their generally high computa-
tional requirements, has led to the development of novel hard-
ware architectures with improved computational efficiency. In-
memory computation using resistive random-access memory
(RRAM) [1] is an approach that offers a simultaneous reduc-
tion in power consumption and decrease in processing latency.

However, while RRAM may perform matrix-matrix mul-
tiplication extremely efficiently, the digital-to-analog (D/A)
and analog-to-digital (A/D) conversions, which interfaces the
RRAM with digital components, introduce significant over-
head. For instance, in ISAAC [1], the digital-to-analog convert-
ers (DACs) and analog-to-digital converters (ADCs) account
for over 60% of the total power consumption and 30% of the
circuit area of the RRAM-based architecture.

Figure 1 shows a standard RRAM crossbar (see, e.g.,
ISAAC [1]) performing dot-product computation of length 64
on bit-sliced weights and data (i.e., activations), where all
values are 4-bit fixed-point numbers. The crossbar points on
a bitline are used to accumulate partial sums, which we refer
to as accumulation points or simply points. Conventionally, a
6-bit ADC is required for an RRAM with 64 rows to ensure
accurate conversion for the maximum output value of 64 when
all data and weights terms are 1.

In this work, we propose to reduce the associated costs of
ADCs in RRAM-based architectures through the use of a novel
quantization technique called term quantization (TQ) [2]. Term
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Fig. 1: An RRAM with a 64 rows × 4 columns crossbar
and 1-bit RRAM cells for computing dot products. Both
data and weights are bit-sliced, with each weight term (e.g.,
20) occupying a separate RRAM column. Term quantization
(TQ) [2] sets low-order power-of-two terms to 0 such as the 20

and 21 terms with red slashes to satisfy a group budget. The
sparsity introduced by TQ reduces the maximum output signal
of the bitlines which enables a low-resolution 4-bit ADC.

quantization limits the number of nonzero power-of-two terms
across a group of values. Figure 1 illustrates how TQ can be
applied on a group of bit-sliced weights stored in RRAM.
In the figure, the 20 and 21 bitlines have several terms that
have been truncated to 0 in order to satisfy the group budget
constraint (see Section II-B for details on TQ). This limits the
maximum output for a bitline in the crossbar as it depends
on the bit-level sparsity of the weights and data multiplied in
that bitline. For instance, in this illustration example, the 20

weight column sparsity has been increased due to the term
truncation, enabling a lower-resolution 4-bit ADC to be used
instead of a standard 6-bit ADC. After apply TQ, we propose
to saturate (clamp) the analog signal value x output by each
bitline for A/D conversion to a preconfigured saturation value
v when x exceeds a preconfigured saturation threshold τ . If a
signal x is less than τ , then x is sent to a low-resolution ADC
for decoding values below τ . Otherwise, the ADC is skipped
and v is returned.

Additionally, our saturation approach has the added benefit
of not relying on the larger x values subject to higher degrees
of noise. Assume that the noise scales with the number of
activated accumulation points in an RRAM column. Then, a
value x below a clamping threshold τ = 16, such as 12, will
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incur smaller noise than a value above τ , such as 53. Due to
this additional noise, a conventional 6-bit ADC will not be
able to accurately decode all 6 bits for larger x values. In
Section V we discuss the noise implication of using a 3-bit
ADC with saturation over a standard 6-bit ADC.

The main contributions of the paper are:
• The novel idea of saturation RRAM in reducing the

required ADC resolution and improving noise tolerance
via a saturation threshold.

• The use of term quantization to increase the sparsity in
bit-sliced weights deployed in RRAM.

• A noise analysis (Section V) on the benefits of the
proposed use of a low-resolution ADC for saturation
RRAM compared to a standard high-resolution ADC.

II. BACKGROUND

In this section, we first discuss the development of RRAM-
based architectures for CNNs in Section II-A. Then, in Sec-
tion II-B, we show how different forms of quantization can be
applied to groups of weights stored in RRAM.

A. RRAM Architectures for CNNs

ISAAC [1] described the use of RRAM crossbars to both
store CNN weights and perform matrix-matrix multiplication
in-memory in an analog fashion. They proposed the use of a
bit-sliced format (with 1-bit input and 2-bit cells) discussed
earlier to mitigate noise and lower the overhead of D/A and
A/D conversions. Using these resolutions with a 128×128
crossbar, a bitline of length 128 could output a maximum value
of 4× 128 = 512, which requires a 9-bit ADC.

More recently, CASCADE [3] has suggested that high-
resolution RRAM introduces significant noise due to process,
voltage and temperature variations [4] that makes accurate A/D
conversion both challenging and expensive (note that the ADC
power scales exponentially with resolution [1]). Due to this,
CASCADE used a smaller 64×64 RRAM crossbar, with 1-
bit input and 1-bit weight resolutions, and a 6-bit ADC in
their evaluation. We use the same RRAM settings proposed
by CASCADE while aiming to reduce the ADC resolution
using saturation described in Section III-A.

B. Quantization for RRAM Weight Values

Figure 2 illustrates three types of quantization applied to a
group of four weight values. Uniform quantization [5] shown
in Figure 2(a) uses a fixed number of terms to represent
values without putting any restrictions on the number of
nonzero terms across the values. Logarithmic quantization, in
Figure 2(b), is a more aggressive form of quantization that
works by rounding each value to the nearest power-of-two
term [6]. This allows for more efficient inference in conven-
tional hardware, but leads to a large accuracy degradation
compared to conventional quantization. Power-of-two term
quantization (TQ) relaxes logarithmic quantization by allowing
a term budget (α = 8 in the figure) of one or more terms for
values in a group (e.g., group size g = 4) [2]. Unlike the prior
work on TQ, in this work, we propose to use TQ to increase

(a) 5-bit uniform 
quantization

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

21 2023 2224
21

6
17
11

(c) TQ

24 21 2023 22
0 1

1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

21
6

16
10

21 2023 2224
0 1

1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

(b) Logarithmic 
quantization

16
4

16
8

Fig. 2: (a) 5-bit uniform quantization applied on four values.
(b) Logarithmic quantization uses only the largest term in each
value. (c) Term quantization (TQ) keeps the largest α = 8
terms across a group of 4 weights (g = 4).

sparsity in RRAM bitlines (storing power-of-two terms), which
enables a lower resolution ADC to be used.

III. EXPLOITING TQ WEIGHT SPARSITY IN RRAM
First, in Section III-A, we propose a saturation function
S which thresholds infrequently occurring large accumulated
values to a predefined smaller value. This enables the use
of a lower-resolution ADC. In Section III-B, we describe
a method for minimizing the saturation-induced error when
using a lower-resolution ADC. Finally, in Section III-C, we
evaluate the impact to accuracy of the saturation approach on
ImageNet [7] across multiple CNNs. Throughout this section,
we assume the term quantization with α = 8 and g = 4 has
been applied across the weights in each CNN layer. Multiple
groups are placed sequentially when deployed in a RRAM.

A. Saturation Bitline A/D Conversion

Using the high degree of sparsity introduced by TQ, we
propose to reduce the required ADC resolution in RRAM
implementations. For a bitline with 64 points, while an accu-
mulated value x requires a 6-bit ADC for accurate decoding,
we may use a 4-bit ADC instead. We propose the use of a
saturation function S to enable this lower resolution ADC as
follows:

S(x, τ, v) =

{
x, if x ≤ τ
v, otherwise

(1)

where x is the analog input from a bitline, τ is a saturation
threshold, and v is a saturation value. The purpose of S is
to threshold infrequently occurring large accumulated values
(e.g., x larger than τ = 16) to a much smaller value (e.g.,
v = 16) so that the ADC resolution can be reduced.

We developed a custom PyTorch implementation of bit-
sliced RRAM to analyze how much saturation error is intro-
duced into the system for different settings of τ (corresponding
to different ADC resolutions). Figure 3 shows the saturation-
induced error across the different bitlines in an RRAM as τ
is varied from 1 to 20. The horizontal red lines at τ = 8 and
τ = 16 denote the maximum value that can be decoded by
a 3-bit ADC and a 4-bit ADC, respectively. (Note that the
other values of τ which are not valid ADC resolutions, such
as τ = 12, are provided to illustrate the general trend).



2 4 6 8 10 12 14 16 18 20
Saturation Threshold τ

0

5

10

15

20

25
%

 o
f I

np
ut

 E
xc

ee
di

ng
 τ

3-bit ADC
maximum

4-bit ADC
maximum

Saturation-induced Error on 64 Point Bitlines
20 bitline
21 bitline
22 bitline

23 bitline
24 bitline
25 bitline

Fig. 3: The percentage of analog input which exceed the
saturation threshold τ (Equation 1) for 6 bitlines as τ is varied
from 1 to 20. The maximum value that can be reliably decoded
by a 3-bit and 4-bit ADC are shown in red, corresponding to
τ = 8 and τ = 16, respectively.

B. Selection of Saturation Value

Using the saturation value v in Equation 1, we have flex-
ibility in the handling of accumulated values larger than the
saturation threshold τ . Here, we present two approaches for
the selection of the saturation value v. Later, in Section III-C,
we provide empirical results on the impact to classification
accuracy when using each approach.

1) v equal to τ : simply sets v to τ . This approach corre-
sponds to not having a saturation value and instead using the
maximum ADC value (e.g., 8 for the 3-bit ADC scenario).

2) select v which minimizes saturation error: by sweeping
across the possible values for v and selecting the one that
introduces the least saturation error. A unique vl is chosen for
each convolution layer l, 1 ≤ l ≤ L, where L is the total
number of layers in the CNN.

C. Impact of Saturation on CNN Accuracy

We evaluate our saturation approach using pre-trained mod-
els for the ImageNet [7] dataset provided by the PyTorch
torchvision package for AlexNet [8], ResNet-18 [9], and
ResNet-50 [9]. Term quantization (α = 8, g = 4) is applied
to each model to convert the 32-bit floating-point weights and
data to 8-bit fixed-point representation with a fixed number of
nonzero terms per group. To estimate the saturation-induced
error, each convolution layer is then converted to our custom
PyTorch implementation, which performs inference using bit-
sliced weights and data, and applies the saturation function for
the specified ADC resolution (e.g., 4-bit ADC).

Figure 4 shows the ImageNet validation set top-1 classi-
fication accuracy under saturation as the ADC resolution is
varied from 3 bits to 6 bits using the two different strategies
for selecting v. The 6-bit ADC resolution is the baseline
setting without any saturation error. Interestingly, we observe
no difference in classification accuracy between the 5-bit and
6-bit ADC settings for either strategy, suggesting that a 5-bit
ADC can replace the standard 6-bit ADC without changing the
performance. The 4-bit ADC setting leads to a 0.05% decrease
in accuracy when the optimal v is selected per layer compared
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Fig. 4: The classification accuracy of AlexNet, ResNet-18, and
ResNet-50 on ImageNet using the proposed saturation RRAM
as the ADC resolution is varied from 3 bits to 6 bits.
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Fig. 5: (a) Saturation RRAM (adapted from ISSAC [1]) which
enables the use of a low-resolution (e.g., 4-bit) ADC, instead
of the standard 6-bit ADC. (b) The A/D conversion uses a
comparator to set bitline signal larger than τ to v. Signals
smaller than τ are passed to a low-resolution (e.g., 4-bit) ADC.

to a 0.1% to 0.2% decrease when setting v equal to τ . For the
3-bit ADC setting, the difference in performance between the
two saturation value strategies is more significant, with a 2.8%
difference in accuracy for ResNet-50. The higher percentage
of accumulated values that exceed τ in the 3-bit ADC scenario
makes optimal selection of v more important.

IV. SATURATION RRAM SYSTEM

In this section, we describe a hardware system design for a
saturation RRAM which implements the saturation bitline A/D
conversion based on S (Equation 1). We use the RRAM design
proposed by ISSAC [1] with 1-bit crossbar points (instead
of 2-bit points as in ISSAC) for a 64 × 64 RRAM crossbar.
Figure 5a provides an overview of the proposed saturation
RRAM. The key modification to the system is the use of the
saturation function (Equation 1) followed by a low-resolution
(e.g., 4-bit) ADC, depicted at the bottom of Figure 5a, which
replaces the standard high-resolution 6-bit ADC.

Figure 5b shows the hardware implementation of A/D
conversion using saturation with a low-resolution ADC. If the
analog signal from a bitline is larger than τ , the low-precision
4-bit ADC is skipped and the predefined saturation value v is



3216
8

(a) 6-bit ADC

(b) Saturation w/ 3-bit ADC

(c) Expanded 6-bit ADC for noise 
x

6-bit
ADC

b5 b4 b3 b2 b1 b0

x

saturation
threshold τ = 88

3-bit
ADC

b2 b1 b0

3-bit
ADC

b2 b1 b0

b5 = 0 
b5 = 1 

b4 = 0 
b4 = 1 

b3 = 0 

x = 23

A

b3 = 1 

3-bit
ADC

b2 b1 b0

B

8 16

x = 55

3-bit
ADC

b3 b2 *

E

b4 = 0 8
3-bit
ADC

b4 = 1 

x = 7

b3 b2 *

F

3-bit
ADC

b2 b1 *

C 3-bit
ADC

b2 b1 *

D

b3 = 0 b3 = 1 

x - 16

x - 8x - 8

saturation
value 𝓥

Fig. 6: (a) A 6-bit ADC for an RRAM bitline of 64 rows
converting input x. (b) The proposed saturation scheme based
on a 3-bit baseline ADC. (c) The 6-bit ADC in (a) expanded.
Due to noise accumulated by active points, ADCs for large x
can only decode higher order bits.

returned. Otherwise, it is passed to the low-resolution ADC
to perform standard A/D conversion in the reduced range
(e.g., using a 4-bit resolution instead of the standard 6-bit
resolution). As discussed earlier in Section III-A, since large
accumulated values output from bitlines are infrequent, this
design can be used in place of the higher-resolution ADC
without significantly impacting the accuracy of the system.

V. ADC NOISE ANALYSIS

In this section, we show how our proposed saturation
scheme with a 3-bit ADC can be viewed as an approximate
solution to a 6-bit ADC under noise. We assume that noise
on a bitline is proportional to the number of active points.
As depicted in Figure 6a, if there is no noise, a 6-bit ADC
can fully decode an analog signal value x accumulated on a
bitline of 64 rows into 6 output bits (b5, b4, b3, b2, b1, b0).
Figure 6b illustrates our proposed saturation scheme. If x is
less than τ = 8, then it is sent to a 3-bit baseline ADC to
decode (b2, b1, b0) such that the 6-bit output is (0, 0, 0, b2,
b1, b0). Otherwise, x escapes to a saturation value v that is
slightly larger than the saturation threshold of 8 (e.g., v = 10).

Figure 6c expands the 6-bit ADC into six instances of the
3-bit baseline ADC by recognizing increased noise associated
with large values of x. Our proposed saturation scheme in
Figure 6b is an approximation to Figure 6c, by escaping the
five instances of the 3-bit baseline ADC (i.e., ADC instances
B through F). By using the 3-bit baseline ADC once rather
than six times, the proposed saturation scheme achieves a
6× savings in ADC. As we have seen in Section III-C,
the proposed saturation scheme with a 3-bit baseline ADC
has a modest impact on ImageNet classification accuracy. By
comparison, the saturation scheme with a 4-bit baseline ADC,
which escapes at a higher threshold τ = 16 rather than τ = 8,
has only a minimum impact on accuracy. We could continue
improving the performance by reusing the baseline ADC for
the additional ADC instances as depicted in Figure 6c.
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Fig. 7: Area and energy breakdown for a baseline RRAM
with a 6-bit ADC compared to saturation RRAMs with 4-bit
and 3-bit ADCs. With saturation, the ADC is no longer most
expensive system component in terms of area and power.

VI. SATURATION RRAM EVALUATION

In this section, we evaluate the area and power of the
proposed saturation RRAM using a low-resolution 3-bit or 4-
bit ADC shown in Figure 5b against a baseline RRAM with
a standard high-resolution 6-bit ADC. We adopt the area and
power data in [1], [10] for modeling the crossbar, DAC, Shift
& Add (S&A), and Sample & Hold (S&H) components. For
modeling the ADC area and power, we use the data from an
ADC performance survey [11].

Figure 7 shows the area and power breakdowns for the
baseline RRAM and the proposed saturation RRAM with 4-bit
and 3-bit ADC, respectively. In the baseline RRAM, the ADC
consumes a significant portion of area (75.6%) and power
(54.2%). By comparison, the RRAM crossbar, which performs
the matrix-matrix multiplication, only accounts for 3.4% of the
area and 9.2% of the power. The saturation RRAM with a 3-bit
ADC requires 2.65× less area and 1.90× less power than the
baseline RRAM. Therefore, by reducing the ADC resolution
using the proposed saturation scheme, we can significantly
reduce the total area and power consumption of the RRAM.

VII. CONCLUSION

The saturation RRAM proposed in this paper, leverages
term quantization to reduce the A/D conversion costs. That
is, for in-memory CNN computing, there is no need for an
RRAM bitline to keep accurate accounting of large values, i.e.,
they can be simply saturated at a much small value; thereby
allowing use of a lower resolution ADC, with minimum impact
on model accuracy. For example, a saturation RRAM of 64
rows can use a threshold of 16, thus allowing the use of a
4-bit ADC instead of 6-bit ADC. Saturation RRAM offers a
general direction of leveraging bit-level sparsity of CNNs in
the architecture design of RRAM.
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