
End User Empowerment in Human Centered
Pervasive Computing

Krzysztof Gajos, Harold Fox, and Howard Shrobe

MIT AI Lab, Cambridge, MA, USA,
{kgajos,hfox,hes}@ai.mit.edu,

http://www.ai.mit.edu/projects/iroom

Abstract. Human-centered computation is characterized by at least
three features: it must be adaptive, reactive, and it must empower the
user to configure and extend the behavior of the systems using her natu-
ral modes of interaction. In our previous work we have proposed systems
that address the first two features. In this paper we present Alfred – a
natural end user programming interface for Intelligent Environments.

1 Introduction

Our work is situated in the context of human-centered pervasive computing. Our
goal is not just to make computation pervasive but also to change fundamentally
the interaction between humans and computers to one in which computers adapt
to human forms of discourse rather than the other way around. Human-centered
computation is characterized by at least three features: first, the computational
systems must be especially adaptive, responding to requests in a contextually
sensitive manner. Second, they must be reactive, responding reasonably and
unprompted to events in the environment. Third, end users must be empowered
to modify and extend the behavior of the systems using natural interaction
modes.

Ordinarily, the first two of these goals would seem to be in conflict with the
third. It would seem that a complex, adaptive and reactive system would require
sophisticated programming which only skilled software engineers could produce.
However, the thesis of this paper, which we demonstrate in our work, is that
the truth is the exact opposite. A system properly structured for self-adaptivity
and reactivity to the environment provides exactly the correct vocabulary and
control points for enabling end users to extend and configure the system in a
”teaching by example” manner.

Within the Intelligent Room Project[6], we have previously built Rascal[5]
and ReBa[7], two systems which are responsible for the adaptive and reactive
components, respectively, of our software infrastructure. In this paper, we present
Alfred, an end user programming interface that gives the user the ability to
program the system to her particular needs and preferences.

Rascal, the core of our system, is a framework for goal-directed self-adaptivity.
In brief, it works with goals, plans for achieving those goals, and the resources



2

needed to implement the plans. Since each goal may be satisfied by multiple
plans, the system can adapt to varying circumstances by selecting a plan appro-
priate to the context. User preferences form a key part of the decision making
about how to achieve a goal; the system should choose that method which best
satisfies the user’s preferences while consuming resources that have the lowest
cost.

ReBa, the reactive component of our system, responds to events from the
environment’s perceptual systems. For example, a reaction might be triggered
by someone entering a room. The task of this component is to respond to the
event with a sensible behavior; for example, it might turn on the lights if someone
entered the room. To maintain the overall adaptivity of the system, reactions are
not handled as simple stimulus-response pairs. Instead, ReBa performs reactions
by posting a new goal for Rascal to achieve; the goal is then satisfied by finding
an appropriate plan, using the same techniques that are used in direct requests.
For example, when a user enters his office in the morning, the system might
react by posting the goal of illuminating the room. One plan for illuminating
the room might turn on the lights, while another might open the drapes.

Reactions are not just straightforward mappings of events to goals, but are
contextually sensitive. For example, if an office is dark because people are watch-
ing a movie, then it would be inappropriate to illuminate the room just because
the door opened. In summary, ReBa handles events from perceptual signal pro-
cessors and produces context-dependent reactions that posit new goals for the
resource manager.

Our claim is that a system structured around these concepts provides an
appropriate framework for end user empowerment. Through tools such as Alfred,
it allows an end user to “program” the system by telling it the name of a new
goal, demonstrating one or more plans for achieving that goal, and finally telling
the system the conditions under which it would prefer one plan to another.
Similarly, the user can name events that arise in the environment and tell the
system what goals should be posted when those events arise. Each of these steps
can be done by simple verbal commands or other natural forms of interaction.
End users, in effect, record “macros” which, when situated in the infrastructure
we have described, are executed adaptively and reactively.

2 More On Adaptivity In The Intelligent Room

To put our current work in context, we will briefly describe some of the technical
aspects of Rascal and ReBa.

Rascal Software infrastructure for Intelligent Environments (IEs) has to be able
to support interactions in a variety of spaces with very different capabilities.
Rascal[5, 4], a high-level resource manager for the Intelligent Room, provides a
crucial layer of abstraction by allowing applications to make high-level service
requests, such as delivering a message to the user. Rascal then evaluates all
available methods for satisfying the request, effectively producing a plan that



3

takes into account the availability of the hardware and software resources in the
current environment. Additionally, Rascal can take “advice” from other agents
on what kinds of resources are preferable in what context. For example, an agent
detecting activity context through ReBa will discourage the use of audio devices
in favor of displays when the user is talking on the phone.

This layer of abstraction allows us to design new applications without having
detailed knowledge of the environments they would be running in. Currently our
software is running in several offices, a conference room, a living room, and
a bedroom. In those environments, the equipment ranges from a multitude of
A/V devices in the conference room to a single speaker and a small display in
the bedroom.

Additionally, Rascal performs arbitration among competing resource requests,
adapting its resource assignments to the quantity and priority of different tasks
that are running at the same time.

ReBa An Intelligent Environment is expected to react automatically to some
of the events taking place within its boundaries. As mentioned in the introduc-
tion, such an environment should illuminate the room upon a person’s entry.
It should also take context into account when reacting to events, e.g. it should
not illuminate the room upon a person’s entry if the room is already occupied
by people watching a movie. Finally, different kinds of spaces (such as offices or
bedrooms) would have a need for very different kinds of behaviors. To address
those issues, we have developed ReBa[7] to be a modular system that allows
dynamic combining of context-sensitive reactive behaviors.

In ReBa, developers make individual behavior bundles . Each bundle defines
its activity context and a set of responses to particular events. The activity
context is composed of another set of rules that decide when a bundle should
be active, i.e. the context in which its behaviors should start responding to
perception events.

The core component of ReBa is its Behavior Coordinator. Behavior bundles
register with it, and it resolves the potential conflicts and dependencies among
the individual behaviors. Although all behavior bundles are written by software
engineers, it is the responsibility of the owner of any individual space to choose
the most appropriate combination of behaviors for his space.

As explained earlier, ReBa behaviors react to events by posting service re-
quests to Rascal, ensuring that the reactions adapt to different environments.

3 Designing Alfred

In contrast to the above frameworks for application developers, Alfred puts the
user at the center of the creation of intelligent environment functionality..

The premise of Alfred is very simple – it is essentially a multi-modal macro
recorder. Upon a user’s request, the system begins recording all of his actions,
primarily spoken commands. When the recording is done, he assigns one or more
spoken names to the recorded sequence. He can also add hardware triggers to it.



4

The recorded macros are simple task sequences lacking explicit conditionals.
Macros can, however, call other macros, giving users the capability to create
abstractions.

3.1 Interaction Decisions

The problem of designing a programming system for the end-user is extremely
difficult, as explained by Nardi[9]. Techniques like visual programming, form
filling, example modification, and programming by example have all been ap-
plied with moderate success in some domains, but neither one has had universal
success. Despite their hype, speech, gesture, natural language, and sketching
interfaces are not by themselves the solution to empowering end users’ use of
computation. The abstractions used in general programming are too foreign to
the user’s mindset for him to take the time to learn most programming tools.
What works is a tool whose high-level structures and formalisms match the for-
malisms present in the user’s own mind. Programs like spreadsheets and CAD
tools have been very effective end-user tools despite their complexity and inhu-
man syntax. This is because these programs use primitives and constructions
that are natural from the education and experience of the accountants and de-
signers that use them.

While interacting with Alfred, the user performs actions in a task sequence
exactly as she would when she performs the tasks individually. A sequence of
tasks forming a procedure is quite familiar to most users from recipes and other
instructions. A metaphor for the interaction is that of a user instructing a butler
(hence the name of the system). The input modality we chose is a spoken dialogue
with the environment as this is the primary modality in the Intelligent Room[1].

3.2 Software Architecture

In order to explain the technical underpinning of Alfred, we will first briefly
describe the relevant parts of the software infrastructure behind the Intelligent
Room.

Metaglue[2] is a multi-agent system that uses two communication mecha-
nisms: direct method calls and a publish-subscribe mechanism.

Speech recognition[3] is done centrally in each environment, but the pro-
cessing of recognized utterances is distributed among all speech enabled agents.
When the speech recognition engine recognizes a spoken utterance, it passes the
utterance to the appropriate agent via a direct method call. It also posts a speech
recognition event containing the details of the spoken utterance as well as the
name of the destination agent.

As explained earlier, user commands cause high-level service requests to be
sent to Rascal. Those requests are evaluated dynamically based on which ser-
vices are available in a given environment and which are currently unused. Even
such low level agents as the light manager use a level of indirection to discover
and adapt to the illumination capabilities of whatever physical space they are
operating in.



5

Given this infrastructure, in the recording phase, Alfred can observe a user’s
deliberate actions (such as speech commands, device controlling actions, etc) and
record them. The information contained in the event notifications is sufficient to
later on “recreate” the events.

Our speech infrastructure allows instantenous updates of vocabulary so new
named task sequences can be accessed as soon as they are recorded. When a
task is triggered – either by a direct command or by a hardware trigger – Alfred
contacts appropriate agents as if the previously recorded commands and events
just took place.

4 Using Alfred

Recording A New Macro The following interaction illustrates how Alfred
can be taught a new task sequence.

User: I want to record a new macro.
Computer: Beginning to record a macro. Say “stop recording” when you are

done.
User: Turn on the main lights. Open the drapes. Turn on my desk lamp. Say

“good morning.” Stop recording.
Computer: What phrase would you like to associate with this macro?
User: “Good morning, computer.”
Computer: Any other phrase?
User: No, I am done.
Computer: Macro added!
From this moment on, any time the user says “Good morning, Computer,”

the above sequence of actions will be repeated.

Adding A Hardware Trigger Task sequences can also be associated with
hardware events. In particular, we have added a number of “free buttons” to
our conference room that can be programmed for any task. Tasks may also be
associated with existing hardware interfaces, such as the light switch:

User: When I press this button [user presses one of the free buttons] run the
“Good morning, computer” sequence.

Computer: Please press the button again for confirmation.
[User presses the button again]
Computer: Done!
From this moment on, whenever somebody presses the button, the “Good

morning, computer” macro will be automatically executed.

Invoking The Tasks A recorded task sequence can be invoked in three different
ways: through a spoken command, through a hardware trigger (if defined), and
through a graphical user interface (if present). Our conference room is equipped
with a touch panel where interfaces for a number of agents are displayed. Alfred
also displays a list of task sequences it has been taught. Users can activate any of



6

the sequences by pressing the right button on the display. Our handheld devices
can also obtain Alfred’s GUI upon entering a space.

Occasionally, Alfred encounters errors while executing task sequences. Gen-
erally, errors occur when there is no resource available that can provide one of
the recorded tasks or when the component performing an individual task reports
an error. In such cases, Alfred tells the user which of the tasks failed and asks if
it should attempt to run the remaining tasks or if it should abort the sequence.

5 Evaluation

Alfred has been developed very recently, and we have not yet conducted formal
user studies to evaluate it. We have, however, deployed the system in a conference
room and two offices. In both offices and in the conference room, the users have
recorded a number of task sequences. Most of them are for reconfiguring the
spaces for different kinds of activities: meetings, demonstrations, presentations
or movie watching in the conference room, and working, meeting or presentation
in the offices. In the individual offices, the users prefer to invoke tasks using
speech. In the conference room, the primary modality is the graphical interface
displayed on a touch panel by the entrance to the room. As a rough guide, we
have also applied the nine heuristics proposed by Nielsen[10] to avoid major
flaws in our design.

6 Future Direction

Alfred allows users to easily extend and customize the capabilities of their envi-
ronments. However, several future directions suggest themselves immediately to
make end-user programs more expressive. Specifically, we want to add support
for conditional statements. Beyond this, we would like to enable users to create
multiple solutions to their requests and to create preferences for one solution
over another in different contexts.

Extending Alfred to use conditionals is straightforward. The same events
that we use to trigger service requests in ReBa can be used to make user-defined
service requests act differently under different system state. For example, as part
of the “Good morning” task sequence, the user can say: “If the temperature is
greater than eighty-five, turn on the fans. Otherwise, if the temperature is less
than sixty-five, turn on the heater.”

Another way we can make user-defined service requests more dynamic is to
allow multiple plans to satisfy a request, with user preferences dictating the
execution of one over the other. For example, I can set up two plans to light up
the room: ”turn on the lights” and ”open the drapes”. To specify a preference
for the latter over the former, I can say: ”To light up the room, if it is daytime, I
prefer plan one to plan two. Otherwise, I prefer plan two to plan one.” A method
for efficiently computing utility functions from sets of such simple preferences
has been recently proposed by McGeachie[8]. In our example, if the user is in a
windowless conference room, and she says ”light up the room”, only the ”turn



7

on the lights” request is available. If she is in a windowed office with lights
and drapes, there are two plans available, and the appropriate utility function
for each of them gets computed from the recorded preferences. During the day,
when she says ”light up the room,” her agent will open the drapes. By providing
multiple solutions to any given service request, the user can instruct her agent to
adapt to different rooms and environments with different resource capabilities.

7 Conclusions

In this paper we have described a system that is highly adaptive and reactive
while supporting end user empowerment at the same time. Indeed, we have
argued and demonstrated that the structures and conceptual framework defined
to support adaptivity and reactivity provide the appropriate control points to
enable the end user to program the system by direct instruction.

When the end user programs the system, she defines a goal and a set of plans,
composed of sub-goals, that could be used to satisfy the goal. Her preferences
dictate which plans are weighted higher than others. In this way, the user can
create new functions and new reactions that can migrate easily from one space
to another.

References

1. Michael Coen. Design principles for intelligent environments. In Fifteenth National
Conference on Artificial Intelligence (AAAI98), Madison, WI, 1998.

2. Michael Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen Pe-
ters, and Peter Finin. Meeting the computational needs of intelligent environments:
The Metaglue system. In Proceedings of MANSE’99, Dublin, Ireland, 1999.

3. Michael Coen, Luke Weisman, Kavita Thomas, and Marion Groh. A context
sensitive natural language modality for the Intelligent Room. In Proceedings of
MANSE’99, Dublin, Ireland, 1999.

4. Krzysztof Gajos. A knowledge-based resource management system for the Intel-
ligent Room. Master’s thesis, Massachusetts Institute of Technology, Cambridge,
MA, 2000.

5. Krzysztof Gajos. Rascal - a resource manager for multi agent systems in smart
spaces. In Proceedings of CEEMAS 2001. Springer, 2001. To appear.

6. Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, and Tyler Horton. Build-
ing agent-based intelligent workspaces. In Proceedings of ABA 2002, July 2002.
To Appear.

7. Ajay Kulkarni. A reactive behavioral system for the Intelligent Room. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, 2002.

8. Michael McGeachie and Jon Doyle. Efficient utility functions for ceteris paribus
preferences. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence, August 2002. To Appear.

9. Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User
Computing. MIT Press, Cambridge, MA, 1993.

10. Jacob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceed-
ings of ACM CHI’90, Seattle, WA, 1990.


