
Preference Elicitation for
Interface Optimization

Krzysztof Gajos and Daniel S. Weld
University of Washington, Seattle



Krzysztof Gajos



Motivation:
Supple Model-Based Interface Renderer

+

Hierarchy 
of State 
Vars +
Methods

Screen Size,
Available 
Widgets &
Interaction 
Modes

Func.
Interface

Spec.

Device
Model

User 
Trace

Custom
Interface
Rendering

+

Model of 
an Individual
User’s Behavior
(or that of 
 a Group)

{<root, -, ->
 <LeftLight:Pow er, off, on>
 <Vent, 1, 3>
 <Projector:Input, video, com puter>
      …  }

Decision
Theoretic
Optimization



[Gajos & Weld, IUI’04]

Supple Output



  Container factor weight: 0.0
  Tab Pane factor weight: 100.0
  Popup factor weight: 1.0
  Spinner for integers factor weight: 5.0

  Spinner (domain size) factor weight: 49.5238
  Spinner for non-integers factor weight: 6.0

  Slider factor weight: 45.7143
  Progress bar factor weight: 0.0
  Checkbox factor weight: 0.0
  Radio button factor weight: 0.5

  Horizontal radio button factor weight: 10.0
  Radio button (>=4 values) factor weight: 0.0

  Radio button (>=8 values) factor weight: 74.2857
  Radio button for booleans factor weight: 14.2857

  Checkbox list factor weight: 0.5
  Horizontal Checkbox list factor weight: 0.5
  Checkbox list (>=4 values) factor weight: 0.0
  Checkbox list (>=8 values) factor weight: 1.0

  Text field factor weight: 100.0
  Text field for enumerable types factor weight: 14.2857

  Single param action widget factor weight: 0.0
  Button factor weight: 0.0

  Combo box factor weight: 14.2857
  Combo box (>10 values) factor weight: 45.7143

  Combo box (>25 values) factor weight: 1.0
  Combo box (>50 values) factor weight: 1.0

  List factor weight: 71.4286
  Reduced width list factor weight: 10.0

  List under-size factor weight: 2.8571
  List over-size factor weight: 57.1429

  List for containers factor weight: 10.0
  Label factor weight: 3.0
  Text Area factor weight: 0.0
  Text area under-width factor weight: 0.1

  Text area under-height factor weight: 0.23809
  Image-based factor weight: 0.0

  Image based under-sized factor weight: 3.5714

[Gajos & Weld, IUI’04]

Supple Depends on Weights



RIA

[Zhou +, UIST’04; IUI’05]



[Zhou +, UIST’04; IUI’05]



Expected Cost
of Interruption

Probability of an
interruptability
state I

i

BusyBody

Cost of
interrupting if
user is in state I

i

[Horvitz +, CSCW’04]



BusyBody

Expected Cost
of Interruption

Probability of an
interruptability
state I

i

Cost of
interrupting if
user is in state I

i

Needs to be elicited
from the user for every
interruptability state I

i

[Horvitz +, CSCW’04]



[Agrawala +, SIGGRAPH’01]

LineDrive



Arnauld: A Tool for
Preference Elicitation

Arnauld
Optimizing

UI 
Application

Weights

   Raises level of abstraction:
– instead of directly choosing weights…,
– designers now interact with concrete outcomes



Arnauld: A Tool for
Preference Elicitation

Arnauld
Optimizing

UI 
Application

Weights

   Raises level of abstraction:
– instead of directly choosing weights…,
– designers now interact with concrete outcomes



Arnauld: A Tool for
Preference Elicitation

Arnauld
Optimizing

UI 
Application

Weights

   Raises level of abstraction:
– instead of directly choosing weights…,
– designers now interact with concrete outcomes



Arnauld
Optimizing

UI 
Application

Weights

   Raises level of abstraction:
– instead of directly choosing weights…,
– designers now interact with concrete outcomes

Arnauld: A Tool for
Preference Elicitation



Benefits

• Saves Developers Time
– By factor of 2-3x

• Improves Quality of Weights
– Learned weights out-perform hand-tuned

• Users May Want to Override Default Params
– Individual preferences
– Multiple uses



Our Contributions
• Implemented Arnauld system for preference elicitation

– Applicable to most optimization-based HCI applications
– Implemented on SUPPLE

• Based on two interaction methods for eliciting
preferences

• Developed a fast machine learning algorithm that
learns the best set of weights from user feedback
– Enables interactive elicitation

• Investigated two query generation algorithms
– Keep the elicitation sessions short



Outline

• Motivation
• Elicitation techniques

– Example critiquing
– Active elicitation

• User responses  constraints
• Learning from user responses
• Generating queries
• Results & Conclusions



Example Critiquing



Via Customization Facilities

Click!



Provides Training Example!

before after

Result of Customization

<



Example Critiquing

 Exploits natural interaction
 Occuring during process of customizing interface

 Effective when cost function is almost correct

But…

 Can be tedious during early stages of parameter
learning process

 Requires customization support to be provided by
the UI system (e.g. RIA, SUPPLE, etc.)



Active Elicitation



Active Elicitation
UI in Two Parts

Structure provided by ARNAULD



Active Elicitation
UI in Two Parts

Content provided by the interface system for
which we are learning weights



Active Elicitation
 Convenient during early stages of parameter

learning process

 Binary comparison queries easy for user

 Doesn’t require any additional support from UI
system, for which parameters are generated

But

 Doesn’t allow designer to direct learning process

Choice of Best Question is Tricky



Limitations of Isolated Feedback

Both examples so far provided feedback of the form

“All else being equal, I prefer sliders to combo boxes”

<

But what if using a better widget in one place
Makes another part of the interface crummy?!



>

<
In isolation, sliders are preferred

But using them may cause badness elsewhere



Situated Feedback
with Active Elicitation



Situated Feedback
with Example Critiquing



Summary of Elicitation Interactions

Active
Elicitation

Example
Critiquing

SituatedIsolated



Outline

• Motivation
• Elicitation techniques
• User responses  constraints
• Learning from user responses
• Generating queries
• Results & Conclusions



Turning User Responses Into
Constraints

!
=

=
K

k

kk interfacefuinterface
1

)()cost(

All systems studied had linearly decomposable cost 
functions; these can be expressed as:

A “factor” reflecting
presence, absence
or intensity of some
interface property

A weight
associated
with a factor



From User Responses to Constraints

sliderhorizontalslidernumberforboxcomboboxcombo uuuu
_____

+!+

<

)  ≥ cost(cost( )

1

1

___

_

=

=

numberforboxcombo

boxcombo

f

f

1

1

_ =

=

sliderhorizontal

slider

f

f

!!
==

"
K

k

kk

K

k

kk interfacefuinterfacefu
1

2

1

1 )()(



Outline

• Motivation
• Elicitation techniques
• User responses  constraints
• Learning from user responses
• Generating queries
• Results & Conclusions



Learning Algorithm

    Given constraints of the form:

Find values of weights uk
  Satisfying a maximum number of constraints
   And by the greatest amount

!!
==

"
K

k

kk

K

k

kk interfacefuinterfacefu
1

2

1

1 )()(



Our Approach

Use a max-margin approach
Essentially a linear Support Vector Machine

Reformulate constraints:

i

K

k

kk

K

k

kk slackmargininterfacefuinterfacefu +!"##
== 1

2

1

1 )()(



Our Approach

Use a max-margin approach
Essentially a linear Support Vector Machine

Reformulate constraints:

i

K

k

kk

K

k

kk slackmargininterfacefuinterfacefu +!"##
== 1

2

1

1 )()(

Per-constraint slack that
accommodates

unsatisfiable constraints

Shared margin by
which all constraints

are satisfied



Learning as Optimization

Set up an optimization problem that maximizes:

Subject to the constraints:

i

K

k

kk

K

k

kk slackmargininterfacefuinterfacefu +!"##
== 1

2

1

1 )()(

!"
i

islackmargin



Learning as Optimization

Set up an optimization problem that maximizes:

Subject to the constraints:

i

K

k

kk

K

k

kk slackmargininterfacefuinterfacefu +!"##
== 1

2

1

1 )()(

!"
i

islackmarginSolved with standard

linear programming methods

in less than 250 ms.



Outline

• Motivation
• Elicitation techniques
• User responses  constraints
• Learning from user responses
• Generating queries
• Results & Conclusions



Generating Queries

• Important part of Active Elicitation
– Like game of 20 questions, order is key

• Optimality is intractable
• Introducing two heuristic methods

– Searching ℜn space of weights
• General method: applies to all opt-based UI

– Search space of semantic differences
• Faster
• Requires tighter integration with the UI appl’ctn



Generating Queries

• Why is it important?
– Like game of 20 questions, order is key

• Optimality is intractable
• Introducing two heuristic methods

– Searching ℜn space of weights
• General method: applies to all opt-based UI

– Search space of semantic differences
• Faster
• Requires tighter integration with the UI appl’ctn



Visualizing the search
thru ℜn space of weights

A binary preference 
question 
       cleaves 
the space



Preferred 
Region

Answering Question Creates Region



Midway thru the Q/A Process…

What is the best
immediate (greedy)
question for
cleaving?



Good Heuristics for Cleaving

1. As close to
the centroid
as possible

2. Perpendicular
to the longest
axis of region



Outline

• Motivation
• Elicitation techniques
• User responses  constraints
• Learning from user responses
• Generating queries
• Results & Conclusions



Informal User Study
• Four users

– Two Supple developers
– Two “sophisticated users”

• I.e. programmers w/o Supple experience

• Developers asked to hand-build cost function
– Hand-coding took 2-3x longer
– Resulting function “wrong” 35% of the time!

• Using Arnauld to create cost function
– Got robust cost function in 10-15 minutes
– All said Arnauld much easier & more accurate



Number of Elicitation Steps

Learning Rate
R

at
io

 o
f L

ea
rn

ed
 F

un
ct

io
n 

to
 Id

ea
l

Of different question-generation algorithms



Sensitivity to Noise
10% User Errors

Number of Elicitation Steps

R
at

io
 o

f L
ea

rn
ed

 F
un

ct
io

n 
to

 Id
ea

l



Related Work

• Gamble Queries
– Outcomex vs.
pBest + (1-p)Worst

• Bayesian Learning
– [Chajewska,

ICML’01]
– Too slow for

interactive use

40 seconds
(too slow)

1 second
(large error)



Conclusions
• Implemented Arnauld system for preference elicitation

– Applicable to most optimization-based HCI applications
– Saves developers time
– Creates better weights

• Based on two interaction methods
– Example Critiquing
– Active Elicitation
– Investigated two query generation algorithms

• Novel machine learning algorithm
– Learns good weights from user feedback
– Fast enough for interactive elicitation


