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ABSTRACT 
The ubiquity of internet-based nutrition information sharing 
indicates an opportunity to use social computing platforms 
to promote nutrition literacy and healthy nutritional choices. 
We conducted a series of experiments with unpaid 
volunteers using an online Nutrition Knowledge Test. The 
test asked participants to examine pairs of photographed 
meals and identify meals higher in a specific macronutrient 
(e.g., carbohydrate). After each answer, participants 
received no feedback on the accuracy of their answers, 
viewed proportions of peers choosing each response, 
received correctness feedback from an expert dietitian with 
or without expert-generated explanations, or received 
correctness feedback with crowd-generated explanations. 
The results showed that neither viewing peer responses nor 
correctness feedback alone improved learning. However, 
correctness feedback with explanations (i.e., modeling) led 
to significant learning gains, with no significant difference 
between explanations generated by experts or peers. This 
suggests the importance of explanations in social 
computing-based casual learning about nutrition and the 
potential for scaling this approach via crowdsourcing.  

Author Keywords 
Nutrition literacy; casual learning; observational learning; 
crowdsourcing 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous. 

INTRODUCTION 
Public health “promotes and protects the health of people 
and the communities where they live, learn, work and play” 
[5] with a particular focus on prevention through adoption 
of healthy behaviors. Traditional public health interventions 

focused on education and messaging to reach broad 
segments of population through mass broadcasting and 
health campaigns. The increasing popularity of social 
computing platforms creates a new opportunity to both 
study attitudes and social norms towards health and health 
behaviors, and to influence these behaviors on an 
unprecedented scale. There is potential to integrate the 
human-computer interaction (HCI) and public health fields 
and move toward HCI applications that support health 
promoting practices and norms. 

The phenomenon of the food photo sharing has arisen 
simultaneously with the ubiquity of smartphones and social 
media. A recent marketing analysis found that 22% of 
sampled participants were “highly engaged with technology 
and food” [14] and people take and share photographs of 
their meals regularly on social media platforms, including 
Instagram [23] and Twitter [38]. Twitter users’ interests, 
demographics, and social networks have been linked to 
their food-related tweets [1]. Sharma & DeChoudhury [33] 
analyzed over 1 million food-related Instagram posts for 
calorie content and then used these data to link posts about 
foods with moderate calorie content with more and more 
positive community response than those with very low or 
very high calorie content. These findings suggest the 
potential for large-scale observational learning about 
nutrition in the social computing context. However, 
previous research on food photo sharing with social media 
focused primarily on existing attitudes and photo sharing 
practices, rather than on examining whether photo sharing 
presents opportunities for learning about nutrition and for 
promoting healthy eating choices. Determining if people 
can increase their nutrition literacy through food photos on 
social media and if so, identifying mechanisms by which 
this type of learning occurs, could make a significant 
contribution to public health research seeking to promote 
healthy eating. 

In this research, we are particularly interested in examining 
the possibility of enabling observational nutritional learning 
with social computing platforms. Observational learning—
learning that happens through observing behaviors of others 
(models) rather than through formal instruction or one’s 
own experience [7]—has many advantages over other types 
of learning mechanisms and is particularly scalable in the 
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context of online communities and social media platforms 
as it relies on resources available within these communities, 
rather than experts or expert-created instructional materials. 
Previous research investigated the plausibility of 
observational learning about nutrition with simple social 
computing features, such as collaborative tagging [26] and 
within communities of paid crowd workers [27]. The results 
of the work with paid workers showed that on tasks that 
required nutritional knowledge, observing aggregated 
solutions provided by others helped workers on Amazon 
Mechanical Turk (MTurk) improve their understanding of 
nutrition, and led to increased accuracy in their own 
solutions [27]. Building upon this prior work, the questions 
investigated in this study examined whether these findings 
hold for communities of volunteers interested in casual 
learning about nutrition, and for more realistic nutritional 
tasks consistent with nutritional choices made by regular 
individuals. If this study returned positive results, it could 
suggest that observational learning is a plausible 
mechanism for promoting nutrition literacy among 
intrinsically motivated individuals and in the context of 
their nutritional choices.  

We conducted two experiments to examine the 
effectiveness of observational learning about nutrition in 
the social computing context, and to compare it with more 
traditional mechanisms for facilitating learning, such as 
expert-generated correctness feedback. We conducted these 
experiments with a Nutrition Knowledge Test (NKT) on a 
high-volume, web-based research platform that hosts 
multiple behavioral experiments drawing intrinsically 
motivated, unpaid online volunteers. Using this platform, 
volunteers participate in engaging activities and consent to 
provide the data they generate to researchers in exchange 
for information about their personality or behavior. These 
informal and intrinsically motivated activities align well 
with the concept of casual learning [21]. 

Using the NKT, we assessed the influence of different 
observational learning interventions on performance of a 
nutrition literacy task. We asked participants to perform a 
realistic, but complex task: Comparing photographs of 
mixed-ingredient meals and identifying and evaluating the 
ingredients that contribute to macronutrient (i.e., 
carbohydrate, protein, fat, fiber) content. Because of the 
high volume of participation, the research platform 
presented an opportunity to compare the effects of different 
types of learning mechanisms on task performance. These 
mechanisms included 1) traditional correctness feedback 
obtained by comparing an individual’s answer to the answer 
generated by a trained registered dietitian nutritionist 
(RDN), 2) correctness feedback accompanied by an 
explanation for how the correct answer was achieved, 
which served as a model for promoting observational 
learning, and 3) more direct observational learning through 
comparison of an individual’s answer with distribution of 
answers provided by others who took the same test. We 

also examined if feedback and explanations generated by 
peers and experts had similar effects on learning. 

The study showed that people participating in social 
computing-based casual learning significantly improved 
their accuracy between the pre- and post-tests when we 
provided them with correctness feedback together with 
explanations. We further established the potential for 
scaling this approach through crowdsourcing by 
demonstrating that the learning gains yielded by peer-
generated explanations were not statistically different from 
those achieved with expert-generated explanations.  

BACKGROUND AND THEORETICAL FOUNDATIONS 

Nutrition Literacy 
Health literacy, “the degree to which individuals have the 
capacity to obtain, process, and understand basic health 
information and services needed to make appropriate health 
decisions,” [30] has been linked to health outcomes [8], 
health system navigation [28], and primary and secondary 
prevention of disease [32]. The more specific nutrition 
literacy has been less well studied [10], but nutrition 
knowledge has been related to healthier eating patterns 
[34]. Although it is well established that knowledge alone is 
not sufficient to change nutrition behavior [12], nutrition 
knowledge is certainly an important part of dietary decision 
making. 

Nutrition literacy has been linked to “nutrition information-
seeking behaviors” [40]. In a 2011 survey of randomly 
sampled Americans, 46% reported that they actively 
engaged in nutrition information seeking; though 67% 
reported receiving information about nutrition from 
television, 40% reported receiving it from the internet, with 
higher reporting among those aged 18-44 [4]. Nutrition 
literacy typically focuses on increasing nutrition knowledge 
and skills, like reading nutrition facts labels [10, 20]. Its 
application is illustrated by Gao, Constanza, and schraefel’s 
[17] examination of participants’ ratings of the healthiness 
of meal photographs; they found that macronutrients were 
the most frequently considered attribute in assigning a 
rating. Researchers have called for improved nutrition 
literacy tools and applications [20]. Given the increase in 
nutrition information seeking that occurs on the internet, 
online and social computing-based learning activities may 
be a particularly appropriate solution. Furthermore, 
providing learning activities in the context of real meals 
may have a stronger link to dietary choices.  

Observational Learning 
Observational learning, an essential component of 
Bandura’s Social Cognitive Theory, is based on the human 
phenomenon of vicarious learning by observing others’ 
actions and their consequences [7]. Observational learning 
has been implicated in aggressive behavior [6], online 
purchasing behavior [11], and attitudinal diffusion through 
a cultural group [31]. Observational learning requires: 1) 
attention to the behavior being modeled, 2) retention of the 



salient aspects of the modeled behavior, 3) ability to enact 
the behavior, and 4) motivation to engage in the modeled 
behavior [7]. Importantly, motivation typically arises when 
one observes models being rewarded for the modeled 
behavior or when models are authority figures [7]. 

Observational learning has been applied in research on 
social computing platforms, specifically in the area of 
crowdsourcing, working under the assumption that 
collective intelligence [37] may improve the quality of 
modeling. In peer-to-peer lending, observational learning 
led to more rational assessment of borrower 
creditworthiness [39]. In nutrition, Mamykina, Smyth, 
Dimond and Gajos [27] examined how paid crowd workers’ 
accuracy in identifying the nutritional composition of 
different meals was affected by expert feedback, peer-
generated direct feedback on their solutions, and 
comparison of their solutions with solutions provided by 
others. They found that workers’ accuracy improved both 
when they received expert feedback as well as when they 
were asked to compare their responses to others’ responses, 
but not when they received direct feedback from peers. 
These findings suggest that exposing individuals to 
crowdsourced models that explain the correct response to 
the task can facilitate observational learning. This has 
important implications for scaling learning via 
observational learning. But what about when learning is not 
directly motivated by financial gain or loss? 

Casual Learning 
As early as 1932, casual learning was mentioned in 
educational research in the context of learning outside of 
the education system and as synonymous to observational 
learning [21]. More recently, casual learning has become a 
buzzword in business where it is applied to employee 
training by encouraging employees to learn about what is 
interesting and relevant to them, fits their needs, happens in 
a social environment where and when people have time or 
need for it. Casual learning has also been associated with 
informal education (e.g., self-help books, seminars) and 
with online education platforms for continuing education, 
like MOOCs and businesses like Udemy, which provide 
courses across a wide range of topics and interests. Casual 
learning is characterized by intrinsic motivation, the 
“motivation based in people's natural interest in various 
activities that provide novelty and challenge” [13]. 
Duolingo [36] is an example of casual learning that has 
been demonstrated to improve Spanish language ability. 
Notably, those who used Duolingo to learn Spanish for 
travel (and were therefore assumed to be more intrinsically 
motivated) had significantly greater learning gains than 
those who used it for school or personal interest [35]. In 
nutrition, Epstein, Cordeiro, Fogarty, Hsieh and Munson 
[16] found that social computing-based observational 
learning was a potential mechanism for improving nutrition 
behavior via daily nutrition challenges, like “eat a food high 
in fiber.” During their “Crumbs” intervention, participants 
noted that they got ideas for completing the challenges by 

viewing photographs of how other participants met the 
challenges. 

Taken together, these theoretical foundations point to the 
potential for casual observational learning to occur when 
people are intrinsically motivated to participate in learning 
activities to improve nutrition literacy on a social 
computing platform. Here we report on the results of two 
experiments using NKT to better understand if 
observational learning can improve nutrition literacy in a 
casual learning social computing context. 

Conducting behavioral research with unpaid online 
volunteers 
Several web-based platforms (e.g., TestMyBrain.org, 
Project Implicit1, GamesWithWords.org, LabintheWild.org) 
have emerged for conducting behavioral research with 
unpaid online volunteers. Instead of offering monetary 
compensation, these platforms motivate participation by 
promising participants that they will receive their results 
immediately at the end of the study and will be able to 
compare their own performance to others. Several 
validation studies demonstrated that data collected on those 
platforms are not statistically different from the data 
collected in conventional laboratory settings [18, 19, 29]. 
Despite the fact that participants self-select to take part in 
studies on these platforms, the samples appear more diverse 
(and thus more representative of the general population) 
than the samples that participate in studies in conventional 
academic laboratories or populations recruited via MTurk 
[29]. We launched our experiment on LabintheWild.org.   

ENABLING CASUAL OBSERVATIONAL LEARNING IN 
NUTRITION 
We studied how people learn about nutrition from others in 
an online context using an internet platform where 
volunteers participate in engaging online experiments in 
exchange for personalized feedback about their personality 
or behavior, i.e., casual observational learning.    

Nutrition Knowledge Test  
We designed, implemented, and launched a Nutrition 
Knowledge Test (NKT). The test asked participants to 
perform a realistic, but complex task: Comparing 
complicated mixed-ingredient meals and identifying and 
evaluating the ingredients that contribute to macronutrient 
content. NKT participants were shown a series of realistic 
meal photograph pairs. Each pair had one difference in 
ingredients that led to one of the meals in the pair 
containing a higher amount of a specific macronutrient (i.e., 
carbohydrate, fiber, fat, or protein). Participants were asked 
to view the photographs and textual descriptions of pairs of 
meals and to choose which meal had more of a given 
macronutrient (pretest). Immediately after each response, 
participants received a message with feedback about their 
response in the form corresponding to one of the feedback 
conditions, including the no-feedback condition. Later in  
                                                             
1 https://implicit.harvard.edu/implicit/ 



 
 Study 1 Study 2 Peer Explanation 

Generation 
Number of participants 1315 556 148 
Age in years (mean±SD) 30±13 32±14 32±14 
Female 63% 68% 55% 
Education    

Pre-high school 1% 2% 1% 
High school 16% 11% 17% 
College 70% 62% 72% 
PhD 13% 8% 10% 

Computer usage    

Once a week or less 1% 1% 1% 
A few times a week 4% 6% 4% 
A couple of hours most days 29% 31% 24% 
Many hours on most days 66% 62% 66% 

Self-reported nutrition knowledge compared to peers    

Much less 3% 2% 4% 
A little less 6% 6% 7% 
About the same 27% 29% 28% 
A little more 45% 38% 40% 
Much more 20% 25% 22% 

Table 1: Participant Characteristics by Study 

the test, participants were asked to examine a second pair of 
photographs with the same key ingredient in different meals 
and were again asked to identify which meal contained 
more of a given macronutrient (posttest). The study 
materials were prepared in a way to minimize carryover 
effect between feedback conditions.  

The meal photographs presented to participants during the 
NKT were randomly selected from 19 topic sets. Each topic 
set included 2 pairs of photographs, one pair presented at 
pretest and one at posttest. In each pair, there was a specific 
ingredient that contributed significantly to the difference in 
macronutrient content of otherwise similar meals (e.g. milk 
in latte versus cream in coffee with cream). Although the 
meal in which the key ingredient was presented was 
different at pre- and posttest, the key ingredient was the 
same (e.g. milk in latte versus cream in coffee in pretest, 
and milk in oatmeal versus water in oatmeal in posttest with 
milk as the key ingredient contributing to the difference in 
carbohydrate in each of these pairs). We ensured each 
participant was presented with an equal number of topic 
sets per macronutrient, but each topic set of pre- and 
posttest pairs was otherwise presented randomly and 
independently. This minimized the possible impact of order 
in which ingredients were presented. Key ingredients were 
unique to each topic set; therefore, knowledge was not 
generalizable across topic sets or feedback conditions (e.g., 
knowing that milk is higher in carbohydrate than cream or 

water does not help to learn that soybeans are higher in 
protein than pinto beans).  

Our outcome of interest, learning gain, was defined as 
pretest accuracy (the accuracy of the participants’ response 
to the first pair of meals with a given ingredient, before 
receiving any feedback) subtracted from posttest accuracy 
(the accuracy of participants’ response to the second pair of 
meals with the same ingredient, after reviewing feedback). 
The ingredient topic was assigned from the 19 topic sets 
and the type of feedback provided was randomly assigned 
to each ingredient topic. Each participant received all types 
of feedback of interest during the study.  

In the design of the NKT, we built on prior work on 
conducting studies with unpaid online volunteers to 
motivate participation and ensure validity of the data [18, 
19, 29]. Specifically, we motivated participation by 
promising participants that they would receive feedback on 
their performance and would be able to compare their own 
performance with that of other people. We also made all 
demographic questions optional (to reduce chance of 
untruthful responses) and we gave participants 
opportunities to report if they had taken the test before, if 
they had cheated in any way or if they had encountered any 
technical difficulties.  

Participants arrived at the study site primarily through 
word-of-mouth referrals or a referral at the end of another 



study on the site. The landing page for the study included 
study title and a brief description of the study, including the 
type of feedback the participant would receive at the end 
and the anticipated duration of the study (10 minutes). 
Next, participants were presented with an informed consent 
statement followed by a brief demographic questionnaire. 
Next, participants saw brief instructions and then began the 
actual test. After completing the test, but before seeing their 
results, participants were offered a chance to indicate 
whether they cheated in any way or encountered technical 
difficulties. Finally, they were presented with the results 
page, where they saw the percentage of the questions they 
answered correctly, the average score of other participants, 
their own score broken down by macronutrient as well as 
the correct answers and expert explanations for all the 
questions they got wrong. Participant characteristics for 
each of the studies are reported in Table 1. 

Study 1: Feedback, Peer Comparison, or Explanations? 
First we studied if correctness feedback generated by 
experts improved learning in the NKT, if exposure to the 

distribution of answers provided by peers led to learning 
gains (i.e., peer modeling), if correctness feedback 
accompanied by an explanation offering further detail about 
why the correct answer contained more of the 
macronutrient further improved learning, and if there was 
difference in learning between correctness feedback 
generated by experts and comparison with solutions 
generated by peers. 

Participants 
We collected data from 1315 NKT participants from 
December 2015 to March 2016. Detailed information about 
the participants is provided in Table 1. 

Tasks 
We created four variants of the intervention to be shown to 
the participants immediately after they provided their 
response to a question, summarized below and depicted in 
Figure 1. 

Control: No immediate feedback to the participant, but let 
participants know they would receive feedback later. 

 
Figure 1: Examples of Study 1 exposure conditions.  

Images: A1 – by Jon 'ShakataGaNai' Davis licensed under CC BY-SA 3.0 via Wikimedia Commons; A2 – by Niupoundswea licensed under CC BY-
SA 3.0 via Wikimedia Commons; B1 – by Ramon F Velasquez licensed under CC 1.0 via Wikimedia Commons; B2 – by Arnold Gatilao licensed 

under CC BY 2.0 via Flickr; C1 – by Triv.rao licensed under CC BY-SA 4.0 via Wikimedia Commons; C2 – by Manfred&Barbara Aulbach 
licensed under CC BY-SA 3.0 via Wikimedia Commons; D1 – by Off-shell licensed under CC BY-SA 4.0 via Wikimedia Commons D2 – by Ewan 

Munro licensed under CC BY-SA 2.0 via Wikimedia Commons

Which meal has more protein?
(Assume equal portion sizes)

Bowl of edamame Red beans with greens

This one! This one!

Your response has been recorded.
(you will receive feedback at the end of the test)

Next >

Which meal has more fat?
(Assume equal portion sizes)

Roasted talapia with vegetables Pan seared hallibut with vegetables

This one! This one!

Correct!

Next >

Which meal has more fiber?
(Assume equal portion sizes)

Cooked fig, walnuts, lettuce, cheese, 
served with garlic bread

Red beans with greens

Next >

This is what the other participants thought

44.4% voted for this one 55.6% voted for this one

Which meal has more fat?
(Assume equal portion sizes)

Carrots and mushrooms Halloumi cheese stuffed flat mushrooms salad

This one! This one!

Correct!

Next >

Both of these meals include different types of vegetables. Most vegetables are excellent sources 
of complex carbohydrates and fiber; however, some of them are richer in fiber than others. 

Crunchy vegetables, such as carrots, celery, raw cabbage, and peppers are higher in fiber that 
other types of vegetables, for example lettuce or cucumbers. 

A. Control B. Expert Feedback

C. Peer Comparison D. Peer Explanation



Expert correctness feedback: Simple correct (“Correct!”) 
or incorrect (“Not Quite.”) feedback immediately after the 
participant submitted their response. 

Peer comparison: Visually depicted proportions of other 
participants who chose each response option. Peer feedback 
was calculated based on responses of participants from a 
previous version of NKT. It is important to note that 
because these responses were generated from the crowd, 
there could have been meal pairs for which more peers 
chose the incorrect response. 

Expert correctness feedback with explanation: Correctness 
feedback accompanied by a short paragraph written by an 
RDN describing why the correct meal had more of the 
indicated macronutrient. Each explanation highlighted the 
specific ingredient that made the difference in 
macronutrient content and quantified the difference in 
macronutrient for participants. This condition combined 
elements of both correctness feedback and observational 
learning by modeling expert reasoning through their 
explanation. 

Design and analysis 
We used a within-subjects repeated measures design. Each 
participant randomly received no feedback (control; 25%) 
immediately following her response to a question, expert 
correctness feedback (25%), peer comparison (26%), or 
expert correctness feedback with expert explanation (24%) 
for each of the 24 items. 

We calculated learning gain (the difference between 
posttest accuracy and pretest accuracy) and determined if 
learning had occurred in each of the four conditions using 
one-sample t-tests adjusted for multiple comparisons with 
Holm’s sequentially rejective correction [22]. Then, we 
used a linear mixed-effects model fit by maximum 
likelihood to compare the effect of each exposure on 
posttest accuracy across groups, controlling for pretest 
accuracy. This model accounted for the within-subjects 
design by including the participant as a random effect on 
exposure. We used Tukey’s HSD posthoc procedure with 
single-step adjustment to assess differences between 
groups. 

Results 
Pretest accuracy was similar across conditions. Accuracy 
increased at posttest in both the expert explanation and 

expert feedback groups, but not in the control or peer 
comparison groups. Learning gains occurred in the expert 
feedback and expert explanation conditions, but only expert 
explanations caused a learning gain that was significantly 
greater than zero when correcting for multiple comparisons. 
These results are reported in table 2. 

Controlling for pretest accuracy, we observed a significant 
main effect of feedback condition on posttest performance 
(F2,372 =9.183, p=.0004). Posthoc comparisons indicated 
that, controlling for pretest accuracy and within-subjects 
design, expert explanations led to significantly higher 
posttest accuracy than any other condition. Expert 
feedback led to significantly better posttest accuracy than 
control, while peer comparison did not, but the difference 
between expert and peer comparison was not significant. 
These relationships are depicted in Figure 2. 

 
Figure 2: Tukey’s Posthoc Comparison of Exposure Groups. 

Based on results of a repeated-measures ANOVA. Letters 
indicate significant differences among groups. 

Study 2: Expert or Peer Explanations? 
Study 1 revealed that expert explanations yielded 
significant learning gains as well as significantly better 
posttest accuracy than the other exposure conditions 
studied. These results suggest that for a nutrition test that 
involves complex multi-ingredient meals, simple 
correctness feedback and peer comparison are not sufficient 
to facilitate learning. However, when this feedback was  

 

 Control Expert Feedback Expert 
Explanation Peer Comparison 

Learning gain 
(mean±SD) 

0.01±0.6 
t=0.6 

Cohen’s d = 0.02 

0.03±0.6 
t=2.4 

Cohen’s d = 0.08 

0.06±0.6*** 
t=5.6 

Cohen’s d = 0.2 

0.0±0.6 
t=0.2 

Cohen’s d = 0.04 
Pretest accuracy 
(mean±SD) 66±47% 67±47% 67±47% 67±47% 

Posttest accuracy 
(mean±SD) 66±47% 70±46% 74±44% 67±47% 

Table 2: Summary of learning and accuracy in each exposure group. Learning gain greater than 0 assessed with one-sample t-test; 
significance indicated, *** p<.0001



accompanied by an explanation that drew participants’ 
attention to the sources of difference between the meals and 
specifically pointed to which ingredient was responsible for 
the difference and why, individuals achieved higher 
accuracy on follow-up questions with the same key 
ingredient, thus exhibiting learning. While these results 
were encouraging, composing such explanations is a labor-
intensive undertaking that relies on availability of experts, 
and is not scalable in the context of large volunteer-based 
communities. In the second study, we examined the 
potential of using the community itself to generate effective 
explanations, and compared learning gains with 
explanations carefully crafted by experts and explanations 
generated by test-takers. Notably, in this study we 
continued to rely on experts for generating correctness 
feedback. 

Participants 
We collected data from 556 NKT participants from July-
September 2016. Detailed information about the 
participants is provided in Table 1. 

Tasks 
We created three variants of the intervention to be shown to 
the participants immediately after they provided their 
response to a question, summarized below and depicted in 
Figure 3. In addition to collecting participant responses, we 
also asked them to provide information about the 
confidence they had in their responses using a slider. 
Instead of clicking a button indicating binary “This one” as 
in Study 1, participants moved a slider along a color 
gradient continuum from neutral center towards “I am 
confident this is the right answer.” As they moved the slider 
closer to maximum confidence, the outline around the 
photograph became darker. 

 
Figure 3: Example conditions for Study 2.  

Images: A1 – by Nillerdk licensed under CC BY 3.0 via Wikimedia Commons; A2 – by Renee Comet for National Cancer Institute public domain 
via Wikimedia Commons; B1 – by Lotus Head licensed under CC BY-SA 3.0 via Wikimedia Commons; B2 – by I, ElinorD licensed under CC BY-
SA 3.0 via Wikimedia Commons; C1 – by ProjectManhattan licensed under CC BY-SA 3.0 via Wikimedia Commons; C2 – by Kochtopf licensed 
under CC BY 2.0 via Wikimedia Commons; D1 – by Douglas Paul Perkins licensed under CC BY 3.0 via Wikimedia Commons D2 – by Juan de 

Dios Santander Vela licensed under CC BY-SA 2.0 via Wikimedia Commons



Control: No immediate feedback to the participant, but let 
participants know they would receive feedback later. 

Expert correctness feedback with expert explanation: Like 
Study 1 described above, correctness feedback in this 
condition was accompanied by a short paragraph written by 
an RDN describing why the correct meal had more of the 
indicated macronutrient. Each explanation highlighted the 
specific ingredient that made the difference in 
macronutrient content and quantified the difference in 
macronutrient for participants. 

Expert correctness feedback with peer explanation: This 
condition used the same correctness feedback as condition 2 
above; however, instead of pairing it with expert-generated 
explanation, it was accompanied by explanations generated 
by other individuals who took the same test, peer 
explanations. Peer explanations (n=308) were collected 
prior to the launch of this experiment. NKT participants 
were asked, “How would you explain your choice to 
another quiz-taker?” as depicted in Figure 3. A single 
participant was asked for no more than four explanations 
and providing an explanation was optional (they could 
proceed while leaving the explanation field blank). 
Information about the participants who provided 
explanations (n=148) is presented in Table 1. Explanations 
were filtered manually, using two distinct criteria. First, we 
excluded explanations accompanying incorrect responses 
(i.e., the meal selected as higher in carbohydrate was, in 
fact, lower in carbohydrate); this led to exclusion of 41% of 
explanations (n=185) that came with incorrect responses. 
Then, we applied exclusion criteria that could be reasonably 
automated in future applications. Specifically, we excluded 
explanations that used swear words, had fewer than three 
words, used only symbols, or were confusing in their 
reference to the images (e.g., used “image on the left” or 
“on the right” instead of referring to specific ingredients). 
Notably, correctness of the explanation itself was not 
assessed as it would be difficult to replicate with 
computational methods. “Spilt pea soup incorporates a 
green vegetable while black bean soup has no green 
vegetables,” and “Peas are high carb” are examples of 
typical peer explanations. 

Design and analysis 
We used a within-subjects repeated measures design. Each 
participant randomly received no feedback (control; 17%), 
expert feedback with expert explanation (42%), or expert 
feedback with peer explanation (42%) for each of 24 items. 
To optimize participant engagement, we set randomization 
into the control group to happen half as often as either of 
the exposure conditions. We analyzed these data using the 
same methods as in Study 1. 

Results 
Pretest accuracy was similar across exposure conditions. 
Accuracy increased at posttest in both the expert 
explanation and peer explanation condition, but not in the 
control. Significant learning gains occurred in both the 

expert explanation and peer explanation conditions when 
correcting for multiple comparisons. These results are 
summarized in Table 3. 

Controlling for pretest accuracy, we observed a significant 
main effect of feedback condition on posttest performance 
(F2,1110 =18.906, p<.0001). Posthoc comparisons indicated 
that, controlling for pretest accuracy and within-subjects 
design, expert and peer explanations both led to 
significantly higher posttest accuracy than control and 
there was no significant difference between expert and 
peer explanations. These relationships are depicted in 
Figure 4.  

 
Figure 4: Tukey’s Posthoc Comparison of Exposure Groups 

on Posttest Accuracy. Based on results of a repeated-measures 
ANOVA. Letters indicate significant differences among 

groups. 

Pretest confidence was similar across study conditions. 
Confidence decreased significantly in all study conditions, 
including control. Adjusting for within-subjects design, 
posttest confidence was significantly greater in both expert 
and peer explanation exposure groups than control. There 
was no significant difference in posttest confidence 
between expert and peer explanation exposure groups. 
Confidence was a significant predictor of posttest accuracy 
in a model controlling for pretest accuracy and repeated 
measures, but when it was included in the ANOVA model, 
it did not change the results.  

DISCUSSION 
In this study, we examined how different types of 
observational learning influenced performance on a 
nutrition literacy task in the context of casual learning on a 
social computing platform. Specifically, we examined 
learning gains achieved from expert correctness feedback, 
the impact of explanations on individuals’ learning, and 
comparative effectiveness of explanations generated by 
experts and peers. We examined these questions in the 
context of nutritional learning about complex multi-
ingredient meals and tasks that required participants to 
compare pairs of meals on their nutritional content and 
choose which meal was higher in a specific macronutrient. 



 Control Expert Explanation Peer Explanation 

Learning gain 
(mean±SD) 

0.001±0.6 
t=0.1 

Cohen’s d = 0.006 

0.1±0.6*** 
t=8.1 

Cohen’s d = 0.3 

0.1±0.6*** 
t=8.4 

Cohen’s d = 0.3 
Pretest accuracy 
(mean±SD) 67±47% 66±47% 66±47% 

Posttest accuracy 
(mean±SD) 67±47% 75±43% 76±43% 

Confidence gain 
(mean±SD) 

-0.4±0.3*** 
t=-5.2 

Cohen’s d = -0.3 

-0.2±0.3** 
t=-3.6 

Cohen’s d = -0.1 

-0.3±0.3*** 
t=-5.3 

Cohen’s d = -0.2 
Pretest confidence 
(mean±SD) 65±30% 65±30% 65±30% 

Posttest confidence 
(mean±SD) 60±30% 63±30% 63±30% 

Table 3: Summary of learning, accuracy, and confidence in each exposure group. Learning gain greater than 0 assessed with one-
sample t-test; significance indicated, ** p<.001 *** p<.0001

In the first of our studies, we found that only expert-
generated explanations of their reasoning about meals, 
when combined with correctness feedback, significantly 
improved learning. In contrast, neither correctness feedback 
from experts nor comparison with solutions provided by 
peers was sufficient to facilitate learning. This suggests that 
in cases when nutritional experts are available for 
generating correctness feedback and explanations for their 
answers, these mechanisms can be effectively used to 
facilitate learning. In the second study, we further examined 
different approaches to constructing explanations, with a 
focus on enabling scalable solutions that minimized 
involvement of experts. The study showed that explanations 
generated by peers, when combined with correctness 
feedback, were just as effective in leading to learning gains 
as explanations generated by experts. 

These findings are at least partially consistent with existing 
theories of observational learning and with prior work in 
using to facilitate learning in crowdsourcing communities. 
The effectiveness of explanations in improving learning 
could be attributed to their ability to attune participants to 
the key ingredient contributing to the difference in 
macronutrient content between the meals. According to 
Bandura [7], attuning to important characteristics of 
modeled behaviors is one of the critical processes of 
observational learning. That peer modeling through 
explanations could match learning gains from expert 
modeling is consistent with observational learning which 
does not necessarily privilege expert information [7] and 
with previous work in paid workers [27]. Observational 
learning seems to have translated to intrinsically motivated 
volunteers and more complex, realistic tasks, suggesting 
that with some computational assistance in applying 
exclusion criteria, similar learning gains may be possible 
without experts. 

At the same time, lack of learning gain after comparing 
one’s own choices with choices of others is inconsistent 
with previous research for similar nutritional judgment 

tasks [27]. This could potentially be explained by difference 
in the complexity of the task. Bloom’s taxonomy [9] 
categorizes learning objectives along a continuum of 
concrete to abstract, and emphasizes that knowledge is a 
prerequisite for all higher-level abstractions. From this 
perspective, it is reasonable to consider the tasks presented 
in this study required learners to analyze and apply 
knowledge, whereas the tasks presented to learners in [27] 
would require recall of knowledge. Another explanation 
could be that on some occasions, aggregating peer solutions 
resulted in an incorrect solution receiving majority vote. 
This could have been related to information cascade 
wherein participants followed the pattern established by 
peer modeling instead of employing their own knowledge 
[3, 24]. In crowdsourcing, this has been referred to as the 
“foolishness of crowds” [25]. 

This identification of observational learning mechanisms 
that improved nutrition knowledge in a casual learning 
context could assist in the development of new applications 
and tools for improving nutrition literacy. On the other 
hand, these mechanisms could also explain in part the 
proliferation of misinformation in social computing 
contexts. In these studies, we have demonstrated that 
assuming we have ground truth, we can teach people about 
nutrition in a realistic performance task by providing them 
explanations, including explanations provided by non-
expert peers, that model the thinking behind the correct 
response. The large number of people who participated in 
NKT without compensation provides further evidence for 
the potential of larger scale applications based on these 
findings: People are motivated by self-discovery, in 
particular about their own nutrition knowledge. This has 
implications for scaling this approach in a social computing 
platform for public health benefit. 

In this study, we increased the relevance of learning gains 
in nutrition literacy by presenting ingredients in the context 
of complex meals, as participants might experience them in 
everyday life. We focused on how peer and expert feedback 



and explanations help participants better assess the 
nutritional content of a meal. For many health conditions, 
nutrition literacy in the form of knowledge about 
macronutrients is important for dietary decision making, 
justifying nutrition knowledge as a reasonable target for 
improved learning. However, it remains important to 
acknowledge that nutrition behavior is influenced by 
multiple factors and knowing the macronutrient 
composition of different foods is only part of the picture. 
Other research has considered how crowdsourced and 
friendsourced plans might improve individuals’ behavior 
change efforts [2]. 

The results of this study lead to many questions for future 
research. First, while one can reasonably expect expert 
explanations to be relatively consistent, we found great 
variability in quality and helpfulness of peer-generated 
explanations that could have had an impact on their ability 
to lead to learning gain. The question becomes what tools 
and mechanisms can help to identify more effective 
explanations that could more consistently inspire learning. 
One important step towards this goal will be to optimize 
scenarios in which ground truth exists but is not provided. 
In the study presented here, peer modeling alone did not 
lead to learning, but peer explanations did. This could have 
been attributed to the complexity of the task or to the 
limitations of crowdsourcing. Do peer explanations mitigate 
the lack of learning gains from peer feedback? Identifying 
and leveraging the features of effective explanations would 
be an important aspect of this research. Recently, 
techniques have been developed to promote the accuracy of 
crowdsourced responses through identification of complex 
explanations and engaging crowd workers in assessment of 
logical reasoning [15]. A second line of research might 
explore what happens when there is no ground truth. 
Nutrition and health is a particularly interesting area in 
which to study this because of nutrition’s reputation of 
being ever-changing; the experts themselves don’t always 
agree. In this study, we examined macronutrient content 
specifically because that information that is relatively 
objective. Applying these methods in a more subjective 
context has potential to contribute to knowledge about how 
observational learning about nutrition happens in social 
computing context. 

While strengths of this research included the large sample 
sizes and randomized, controlled design, it also had several 
limitations that are important to acknowledge. First, it is 
important to note that because of the nature of the platform 
on which the study was conducted, only people who were 
motivated to learn about their own nutrition knowledge 
participated. Second, NKT was only administered in 
English, so it is impossible to account for cultural 
differences of non-English speakers. Third, because we 
examined predefined meals, it is also impossible to 
extrapolate how increases in nutrition literacy during NKT 
translate to participants’ ability to apply this literacy to their 
own typical diet, nor do we know how long the effects of 

the intervention might last. Finally, because this study 
specifically examined nutrition knowledge, we do not know 
if the increases in nutrition knowledge demonstrated would 
have an influence on nutrition behavior in the form of 
dietary choices. 

CONCLUSIONS 
In this paper, we assessed the impact of peer- and expert-
modeling on uncompensated participants’ accuracy in 
assessing the macronutrient content of meals in an online 
casual learning context. Volunteers who chose to take the 
NKT were asked to compare pairs of realistic meal 
photographs and evaluate which one had more of the 
indicated macronutrient. For some meal photograph pairs, 
participants received no feedback, for others they received 
correctness feedback generated by an expert RDN, 
explanations by the RDN about why the correct choice was 
correct, a visual representation of the percentage of other 
participants who had chosen each answer, or an explanation 
of the correct response provided by another participant. In 
exchange, they received personalized feedback about their 
nutrition knowledge relative to other participants after the 
activity. Our studies demonstrated that when learning 
involved objective information (i.e., a true answer exists), 
1) explanations were most effective in eliciting learning and 
2) peer- and expert-generated explanations were equally 
effective. We conclude that potential exists for casual 
observational learning about nutrition in a social computing 
context. 
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