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ABSTRACT

Background: Objective assessments of movement
impairment are needed to support clinical trials and
facilitate diagnosis. The objective of the current study
was to determine if a rapid web-based computer
mouse test (Hevelius) could detect and accurately
measure ataxia and parkinsonism.

Methods: Ninety-five ataxia, 46 parkinsonism, and
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completed Hevelius. We trained machine-learning
models on age-normalized Hevelius features to (1) mea-
sure severity and disease progression and (2) distin-
guish phenotypes from controls and from each other.
Results: Regression model estimates correlated
strongly with clinical scores (from r =0.66 for
UPDRS dominant arm total to r = 0.83 for the Brief
Ataxia Rating Scale). A disease change model iden-
tified ataxia progression with high sensitivity. Classi-
fication models distinguished ataxia or parkinsonism
from healthy controls with high sensitivity (=0.91)
and specificity (=0.90).

Conclusions: Hevelius produces a granular and accu-
rate motor assessment in a few minutes of mouse use
and may be useful as an outcome measure and
screening tool. © 2019 The Authors. Movement Disor-
ders published by Wiley Periodicals, Inc. on behalf of
International Parkinson and Movement Disorder
Society.
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Drug development efforts are underway for patients
suffering from neurodegenerative diseases, including cer-
ebellar ataxias, Parkinson’s disease (PD), and Parkinson-
plus syndromes. Key challenges for clinical trials include
the ability to accurately diagnose early disease'™ and
confidently measure disease change. These challenges
arise in part because current assessments of neurodegen-
erative diseases are subjective, exhibit intra- and inter-
rater differences,” and are poorly accessible because they
have to be performed in a clinical setting by a movement

disorders specialist. ) ) ) )
Such challenges are amplified in children in whom

norms for movement evolve rapidly with age. Further-
more, disease-tailored clinical scoring scales are limited
in their ability to measure nonprototypical phenotypes,
for example, in ataxia patients with bradykinesia.
Because of the complex, heterogeneous, and over-
lapping phenotypes in neurodegenerative diseases, it
would be advantageous to complement existing assess-
ment methods with a readily available tool that could
characterize movement across a number of phenotypes.

We have developed a rapid, computer mouse—based
tool called Hevelius that quantifies arm function by
extracting 32 features from continuous, target-driven
computer mouse trajectories (see Supplementary Methods
for task and analysis details). Here, we demonstrate the
effectiveness of Hevelius (1) to accurately measure disease
severity and (2) to distinguish patients with ataxia or par-
kinsonism from controls and from each other.

Movement Disorders, 2019 1


https://orcid.org/0000-0002-1897-9048
https://orcid.org/0000-0002-8741-0621
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:agupta@mgh.harvard.edu
mailto:kgajos@eecs.harvard.edu

GAJOS ET AL w

J
Results

Participant Demographics

Data from 229,017 online participants were used to
develop the normative data set. Participants self-
reported coming from 158 countries, with the largest
group coming from the United States (43.8%).

One hundred and eighty-nine patients were assessed
using Hevelius in the clinic setting: 95 with cerebellar
ataxia, 46 with parkinsonism, and 29 controls (see
Table 1). Eighteen individuals with a progressive ataxia
diagnosis (12 with spinocerebellar ataxia [SCA], 4 with
ataxia-telangiectasia [A-T], and 2 with multiple system
atrophy, cerebellar-type [MSA-C]) completed the task
at an additional point. For mixed movement disorders
such as MSA, we relied on the treating neurologist’s
assessment to group the individual into ataxia versus
parkinsonism. The dominant arm was equally or more
affected than the nondominant arm in 82 of 141 indi-
viduals with ataxia or parkinsonism. Individuals with
neurologic disease (median, 3.1 minutes) took longer
than healthy controls (median, 1.9 minutes) to complete
the task (Fy 135 = 19.99, P < 0.0001).

Summary Statistics for Online Participants

Supplementary Figure S3 (top) shows how 4 represen-
tative measures collected by Hevelius varied across the
life span in the cross-sectional sample collected online.
As expected, basic aspects of performance, such as
overall efficiency (measured by movement time) or the
ability to control movement speed (measured by

normalized jerk) peaked in late teens, that is, at the age
of biological maturity. Ability to produce force (mea-
sured by peak acceleration) peaked later in life.®
Finally, measures of error in gross motor performance
(eg, movement errors) generally declined throughout
adulthood, consistent with prior findings.” Taken
together, the clear relationships between age and per-
formance found in our online data and that these rela-
tionships are consistent with existing knowledge
provide compelling evidence of the validity of these
baseline data.

Summary Statistics for Clinical Participants

Participants with ataxia and parkinsonism differed
from age-matched online controls across a number of
Hevelius movement features. In particular, features
related to duration (movement time, execution time,
number and duration of pauses, and click duration)
were increased, and those related to movement control
(distance from target at end of main submovement
noise-to-force ratio, and jerk) were impaired compared
with online controls in both ataxia and parkinsonism
(see Supplementary Table S2).

Participants with ataxia demonstrated additional
impairments in features reflecting “dysmetria”: direction
changes, target reentries, movement error and variability,
and deviation from task axis. Similarly, in participants
with parkinsonism but not ataxia decreased peak accel-
eration and peak speed were present, matching the phe-
notype of “bradykinesia.” These observations are
illustrated in Supplementary Figure S3 (bottom).

TABLE 1. Participant demographics

Clinical
Online
Controls Controls Ataxia Parkinsonism
n 229,017 (total) 29 95 (total) 46 (total)

Ages 14-62: >1000 each
Ages 11-76: >100 each
Age 5-85 (M £ SD 33.2 + 12.4)
Sex 65.5% male, 33.3% female,
1.2% not given
Handedness
Disease severity
(dominant arm
clinical score on
BARS or UPDRS)
Disease severity
(overall clinical
score on BARS
or UPDRS)

28 SCA, 10 A-T, 6 MSA-C, 6 HSP,
4 NIA, 2 EA2, 2 ARCAT
7-78 (M = SD 51.5 + 19.3)
56.8% male, 43.2% female

8-60 (M + SD 25.6 + 13.2)
58.6% male, 41.4% female
96.6% right, 3.4% left 94.7% right, 5.3% left
BARS (scale, 0-4): 0-3
(M£SD1.0£0.7)

BARS (scale, 0-30): 0-23.5
(M £ SD 10.4 + 5.1)

39 idiopathic PD,
7 atypical parkinsonism
45-82 (M & SD 66.1 + 7.7)
73.9% male, 26.1% female

89.1% right, 10.9% left
UPDRS composite
(scale, 0-24):
0-11 (M £ SD 3.8 & 2.6)

UPDRS part Il (scale, 0-108):
1-51 (M + SD 16.9 + 9.5)

Note: in all analyses throughout the article, age differences between groups were adjusted for through the age-specific z-scoring process described in the

Methods section.

M, mean; SD, standard deviation; UPDRS, Unified Parkinson’s Disease Rating Scale; BARS, Brief Ataxia Rating Scale; SCA, spinocerebellar ataxia; A-T,
ataxia-telangiectasia; MSA-C, multiple system atrophy, cerebellar-type; HSP, hereditary spastic paraplegia; AlIA, autoimmune-related ataxia; EA2, episodic ataxia
type 2; ARCA1, autosomal recessive cerebellar ataxia type 1; PD, Parkinson’s disease.
“UPDRS composite” score (range, 0-24) is defined as the sum of the UPDRS arm subscores: rest tremor (0-4), postural tremor (0-4), rigidity (0-4), and

bradykinesia on 3 tasks (0-12).
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TABLE 2. Results of the regression analyses (top) and classification analyses (bottom)

Clinical score estimated

Correlation between clinical

Mean absolute MAE as a percentage score and estimated score from

(score range in parentheses) Number per diagnosis error (MAE) of maximum score regression models (1)
BARS dominant arm (0-4) Ataxia, 91; controls, 29 0.35 + 0.056 8.9% + 1.4% 0.78, P < 0.0001
BARS total (0-30) ataxia, 83; controls, 29 2.82 + 0.582 9.4% + 1.6% 0.83, P < 0.0001
UPDRS dominant arm total (0-24) parkinsonism, 44; controls, 29 1.51 +0.283 6.3% £+ 1.2% 0.66, P < 0.0001
UPDRS total (0-108) parkinsonism, 44; controls, 29 5.80 + 1.360 5.4% +1.3% 0.73, P < 0.0001
Common dominant arm (0-1) ataxia, 91; parkinsonism, 44; controls, 29  0.09 + 0.011 8.6% + 1.1% 0.75, P < 0.0001
Common total (0-1) ataxia, 83; parkinsonism, 44; controls, 29  0.08 + 0.017 8.2% £ 1.7% 0.83, P < 0.0001

Severity scores were unavailable for a small number of patients (in addition, for some ataxia patients only dominant arm scores were available, but not total
scores); hence, the number of participants included in the regression analyses differs from the number included in the classification analyses. Median 95%
within-session confidence intervals shown in columns 3 and 4 were estimated using the bootstrap method and reflect the sensitivity of score predictions to natu-
ral variability in performance during a single assessment session. Features selected by each regression model are shown in Supplementary Table S4.

Comparison Number
(number in of Positive Negative
parentheses next features predictive predictive
to each class) used Sensitivity Specificity value value
Parkinsonism 5 0.913 1.000 1.000 0.879
(46) versus
healthy (29)
Ataxia (95) versus 4 0.926 0.897 0.967 0.788
healthy (29)
Mild ataxia 6 0.750 0.966 0.923 0.875
(16) versus
healthy (29)
Ataxia (95) versus 10 0.853 0.913 0.953 0.750
parkinsonism
(46)
Ataxia (68) versus 1 0.897 0.891 0.924 0.854
parkinsonism
(46), age > 45
Ataxia (21) versus 2 0.857 0.923 0.900 0.889
healthy (26),
age < 37

As described in the text, “mild ataxia” refers to the subset of participants
who have a BARS dominant arm subscore of 0. Features selected by each
classification model are shown in Supplementary Table S4.

Clinical Score Estimation

Table 2 shows the performance of regression models
trained to predict clinical severity scores. For both
ataxia and parkinsonism, we separately predicted
dominant arm scores and total scores. We also intro-
duced a disease-independent “common score”:
disease-specific dominant arm and total scores were
normalized by the maximum score to obtain a value
between 0 and 1.

The estimates produced by the regression models cor-
related strongly with actual clinical scores. The correla-
tion coefficient ranged from r = 0.66 for UPDRS
dominant arm total to = 0.83 for Brief Ataxia Rating
Scale (BARS) total and common total score. The mean
absolute error (MAE) for all was <10% of the maxi-
mum score. The MAE for Hevelius + standard devia-
tion (SD) in estimating BARS dominant arm score was
0.35 + 0.30, comparable to the previously published

MAE of 0.38 of expert clinicians asked to rate video
recordings of the finger-nose-finger task.®

Although Hevelius measures dominant arm perfor-
mance, it is equally effective for predicting dominant
arm score and total score. This is not surprising given
that in our data set dominant arm score and total score
were highly correlated (BARS, » = 0.89, P <0.0001;
UPDRS, r = 0.82, P < 0.0001; common score, 7 = 0.85,
P <0.0001).

The results of the bootstrap analysis indicated high
within-session reliability of the severity score estimates

(Table 2).

Classification Analyses

Classification models trained on data produced by
Hevelius distinguished between individual disease
classes (ataxia or parkinsonism) and healthy controls
with high sensitivity (>0.91) and specificity (>0.90);
see Table 2. As expected, different features were most
informative for different phenotypes (see Supplemen-
tary Table S4). A model discriminating ataxia and
parkinsonism patients also demonstrated good per-
formance (sensitivity, 0.85; specificity, 0.91).

A model trained to discriminate between healthy con-
trols and early-stage ataxia patients (BARS score of
0 in the dominant arm), yielded a sensitivity of 0.75
and specificity of 0.97.

Clinical Progression Estimation

A binary classification model trained to learn
which session in a pair of sessions was more severe
was applied to 18 individuals with a progressive
ataxia diagnosis and a repeat session (12 with SCA,
4 with A-T, and 2 with MSA-C). The mean interval
duration between sessions was 325 days with a range
of 126-469 days. In these 18 individuals, the domi-
nant arm BARS score increased (indicating disease
progression) in 8 of 18, was unchanged in 9 of
18, and decreased (indicating improvement) in 1 of
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18 (an individual with SCA-6). The classification
model predicted that 17 of 18 individuals had
increased dominant arm severity at the time of their
second session. One of 18 was predicted by the
model to have decreased severity on the second ses-
sion (the same individual with SCA-6 who also
showed improvement on BARS). These results sup-
port that Hevelius can sensitively capture arm sever-
ity progression information.

Discussion

Hevelius is a novel tool for performing objective, granu-
lar, and rapid assessments of dominant arm motor func-
tion. We have demonstrated that the tool can be used in
children and adults and forms an interpretable and multi-
dimensional representation of ataxia and parkinsonism.

We have shown that the 32 movement features com-
puted from computer mouse trajectories are interpretable,
capture several dimensions of motor control, and vary with
development and aging (Supplementary Fig. S3). Regres-
sion models used these features to accurately estimate dis-
ease scores in individuals with ataxia or parkinsonism
(Table 2), and another machine-learning model detected
severity progression in 17 individuals with ataxia. Accu-
racy in estimating dominant arm score in ataxia partici-
pants was comparable to the accuracy of clinical experts.
Furthermore, the tool was shown to have high intrasession
reliability. Thus, Hevelius produces granular, accurate,
reliable, and age-normalized assessments of arm function
in ataxia and parkinsonism and may prove useful in
related disorders affecting motor control.

An ideal screening tool for detecting early disease
would not only coarsely discriminate disease from
healthy states, but would also have disease specificity. It
was for this reason that we tested the ability of
Hevelius to distinguish between ataxia and parkinson-
ism (which it performed accurately; Table 2). In addi-
tion, Hevelius was able to accurately classify healthy
individuals from the subset of ataxia participants who
had no scorable abnormalities in the dominant arm,
with only 1 false-positive (Table 2). Thus, this tool
could form part of an early screening technology, espe-
cially if combined with tools in additional domains,
such as eye movement and speech analysis.

Many technologies have been developed in the last
decade and a half to enable objective assessments of
motor performance of individuals with neurologic dis-
eases. Most rely on accelerometers”™'’; however, other
useful scalable approaches have included spiral drawing
on a tablet'' and keyboard typing.'> Our approach
complements prior work in important ways. First, a
computer with a mouse is a highly accessible technol-
ogy, more so than specialized wearable devices and
even more so than smartphones, especially for adults

aged 65 and older.’® Second, although accelerometers
give access to acceleration, our approach directly mea-
sures the hand’s position and speed. This turns out to
be important: of the 8 features used to discriminate dis-
ease from controls, 4 relied on position and 2 on speed
(see Supplementary Table S4).

Another key feature is that Hevelius is scalable: the
task took patients 2—-6 minutes to complete and only
requires a computer, a mouse, and an Internet connec-
tion without the need for special software. The simplic-
ity of the task and the automated scoring mean that no
special expertise is needed to use Hevelius. Accessibility,
along with a design that engaged intrinsic motivation
(curiosity’® and social comparison'?), facilitated the
collection of data from 500,000 online volunteers in
4 months. This raises the possibility that Hevelius could
be used in the future to perform longitudinal assess-
ments from thousands of individuals with neurodegen-
erative disease in their home setting.

There are several limitations to the current study. First,
the normative data were collected from a self-selected
sample of online volunteers. It is possible that people who
have the means and the time to access the Internet for
personal reasons have better than average access to health
care and, consequently, are healthier than average. Sec-
ond, the largely cross-sectional design does not enable an
assessment of learning effects with shorter time scales or
influences because of changes in the testing environment.
Last, there were substantial age differences in different
populations studied (ataxia, parkinsonism, controls).
Despite age adjustment enabled by the normative data
set, it is conceivable that not all age-related factors were
fully removed, resulting in inflated performance estimates
of classification models. ®
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