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We study a distributed randomized information propagation mechanism in networks we call the coalescing-
branching random walk (cobra walk, for short). A cobra walk is a generalization of the well-studied “standard”
random walk, and is useful in modeling and understanding the Susceptible-Infected- Susceptible (SIS)-type of
epidemic processes in networks. It can also be helpful in performing light-weight information dissemination
in resource-constrained networks. A cobra walk is parameterized by a branching factor k. The process starts
from an arbitrary vertex, which is labeled active for step 1. In each step of a cobra walk, each active vertex
chooses k random neighbors to become active for the next step (“branching”). A vertex is active for step t + 1
only if it is chosen by an active vertex in step t (“coalescing”). This results in a stochastic process in the
underlying network with properties that are quite different from both the standard random walk (which
is equivalent to the cobra walk with branching factor 1) as well as other gossip-based rumor spreading
mechanisms.

We focus on the cover time of the cobra walk, which is the number of steps for the walk to reach all the
vertices, and derive almost-tight bounds for various graph classes. We show an O(log2 n) high probability
bound for the cover time of cobra walks on expanders, if either the expansion factor or the branching factor
is sufficiently large; we also obtain an O(log n) high probability bound for the partial cover time, which is the
number of steps needed for the walk to reach at least a constant fraction of the vertices. We also show that
the cover time of the cobra walk is, with high probability, O(n log n) on any n-vertex tree for k ≥ 2, Õ(n1/d) on
a d-dimensional grid for k ≥ 2, and O(log n) on the complete graph.

CCS Concepts: � Mathematics of computing → Graph algorithms; � Theory of computation →
Distributed algorithms; Random walks and Markov chains; � Computing methodologies → Self-
organization;

Additional Key Words and Phrases: Information spreading, cover time, epidemic processes

ACM Reference Format:
Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, and Scott Roche. 2015. Coalescing-branching
random walks on graphs. ACM Trans. Parallel Comput. 2, 3, Article 20 (October 2015), 29 pages.
DOI: http://dx.doi.org/10.1145/2817830

Authors’ addresses: C. Dutta, Twitter, San Francisco, CA; email: chinmoy@twitter.com; G. Pandurangan,
Department of Computer Science, University of Houston, Houston, TX 77204, USA. Work done while the
author was affiliated with the Division of Mathematical Sciences, Nanyang Technological University, Sin-
gapore 637371 and Department of Computer Science, Brown University, Providence, RI 02912, USA. email:
gopalpandurangan@gmail.com. Supported in part by the following grants: Nanyang Technological Univer-
sity grant M58110000, Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2
grant MOE2010-T2-2-082, and the US-Israel Binational Science Foundation grant 2008348; R. Rajaraman
and S. Roche, College of Computer and Information Science, Northeastern University, Boston MA 02115,
USA; email: {rraj, str}@ccs.neu.edu. Supported in part by NSF grants CNS-0915985, CCF-1216038, and
CCF-1422715.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 2329-4949/2015/10-ART20 $15.00
DOI: http://dx.doi.org/10.1145/2817830

ACM Transactions on Parallel Computing, Vol. 2, No. 3, Article 20, Publication date: October 2015.

http://dx.doi.org/10.1145/2817830
http://dx.doi.org/10.1145/2817830
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2817830&domain=pdf&date_stamp=2015-11-02


20:2 C. Dutta et al.

1. INTRODUCTION

We study a distributed propagation mechanism in networks called the coalescing-
branching random walk (cobra walk, for short). A cobra walk is a variant of the standard
random walk, and is parameterized by a branching factor, k. The process starts from
an arbitrary vertex, which is initially labeled active. For instance, this could be a
vertex that has a piece of data, rumor, or a virus. In a cobra walk, for each discrete
time step, each active vertex chooses k random neighbors (sampled independently with
replacement) to become active for the next step; this is the “branching” property, in
which each vertex spawns multiple independent random walks. A vertex is active for
step t if and only if it is chosen by an active vertex in step t − 1; this is the “coalescing”
property (i.e., if multiple walks meet at a vertex, they coalesce into one walk).

A cobra walk generalizes the standard random walk [Lovász 1996; Mitzenmacher and
Upfal 2005], which is equivalent to a cobra walk with k = 1. Random walks on graphs
have a wide variety of applications, including serving as fundamental primitives in
distributed network algorithms for load balancing, routing, information propagation,
gossip, and search [Das Sarma et al. 2009, 2010; Bui et al. 2006; Zhong and Shen 2006].
Being local and requiring little state information, random walks and their variants are
especially well-suited for self-organizing dynamic networks such as Internet overlay,
ad hoc wireless, and sensor networks [Zhong and Shen 2006]. As a propagation mech-
anism, one parameter of interest is the cover time, the expected time it takes to cover
all the vertices in a network. Since the cover time of the standard random walk can
be large—�(n3) in the worst case, �(n log n) even for expanders [Lovász 1996]—some
recent studies have studied simple adaptations of random walks that can speed up
cover time [Adler et al. 2003; Berenbrink et al. 2010; Dimitrov and Plaxton 2005].
Our analysis of cobra walks continues this line of research, with the aim of studying a
lightweight information dissemination process that has the potential to improve cover
time significantly.

Our primary motivation for studying cobra walks is their close connection to Suscep-
tible Infected Susceptible (SIS)-type epidemic processes in networks. The SIS model
(e.g., Durrett [2010], also see Section 1.3) is widely used for capturing the spread of
diseases in human contact networks or propagation of viruses in computer networks.
Three basic properties of a SIS process are: (a) a vertex can infect one or more of its
neighbors (the “branching” property), (b) a vertex can be infected by one or more of its
neighbors (the “coalescence” property), and (c) an infected vertex can be cured and then
become susceptible to infection at a later stage. Cobra walks satisfy all these proper-
ties, whereas standard random walks and other gossip-based propagation mechanisms
violate one or more. Also, although there has been considerable work on the SIS model
([Ganesh et al. 2005; Van Mieghem 2011; Givan et al. 2011; Durrett 2010; Parshani
et al. 2010; Draief and Ganesh 2011; Berger et al. 2005]), it has been analytically hard
to tackle basic coverage questions: (1) How long will it take for the epidemic to infect,
say, a constant fraction of network? (2) Will every vertex be infected at some point, and
how long will this take? Our analysis of cobra walks in certain special graph classes is
a step toward a better understanding of such questions for SIS-type processes.

1.1. Our Results and Techniques

We derive near-tight bounds on the cover time of cobra walks on trees, grids, and
expanders. These special graph classes arise in many distributed network applications,
especially in the modeling and construction of peer-to-peer (P2P), overlay, ad hoc, and
sensor networks. For example, expanders have been used for modeling and construction
of P2P and overlay networks, grids and related graphs have been used as models for ad
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hoc and sensor networks, and spanning trees are often used as backbones for various
information propagation tasks.

We begin with an observation that Matthew’s Theorem [Matthews 1988; Lovász
1996] for random walks extends to cobra walks; that is, the cover time of a cobra walk
on an n-vertex graph is at most O(log n) times the maximum hitting time of a vertex.
Hitting time is the expected time until a walk originating at u ∈ V reaches v ∈ V for
the first time. For many graphs, the expected cover time of a random walk coincides
with the high-probability cover time. This enables us to focus on deriving bounds for
the hitting time.

We face two technical challenges in our analysis. First, unlike in a standard random
walk, cobra walks have multiple “active” vertices at any step, and in almost all graphs
it is difficult to characterize the distribution of the active vertices at any point of
time. Second, the combination of the branching and coalescing properties introduces a
nontrivial dependence among the active vertices, making it challenging to quantify the
probability that a given vertex is made active during a given time period. Surprisingly,
these challenges manifest even in tree networks. We present a result that gives a tight
bound on the cover time for trees, which we obtain by establishing a recurrence relation
for the expected time taken for the cobra walk to cross an edge along a given path of
the tree.

—For an arbitrary n-vertex tree, a cobra walk with k ≥ 2 covers all vertices in O(n log n)
steps with high probability1 (c.f. Theorem 3.2 of Section 3).

For a matching lower bound, we note that the cover time of a cobra walk in a star graph
is �(n log n) with high probability. We conjecture that the cover time for any n-vertex
graph is O(n log n). By exploiting the regular structure of a grid, we establish improved
and near-tight bounds for the cover time on d-dimensional grids.

—For a d-dimensional grid, we show that a cobra walk with k ≥ 2 takes Õ(n1/d) steps,
w.h.p. (cf. Theorem 4.1 of Section 4).

We next show that the cover time of a cobra walk on the complete graph is logarithmic
in n. Although this result may not be particularly surprising, the method of proof is
independently of interest and serves as a “warm-up” and contrast to the proof of our
result.

—For Kn, the complete graph on n vertices, w.h.p. a cobra walk covers Kn in O(log n)
time (cf. Theorem 5.1 of Section 5).

Our main technical result is an analysis of cobra walks on expanders, which are graphs
in which every set S of vertices of size at most half the number of vertices has at least
α|S| neighbors for a constant α, which is referred to as the expansion factor.

—We show that for an n-vertex constant-degree expander, a cobra walk covers a con-
stant fraction of vertices in O(log n) steps and all the vertices in O(log2 n) steps with
high probability, assuming that either the branching factor or the expansion factor
is sufficiently large (cf. Theorems 6.2 and 6.3 of Section 6).

Our analysis for expanders proceeds in two phases. We show that in the first phase,
which consists of O(log n) steps, the branching process dominates, resulting in an
exponential growth in the number of active vertices until a constant fraction of vertices
become active, with high probability. In the second phase, although a large fraction of
the vertices continues to be active, dependencies caused by the coalescing property

1By the term “with high probability, we mean with probability 1 − 1/nc, for some constant c > 0.
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prevent us from treating the process as multiple independent random walks, analyzed
in Alon et al. [2008] (or even d-wise independent walks for a suitably large d). We
overcome this hurdle by carefully analyzing these dependencies and bounding relevant
conditional probabilities to establish an O(log n) bound with high probability on the
maximum hitting time, leading to an O(log2 n) bound on the cover time.

For establishing our results, it is often convenient to work with branching factor
k = 2. Since the cover time for larger values of the branching factor is at most the cover
time for k = 2, all of our results hold for k ≥ 2.

1.2. Related Work and Comparison

Branching and coalescing processes. There is a large body of work on branching
processes (without coalescence) on various discrete and nondiscrete structures [Harris
1963; Madras and Schinazi 1992; Benjamini and Müller 2010]. A study of coalesc-
ing random walks (without branching) was performed in Cooper et al. [2012] with
applications to voter models. Others have looked at processes that incorporate branch-
ing and coalescing particle systems [Arthreya and Swart 2005; Sun and Swart 2008].
However, these studies treat the particle systems as continuous-time systems, with
branching, coalescing, and death rates on restricted-topology structures such as integer
lattices. To the best of our knowledge, ours is the first work that studies random walks
that branch and coalesce in discrete time and on various classes of nonregular finite
graphs.

Random walks and parallel random walks. Feige [1993, 1995] showed that the
cover time of a random walk on any undirected n-vertex connected graph is between
�(n log n) and �(n3) with both the lower and upper bounds being achieved in certain
graphs; in fact, the two bounds he established are tight to within lower order terms.
With the rapidly increasing interest in information (rumor) spreading processes in
large-scale networks and the gossiping paradigm (e.g., see [Chen and Pandurangan
2012] and the references therein), there have been a number of studies on speeding up
the cover time of random walks on graphs. One of the earliest studies is due to Adler
et al. [2003], who studied a process on the hypercube in which, in each round, a vertex
is chosen uniformly at random and covered; if the chosen vertex was already covered,
then an uncovered neighbor of the vertex is chosen uniformly at random and covered.
For any d-regular graph, Dimitrov and Plaxton showed that a similar process achieves
a cover time of O(n + (n log n)/d) [Dimitrov and Plaxton 2005]. For expander graphs,
Berenbrink et al. showed a simple variant of the standard random walk that achieves
a linear (i.e., O(n)) cover time [Berenbrink et al. 2010].

It is instructive to compare cobra walks with other mechanisms to speed up random
walks, as well as with gossip-based rumor spreading mechanisms. Perhaps the most
related mechanism is that of parallel random walks, first studied in Broder [1989] for
the special case where the starting vertices are drawn from the stationary distribution
and in Alon et al. [2008] for arbitrary starting vertices. Nearly tight results on the
speedup of cover time as a function of the number of parallel walks have been ob-
tained by Elsasser and Sauerwald [2011] for several graph classes including the cycle,
d-dimensional meshes, hypercube, and expanders. (Also see Efremenko and Reingold
[2009] for results on mixing time.) Although cobra walks are similar to parallel random
walks in the sense that at any step multiple vertices may be selecting random neigh-
bors, there are significant differences between the two mechanisms. First, the cover
times of these walks are not comparable. For instance, whereas k parallel random
walks may have a cover time of �(n2/ log k) for any k ∈ [1, n] [Elsasser and Sauerwald
2011], a 2-branching cobra walk on a line has a cover time of O(n). Second, although
the number of active vertices in k parallel random walks is always k, the number of

ACM Transactions on Parallel Computing, Vol. 2, No. 3, Article 20, Publication date: October 2015.



Coalescing-Branching Random Walks on Graphs 20:5

active vertices in any k-branching cobra walk is continually changing and may not even
be monotonic. Most importantly, the analysis of cover time of cobra walks needs to
address several dependencies in the process by which the set of active vertices evolve;
we use the machinery of Markov chains on graph tensor products to obtain the cover
time bound for bounded-degree expanders (see Section 6).

The works of Das Sarma et al. [2009, 2010] presented distributed algorithms for
performing a standard random walk in sublinear time (i.e., in time sublinear in the
length of the walk). In particular, the algorithm of Das Sarma et al. [2010] performs
a random walk of length � in Õ(

√
�D) rounds with high probability on an undirected

network, where D is the diameter of the network. The high-level idea behind this
algorithm is to perform several short walks in parallel and then stitch them carefully.
However, this speed-up comes with a drawback: The message complexity of the faster
algorithm is much worse compared to the naive sequential walk, which takes only �
messages. In contrast, we note that the speed-up in cover time given by a cobra walk
over the standard random walk comes only at the cost of a slightly worse message
complexity.

Gossip-based mechanisms. Gossip-based information propagation mechanisms
have also been used for information (rumor) spreading in distributed networks.2
Gossip-based algorithms have also been used successfully to design efficient dis-
tributed algorithms for a variety of problems in networks, such as information
dissemination, aggregate computation, constructing overlay topologies (e.g., see
Chen and Pandurangan [2012] and the references therein). In the most typical
rumor-spreading models, gossip involves either a push step, in which vertices that are
aware of a piece of information (being disseminated) pass it to random neighbors, or a
pull step, in which vertices that are unaware of the information attempt to extract the
information from one of their randomly chosen neighbors, or some combination of the
two. In such models, the knowledgeable vertices or the ignorant vertices participate in
the dissemination problem in every round (step) of the algorithm. The main parameter
of interest in many of these analyses is the number of rounds needed until all the
vertices in the network get to know the information.

The rumor-spreading mechanism that is most closely related to cobra walks is the
basic push protocol, in which in every step, every informed vertex selects a random
neighbor and pushes the information to the neighbor, thus making it informed. (In
the push-pull version, unlike cobra, a vertex can choose a random neighbor and can
get information.) Feige et al. [1990] show that the push process completes in every
undirected graph in O(n log n) steps, with high probability. This paper also presented
optimal upper bounds of the push process in various graph classes, including random
graphs, bounded degree graphs, and the hypercube. Since then, the push protocol
and its variants (in particular, the push-pull protocol) have been extensively analyzed
both for special graphs, as well as for general graphs in terms of their expansion
properties (see, e.g., Chierichetti et al. [2010a, 2010b, 2011], Giakkoupis and Sauerwald
[2012], Giakkoupis [2011], Fountoulakis et al. [2012], and Fountoulakis and Panagiotou
[2010]).

Although cobra walks and push-based rumor spreading share the property that mul-
tiple vertices are active in a given step (unlike the case in a standard random walk), the
two mechanisms differ significantly. While the set of active vertices in rumor spread-
ing is monotonically nondecreasing, this is not so in cobra walks, an aspect that makes
the analysis challenging especially with regard to full coverage. (Note that in a push

2Sometimes, in the literature, “gossiping” has been used for all-to-all communication and “broadcasting” or
“rumor spreading” for one-to-all communication.
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process, once a node is active it remains active, unlike in cobra.) However, we note that
in any graph, the (expected) cover time of the push process is no worse than k (where
k is the branching factor) times the cover time of the cobra walk process. This can be
easily established by simulating one step of the cobra walk by k (independent) steps
of the push process. Thus, at least for constant k, the cover time of push is asymptoti-
cally no worse than that of cobra walk. However, the message complexity of the push
protocol can be substantially different from that of cobra. A simple example is the star
network, which the push protocol covers in �(n log n) steps with a message complexity
of �(n2 log n), whereas the 2-branching cobra walk has both cover time and message
complexity �(n log n). This can be extended to show similar results for star-based net-
works that have been proposed as models for Internet-scale networks [Comellas and
Gago 2005] and the references therein.

1.3. Applications

As mentioned at the outset, cobra walks are closely related to the SIS model in epi-
demics, but they may be easier to analyze using tools from random walk and Markov
chain analyses. Whereas the persistence time and epidemic density of SIS-type epi-
demic models are well studied [Ganesh et al. 2005; Kessler 2008; Van Mieghem 2011],
to the best of our knowledge, the time needed for a SIS-type process to affect a large
fraction (or the whole) of the network has not been well-studied. The SIS model consid-
ered in these studies is typically in a continuous time setting. For example, the work
of Ganesh et al. [2005] considers a model in which, at any time, infected vertices infect
their neighbors with rate β, and vertices, once infected, recover at rate δ (δ is set to 1
without loss of generality). It is important to note that this defines a Markov process in
which the absorbing state 0 can be reached from any starting state; thus, an epidemic
always dies out. The main result of Ganesh et al. [2005] is that if the ratio β/δ is less
than 1/λmax, the largest eigenvalue of the adjacency matrix of the underlying graph,
then the epidemic dies out quickly (i.e., in O(log n) time). On the other hand, if this
ratio is larger than the isoperimetric constant, then the epidemic will last for a long
time (i.e., at least �(enα

)). A cobra walk can be considered a discrete time variant of the
continuous SIS model, with a difference. In a cobra walk, the epidemic does not die out
because there is at least one vertex that remains active in the network. Thus, while it
is not interesting to study the time to extinction in a cobra walk, it is relevant to study
how long it takes to infect the whole or a fraction of the network; the amount of infected
vertices in steady state (if it exists) is also worth studying. Our results and analyses of
cobra walks can be generalized to understand the time taken for an epidemic process
in an SIS-type model to spread in a network. By varying the branching factor and
the time that a vertex remains infected, the process can also be viewed as a general-
ized rumor-spreading model, with applications in both epidemiology and information
dissemination.

Cobra walks can also serve as a lightweight information dissemination protocol
in networks, similar to the push protocol. As pointed out earlier, in certain types of
networks, the message complexity incurred by a cobra walk to cover a network can be
smaller than that for the push protocol. This can be useful, especially in infrastructure-
less anonymous networks, where vertices don’t have unique identities and may not even
know the number of neighbors. In such networks, it is difficult to detect locally when
coverage is completed.3 If vertices have a good upper bound on n (the network size),
however, then vertices can terminate the protocol after a number of steps equal to

3In networks with identities and knowledge of neighbors, a vertex can locally stop sending messages when
all neighbors have the rumor. This reduces the overall message complexity until cover time.
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the estimated cover time. In such a scenario, message complexity is also an important
performance criterion.

2. PRELIMINARIES

Let G be a connected graph with vertex set V and edge set E, and let |V | = n. We define
a coalescing-branching (cobra) random walk on G with branching factor k starting at
some arbitrary v ∈ V as follows: At time t = 0, we place a pebble at v. Then, in the
next and every subsequent time step, every pebble in G clones itself k − 1 times (so
that there are now k indistinguishable pebbles at each vertex that originally had a
pebble). Each pebble independently selects a neighbor of its current vertex uniformly
at random and moves to it. Once all pebbles make their one-hop moves, if two or
more pebbles are at the same vertex, they coalesce into a single pebble, and the next
round begins. In a cobra-walk, a vertex may receive a pebble an arbitrary number of
times.

For a time step t of the process, let St be the active set, the set of all vertices of
G that have a pebble. We will use two different definitions of the neighborhood of
St: Let N(St) be the inclusive neighborhood, the union of the set of neighbors of all
vertices in St (which can include members of St itself). Let 	(St) be the noninclusive
neighborhood, which is the union of the set of neighbors of all vertices of St such that
St ∩ 	(St) = ∅.

Let the expected maximum hitting time hmax of a cobra walk on G be defined as
the maxu,v∈V E[hu,v], where hu,v is the time it takes for the first pebble arising from a
cobra walk starting at vertex u to first reach v.

We are interested in two different notions of cover time, which we define as the
time until all vertices of G have been visited by a cobra walk at least once. Let τv be
the minimum time t such that, for a cobra walk starting from v, ∀u ∈ V − v, u ∈ St
for some t ≤ τv that may depend on u. Then we define the cover time of a cobra
walk on G to be maxv∈V τv. We define the expected cover time to be maxv∈V E[τv].
Note that in the literature for simple random walks, cover time usually refers to the
expected cover time. In this article, we will show high-probability bounds on the cover
time.

In Section 6, we prove results for cobrawalks on expanders. In this article, we use
a spectral definition for expanders and then use Tanner’s theorem to translate that to
neighborhood and cut-based notions of expanders.

Definition 2.1. A d-regular ε-expander is a d-regular graph whose adjacency
matrix has eigenvalues αi such that |αi| ≤ εd for i ≥ 2, where ε ∈ (0, 1).

It is known that any d-regular ε-expander G with n vertices approximates the com-
plete graph H = Kn, with weight d/n on each edge, in the following sense: For all
x ∈ R

n, (1 − ε)xT LHx ≤ xT LGx ≤ (1 + ε)xT LHx, where L is the Laplacian matrix asso-
ciated with the adjacency matrix of the corresponding graph [Spieman 2012]. Tanner’s
theorem [Tanner 1984] then implies the following lower bound on neighborhood size
in any d-regular ε-expander. Note that the δ defined in the theorem may be any value,
not just a constant.

THEOREM 2.2 [TANNER 1984]. Let G be a d-regular graph ε-expander. For all δ > 0 and
S ⊆ V such that |S| = δn, we have |N(S)| ≥ |S|

ε2(1−δ)+δ
.

In the analysis of random walks it is often important to qualify whether a graph is
non-bipartite. In this analysis, all expander graphs are non-bipartite. This is implicit
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in the definition of the eigenvalues of the adjacency matrix of G, which require |αi| ≤
εd < d.

3. TREES

A useful tool in bounding the cover time for simple random walks is Matthew’s theorem
[Matthews 1988; Lovász 1996], which bounds the expected cover time of a graph by the
maximum expected hitting time hu,v between any two vertices u and v multiplied by a
O(log n) factor. Here, we show that this result can be extended to cobra walks.

THEOREM 3.1 (MATTHEW’S THEOREM FOR COBRA WALKS). Let G be a connected graph on n
vertices. Let W be a cobra walk on G starting at an arbitrary vertex. Then, the cover-time
of W on G, C(G), is bounded from above by O(hmax log n) in expectation and with high
probability.

PROOF. We follow the proof outlined in Lovász [1996]. We first show the following
claim.

CLAIM. Let β be the expected number of steps before a cobra walk visits more than
half of the vertices. Then, b ≤ 2hmax.

PROOF OF CLAIM. Let ρv be the time when vertex v is first visited by the cobra walk.
Arrange the ρv ’s in increasing order. Let � = �(n + 1)/2�. Then, the time β when the
cobra walk reaches (for the first time) more than half of the vertices is the �-th element
in the above order of the ρvs. Hence,∑

v∈V

ρv ≥ (n − � + 1)β.

Taking expectation on both sides we have,

b = E[β] ≤ 1
n − � + 1

∑
v∈V

E[ρv] ≤ nhmax

n − � + 1
≤ 2hmax,

since
∑

v∈V E[ρv] ≤ nhmax and n
n−�+1 ≤ 2. Hence the claim.

Our claim says that in 2hmax steps, the cobra walk will visit more than n/2 vertices;
by a similar argument, in another 2hmax steps, the cobra walk will visit half of the rest
of the vertices. Repeating the argument log2 n times, it follows that all vertices will be
visited in expected O(hmax log n) steps.

We next show that the given bound on the cover time also holds with high probability.
Let’s partition the visit of the cobra walk into log2 n different stages according to the
number of vertices it visits: The first n/2 (different) vertices (first stage), then the next
n/4 vertices (second stage), and so on. By our claim, each stage finishes in at most 2hmax
steps in expectation. By Markov’s inequality, this implies that, with probability at least
1/2, each stage finishes in at most 4hmax steps. If the cobra walk finishes a stage in
at most 4hmax steps, then we call it a “success”; the probability of this happening is at
least 1/2. For the sake of analysis, assume that if the cobra walk fails to complete a
particular stage in at most 4hmax steps, then it repeats this stage again (this can only
increase the cover time). Call each such repetition a trial. Accordingly, the cobra walk
needs log2 n successes to finish all stages. In a total of 12 log2 n trials, the expected
number of successes is at least 6 log2 n. Applying a Chernoff bound [Mitzenmacher
and Upfal 2005], the probability that the number of successes in 12 log2 n trials is less
than log2 n is less than 1/n2. Thus, with high probability, the number of repetitions is
bounded by O(log n) overall. Since each repetition takes 4hmax steps, the cover time is
O(hmax log n) with high probability.
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Matthew’s theorem for cobra walks is used in proving the cover time for trees and
grids.

THEOREM 3.2. For any tree, the cover time of a cobra walk (with branching factor
k ≥ 2) starting from any vertex is O(n log n) with high probability.

We prove our main result by calculating the maximum hitting time of a cobra walk
on a tree T and then applying Matthew’s theorem. Cobra walks on trees are especially
tractable because they follow two nice properties. Since a tree has a unique path
between any two vertices, when analyzing progression of the cobra walk from a source
vertex to a target vertex, we only need keep track of the pebble closest to the target
(which may change in each time step). In addition, the fact that there is one simple
path between any two vertices limits the number of collisions we need to keep track
of, a property that is not true for general graphs and makes cobra walks harder to
analyze on them. For this section, we fix the branching factor k = 2. For k > 2 but still
constant, the cover time would not be asymptotically better. This is because, as we will
see, our analysis involves showing stochastic dominance of a biased random walk with
transition properties similar to that of tokens moving from an active vertex in a cobra
walk. As such, having a branching factor larger than 2 boosts the bias probabilities,
but only by a constant. This therefore does not affect the asymptotic hitting time result
and hence not the cover time.

The general idea behind the proof is as follows. We consider the longest path in
the tree. Along each vertex in this path, except for the first and last, there will be
a subtree rooted at that vertex. If a cobra walk’s closest pebble to the endpoint is at
vertex l, the walk from this point can either advance with at least one pebble, or it
cannot advance by either backtracking along the path, going down the subtree rooted
at l, or both. We show via a stochastic dominance argument that a biased random walk
from l, whose transition probabilities are tuned to be identical to cobra walk’s, will
next advance to l + 1 in a time that is dominated primarily by the size of the subtree
at l. This is done by analyzing the return times in the nonadvancement scenarios just
listed. Thus, summing up over the entire walk, the hitting time is dominated by a
linear function of the size of the entire tree.

In Lemma 3.3, we bound the return time of a cobra walk to the root of a tree.

LEMMA 3.3. Let T be a tree of size n. Pick a root, r, and let r have d children. Then a
cobra walk on T starting at r will have a return time to r of 4n/d.

PROOF. To show that the Lemma holds for a cobra walk, we will actually show
that it holds for a biased simple random walk with transition probabilities modified to
resemble those of a cobra walk. We then use a stochastic dominance argument to show
that the return time of the cobra walk dominates the return time of the biased simple
random walk.

For this simple random walk, we start at r and assume that r has d children. In
the first step, the walk picks one of the children of r, ri. Let (di + 1) be the degree
of ri (meaning that ri has one parent, r, and di children). Then we define transition
probabilities as follows: p is the probability of returning to r in the next step, and q
is the probability of continuing down the tree to a child of ri. They are given as: p =
(1 − ( di

(di+1) )
2), q = ( di

(di+1) )
2, q

p = (di )2

(2di+1) . Note that these are the exact same probabilities
that a cobra walk at vertex ri would have for sending (not sending) at least one (any)
pebbles back to the root.

The rest of the proof follows by mathematical induction. Consider a tree T that has
only two levels. Starting from r, the return time, 2, is constant, thus the relationship
holds. For the inductive case, assume that the hypothesis holds. Denote ret(T ) the
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return time to the root of t and N(v) to be the children of v in the rooted tree T . For a
root r with children ri, denote Ti to be the induced subtree rooted at ri. Then:

E[ret(T )] = 1 + 1
d

∑
ri∈N(r)

1 + E[number of visits to ri until walk returns to r] · E[ret(Ti)]

≤ 2 + 1
d

∑
ri∈N(r)

q
p

· c|Ti|
di

= 2 + c
d

∑ d2
i

2di + 1
· |Ti|

di

= 2 + c
d

∑ di

2di + 1
|Ti|

≤ 2 + c
2d

(n − 1) <
4n
d

for c = 4, where ret(Ti) ≤ 4|Ti|/di by the induction hypothesis. Note that the q/p that
appears in the second line of the equations represents the mean of a negative binomial
random variable describing the number of heads needed in a series of coin tosses until
the first tails is observed. Here, heads indicates not moving one hop up the tree toward
the root, and tails is equivalent to doing so.

Next, we show the stochastic dominance of the return time of the biased random
walk to the root over the return time of a cobra walk to the root. Let X be the random
variable representing the number of time steps until a biased (single) random walk
starting at r returns to r. Let Y be the random variable associated with the return time
of a cobra walk starting at r to r. Note that X and Y are defined on the same probability
space �; namely, the integers ≥2.

For X, Y = 2 note that Pr[X = 2] ≤ Pr[Y = 2], since the random walk will occupy
only one child of r whereas the cobra walk will occupy one or two children. If it occupies
two children, the probability that at least one token returns to r is greater than in
the single-vertex case. Similarly, for higher values of X, Y , the vertex occupied by the
random walk token will always be a subset of the vertices occupied by the tokens
closest to r in the cobra walk. As such, the probability of the cobra walk moving one
step closer to return will be at least the probability of the random walk’s token doing
so, and applying this recursively we have Pr[X ≥ x] ≥ Pr[Y ≥ x]. (Note that x can only
take on even values, as T is a bipartite graph).

Next, we show an upper bound on the expected amount of time it will take until a
cobra walk moves one vertex closer toward the target vertex along the path from the
source to the target.

LEMMA 3.4. Fix a path in a tree T made up of vertices 1, . . . , l, (l + 1), . . . , t. Then, the
expected time it takes for a cobra walk starting at vertex l to get to l + 1 with at least one
token can be bounded as:

hl,(l+1) ≤ 3
2

+ 12
5

2∑
i=l

(
1
5

)l−i

|Ti|, (1)

where Tl is the induced subtree formed by vertex l and its neighbors not in {l − 1, l + 1}
and all of their respective descendants.

Informally, we prove that the one-step hitting time is bounded from above by the
expected hitting time of the worst-case scenario that either both pebbles go back along

ACM Transactions on Parallel Computing, Vol. 2, No. 3, Article 20, Publication date: October 2015.



Coalescing-Branching Random Walks on Graphs 20:11

Fig. 1. Local topology of tree for Lemma 3.4.

the path or both go down the subtree rooted at l. We then establish a simple recurrence
relation.

PROOF. Vertex l has one edge to the vertex l − 1, one edge to vertex l + 1, and dl
additional neighbors. Tl is the induced subtree of T formed by l, the dl neighbors of l
that are not in {l − 1, l + 1}, and all other vertices connected to the dl neighbors of l.

—Probability of a pebble going from l to l + 1 = p = (1 − ( (dl+1)
(dl+2) )

2).
—Probability of a pebble not going from l to l + 1 = 1 − p = q.
—Probability of a cobra walk sending both pebbles from l to l − 1 conditioned on it not

sending any pebbles from l to l + 1 = q′
l = ( 1

(dl+1)2 ).
—Probability of a cobra walk sending at least one pebble to the subtree Tl conditioned

on its not sending any pebbles to l + 1 = q′′
l = ( (dl)

(dl+1) )
2 + 2( dl

(dl+1)2 ) = d2
l +2dl

(dl+1)2 .

Note that, conditioned on a pebble not advancing to vertex l+1, there are three disjoint
events:

—(A) Both pebbles go to l − 1,
—(B) one pebble goes to l − 1 and one pebble goes into subtree Tl, and
—(C) both pebbles go into Tl.

We define an alternate event B′ as the event that there is only one pebble at l, and it
goes to a child in Tl. Therefore, it is not technically in the space of cobra walk actions.
However, this modified cobra walk stochastically dominates the original cobra walk
since it corresponds to a subset of the possible cobra walks actions from l: The case
where both pebbles move to the same vertex in Tl. If we let R be the time until first
return of the cobra walk to l conditioned on no pebble going to l + 1 from l initially,
we wish to show that E[R|B] ≤ E[R|B′] and that E[R|C] ≤ E[R|B′]. What is the
relationship between B and B′? Consider two random variables, X and Y , and let X
be the time until first return of a pebble that travels from l to l − 1, and let Y be
the time until first return of a pebble that travels into Tl. Then R|B is just another
random variable, U = min(X, Y ). Since U ≤ Y over the entire space, E[U ] ≤ E[Y ],
and clearly R|B′ is equivalent to Y . Thus, E[R|B] ≤ E[R|B′]. It is also easy to see that
E[R|B′] ≥ E[R|C]. Thus, by the law of total expectation we have:

E[R] = E[R|A] Pr(A) + E[R|B] Pr(B) + E[R|C] Pr(C)
≤ E[R|A] Pr(A) + (Pr(B) + Pr(C))E[R|B′]
= E[R|A] Pr(A) + (1 − Pr(A))E[R|B′].
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Then, the hitting time can be expressed as:

hl,l+1 ≤ p + q(E[R] + hl,l+1)
⇒ (1 − q)hl,l+1 ≤ p + q(E[R])

⇒ hl,l+1 ≤ 1 + q
p

(q′
l(1 + hl−1,l) + q′′

l r(Tl)).

Note that q/p = (dl+1)2

(2dl+3) . Since r(Tl) ≤ 4|Tl|/dl by Lemma 3.3, we continue with:

hl,l+1 ≤ 1 + (dl + 1)2

(2dl + 3)
1

(dl + 1)2 (1 + hl−1,l) + (dl + 1)2

(2dl + 3)

(
d2

l + 2dl
)

(dl + 1)2

4|Tl|
dl

≤ 1 + 1
5

(1 + hl−1,l) + 12
5

|Tl|

= 6
5

+ 12
5

|Tl| + hl−1,l

5
,

for dl ≥ 1.
We next apply this formula to hl−1,l and continue the recurrence to get the bound in

its expanded form:

hl,l+1 ≤ 6
5

l∑
i=0

(
1
5

)i

+ 12
5

(
|Tl| +

(
1
5

)
|Tl−1| +

(
1
5

)2

|Tl−2| + · · · +
(

1
5

)l−2

|T2|
)

,

where we use the fact that h0,1 ≤ 1. We simplify the equation to obtain the desired
result.

hl,l+1 ≤ 3
2

+ 12
5

2∑
i=l

(
1
5

)l−i

|Ti|.

Note that we stop at T2, since for vertex 1 on the path, having a tree rooted at it would
violate the assumption that 1, . . . , l is the path with maximal hitting time.

We are finally ready to prove our main result for the tree, Theorem 3.2, that the
cobra walk cover time of an arbitrary tree occurs in O(n ln n) steps.

PROOF. By Matthew’s theorem for cobra walks, C(G) ≤ O(log n)hmax. We just need to
prove that hmax is at most linear in the size of the tree.

Let P be the path for which hu,v is maximized, and let the path consist of the sequence
of vertices 1, 2, . . . , t. As in the proof of the single-step hitting time, we note that for
all but the first and last vertices on P there is a subtree Tl of size |Tl| rooted at
each vertices. Because h1,t ≤ h1,2 + h2,3 + . . . ht−1,t, we obtain the desired result from
Lemma 3.4 as follows:

h1,t ≤ 3
2

t + 12
5

t−1∑
j=2

[
|Tj |

∞∑
i=0

(
1
5

)i
]

≤ 3
2

t + 12
5

5
4

t−1∑
j=2

|Tj | ≤ 9n
2

.

4. COVER TIME FOR GRIDS

To show a cover time bound for the d-dimensional grid (in which each dimension of
the grid is of length n1/d and d is a constant), we also apply the technique of finding
the maximum of the expected hitting times between any vertices u, v ∈ G and then

ACM Transactions on Parallel Computing, Vol. 2, No. 3, Article 20, Publication date: October 2015.



Coalescing-Branching Random Walks on Graphs 20:13

applying Matthew’s bound. However, unlike the tree, we do not simply consider the
pebble closest to the “target” vertex. Rather, we focus on making progress one dimension
at a time toward the target (with regard to the coordinate of that dimension). Within
this dimension, we only follow the pebble closest to the target and show that it is making
a biased random walk toward its goal. Simultaneously, with regard to other dimensions,
it is making an unbiased random walk and thus remains close to its starting position
in that coordinate. Repeating this log log n times for each dimension, we show that
it takes O(n1/d logc n) time in expectation for a cobra walk starting at any vertex to
first reach any other vertex in the grid. Applying Matthew’s bound and multiplying by
another factor of log n gets us coverage in Õ(n1/d) time. We show the following theorem
for a cobra walk with branching factor k = 2; clearly, the theorem holds for any k ≥ 2.

THEOREM 4.1. Let G be a finite d-dimensional grid on n nodes for some constant d,
without wrap-around edges. Then, the cover time of a cobra walk on G is O(n1/d logc+1 n)
with high probability for branching factor k = 2 and some constant c ∈ �(1).

PROOF. We want to calculate how long it takes, in expectation, for a cobra walk
that starts at vertex s = (0, . . . , 0) to have at least one of its pebbles reach vertex
ω = (n1/d, . . . , n1/d). Unlike in the case of the cobra walk on the tree, we do not focus our
attention on the pebble (out of all pebbles) closest to ω, since there are multiple paths
between s and ω. However, we do something similar: Imagine focusing on the progress
of the cobra walk with regard to only one of the dimensions of the grid, say dimension
i. As the cobra walk progresses, we look at the pebbles’ i-th coordinates and keep track
of the pebble closest to ω’s i-th coordinate. We call this pebble the lead pebble. We pick
the lead pebble in each step in a manner similar to how we pick it for the tree. Suppose
the lead pebble is at vertex v, whose i-th coordinate is y. In the next (branching) step
of the cobra walk, if at least one of the lead pebble’s offspring moves to y + 1, we make
this pebble the lead pebble. If both of the offspring pebbles move to y−1 (back toward s
with regard to this dimension), then we place the lead pebble at the adjacent vertex to
v with the y− 1 coordinate. Finally, if neither one of these two events occur, this means
both pebbles have moved laterally in the grid (and thus make no progress backward
or forward in the i-th coordinate). We flip a fair coin and pick one of the two pebbles
as lead. It is worth pointing out for use later that the edge this pebble chooses to move
along is chosen uniformly at random from all possible edges orthogonal to dimension i.

Returning to our focus on the lead pebble’s progress on dimension i, it should be
clear that what we have described here is our lead pebble taking a biased random
walk when we focus solely on the changes in the i-th coordinate (i.e., we are projecting
onto a line). It has the following transition probabilities: the probability p+ of a +1
motion is given as p+ = 1 − ( 2d−1

2d )2 = ( 4d−1
4d2 ), the probability p− of a −1 motion is 1/4d2,

and the probability p0 of staying in place is the remainder of the probability mass:
p0 = d−1

d . This projection as a biased random walk on the line will later allow us to
use a concentration bound to calculate the probability of the walk making a certain
amount of progress for a walk of a given length.

Although we are following the lead pebble’s movement along its i-th coordinate, it is
of course moving around the grid along its other coordinates. However, as noted earlier,
if the lead pebble moves along an edge orthogonal to dimension i, that edge is chosen
uniformly at random from the set of all orthogonal edges. Hence, with respect to every
dimension j �= i, the lead pebble is making a (lazy) unbiased walk. Thus, we can also
use a concentration bound to show that the lead pebble’s j-th coordinate does not drift
very far, for all other dimensions j. This conveniently will allow us to focus on the lead
pebble’s progress one dimension at a time and show that it makes progress toward
the target in that dimension while remaining (relatively) still in the other dimensions
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and, more importantly, not drifting very far backward and thus undoing any progress
it might have made earlier.

More formally, we break our analysis into segments. In each segment, our goal is
to have the cobra walk starting at s reach ω and do so within O(n1/d) steps. We will
show that, in any segment, this will happen with probability q ∈ �(1/ logc n) for some
constant c. We can think of each segment as being an independent trial, with prob-
ability q of success. Thus, in expectation, after O(logc n) trials, one success will have
occurred. This gives us a maximum hitting time of a cobra walk of O(n1/d logc n). Apply-
ing Matthews’s bound gives us a cover time of O(n1/d logc+1 n) = Õ(n1/d) for the d-grid.

We now describe what happens in a segment. Each segment is divided into a number
of phases. The first phase is of length O(dn1/d), the second phase O(dn1/2d), and in
general the i-th phase is of length O(dn1/d2i−1

). All phases have identical structure (ex-
cept for their duration) except for the last phase, which is treated separately and is of
constant duration. Within each phase, there are d sub-phases, one for each dimension
of the grid. So for some phase M of length O(dD) (where D = n1/d2 j−1

, for the jth phase),
label the sub-phases M1, M2, . . . , Md. In sub-phase Mi, we allow the lead pebble selec-
tion to be governed by the rules of advancement for dimension i as described earlier. For
the other d − 1 sub-phases, when the lead pebble selection is governed by a dimension
other than i, the lead pebble’s i-th coordinate is taking an unbiased random walk.

We now directly bound the probability p1, that for each sub-phase Mi of duration
O(dD) the lead pebble moves toward ω in the i-th coordinate by at least D− 10d

√
D/2,

and p2, the probability that for the other d − 1 sub-phases the lead pebble’s i-th coor-
dinate does not drift by more than

√
D/2 steps.

Bound for p1. Let the sub-phase Mi last for K independent random walk steps. Let
the result of each step t be a random variable Xt that takes on value 1 if a forward step
is made, −1 if a backward step is made, and 0 if it stays in place. Then Pr[Xt = 1] = p+,
Pr[Xt = −1] = p−, and Pr[Xt = 0] = p0 as defined earlier. Let X = ∑K

t=1 Xt. Since
Xt ≥ −1, we can use the following version of the Chernoff bound (see Theorems 2.8 and
2.9 in Chung et al. [2006]):

Pr[X ≤ E[X] − λ] ≤ e
−λ2

2(||X||2+λ/3) , (2)

where ||X|| =
√∑K

t=1 E[X2
t ]. It is easy to verify that E[X2

t ] = 1/d and that E[Xt] =
(2d − 1)/2d2. We want to make expected progress of D steps in the i-th coordinate.
Setting E[X] = D requires K = 2d2

2d−1 D. Note that ||X||2 = K/d. To achieve our desired
bound we set λ = 10d

√
D/2. Thus:

Pr
[
X ≤ E[X] − 10d

√
D/2

] ≤ e

−100d2 D

8(K/d + √
D/6)

= e

−600d2 D

48K + 8d
√

D

= e

−600d2 D

48D2d2/(2d − 1) + 8d
√

D

= e

−600dD

96dD/(2d − 1) + 8
√

D

≤ e−4d = 1 − p1
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Bound for p2. Recall that in sub-phase Mi, the lead pebble is taking an unbiased lazy
random walk with regard to to all other coordinates besides i. Rather than calculate the
exact probabilities of +1,−1, 0 movements of the walk when projected onto dimension j,
we note that such a lazy unbiased walk is stochastically dominated by an unbiased, non-
lazy random walk. Thus, we will calculate a concentration bound on this walk instead.

Let Xt take on the value 1 if a +1 step is made at time t, and value −1 if a step is made
in the opposite direction. Then, we analyze this walk over (d−1)K = (d−1)2d2/(2d−1) ·
D steps, and we would like to show that:

Pr
[
X ≤ E[X] − 10d1.5

√
D/2

] ≤ (1 − p2).

Here, of course, X = ∑(d−1)K
t=1 Xt. Thus E[X] = 0, E[X2

t ] = 1, and ||X||2 = (d − 1) 2d2

(2d−1) D.
Then, we can calculate:

Pr
[
X ≤ −10d3

√
D/2

] ≤ e

−100d3 D

8

(
(d − 1)2d2

(2d − 1)
D +

√
D

6

)

≤ e

−100d3

8
(

(d − 1)2d2

(2d − 1)
+ 1

6

)
≤ e−4d = (1 − p2).

Thus, during phase M, the probability that the lead pebble’s i-th coordinate moves
“right” by at least D − O(

√
D) steps is lower bounded (via union bound) by p1 + p2 ≥

1 − 2e−4d. The probability that this happens for all dimensions is lower bounded (via
union bound over all dimensions) by 1 − 2de−4d = �(1). Recall that each phase runs for
a length that is the square root of the phase before it. By these calculations, with each
phase, we grow progressively closer (within another square root factor) to ω with some
constant probability. Indeed, after O(log log n) phases, we will be within a constant
distance from ω in each coordinate dimension, with probability at least (�(1))d log log n.
If we come within a constant distance, then for the last phase, with some constant
probability, the remaining distance will be covered in a constant number of steps,
and the lead pebble will arrive at ω. Thus, each phase succeeds with probability in
�(1/ log�(1) n), and the result follows.

For the special case where d = 1 (i.e., the line), we note that the expected cover time
is O(n), since by starting the cobra walk at 0 and only keeping track of the pebble
closest to vertex n, we have a biased random walk with probability 3/4 of advancing
toward n. This will reach n in a linear number of steps. Repeating log n times would
give us a high-probability bound.

5. CLIQUES

In this section, we analyze the cover time of a cobra walk on the complete graph of
n vertices, Kn. Although the result (O(log n) cover time with high probability) is not
surprising and the method of proof somewhat basic, we present it here for several
reasons. First, it serves to illustrate a different method of proving results about cobra
walks. Previously, for the case of the grid and the tree, the backbone of the analysis
involved analyzing the progress of the closest token to the target of the longest path in
the graphs. Other tokens were generally ignored. In this section, and particularly in
the section dealing with expanders, the structure of the graph loses its simplicity and
we have to keep track, in some way, of all of the tokens. We do this by studying the
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active set at each time t in the progression of the cobra walk, where by active set St
we mean the set of vertices of G at time t where a token from the previous round has
landed. The second and third reasons for studying cobra walks on Kn are related: As an
easier illustration of a new proof technique, it serves as a warm-up to the analysis of
expanders and yet also serves as an illustrative contrast. We will point out the various
places where the assumptions that can be made for Kn do not hold for expanders and
thus necessitate the development of more advanced techniques.

We state the main result for Kn:

THEOREM 5.1. Let G = Kn, the complete graph on n vertices. Then, a cobra walk (with
branching factor k = 2) starting from any vertex in Kn will cover the entire graph with
high probability in O(log n) time.

The key to understanding the coverage of Kn is to understand what happens at an
arbitrary step t, given that the active set is already of size s = |St|. For simplicity,
assume that every vertex in Kn also has a self-loop. Let us also assume that |St| � n.
According to the rules of the cobra walk, each active vertex will hold two pebbles at the
beginning of the round. Each one of those pebbles will independently choose one of the
n vertices of Kn to move to in the next step. Thus, the cardinality of St+1, the active set
at the beginning of round t+1 can range from 1, in the unlikely event that every single
token chose to converge on the same vertex, to a maximum size 2s, corresponding to
the event where every token independently chooses a unique vertex of Kn.

We show that when the size of the active set is of no more than δn, for a constant
δ < 1 to be calculated later, with high probability the active set will grow by at least a
constant factor (1 + c) in each round up until it hits size δn. Once it reaches this active
set size δn, it will not go below this size again, and the rest of the graph will be covered
in O(log n) steps through random sampling.

LEMMA 5.2. Let a cobra walk on Kn at time t have active set St, with cardinality
|St|, and let C = 10 < |St| ≤ δn. Then, with probability at least 1 − 1/n3, active set
|St+1| ≥ (1 + c)|St|.

PROOF. As mentioned earlier, in moving from step t to t + 1, each of the s vertices in
the active set in time t gives rise to two tokens. Each of these tokens then makes an
independent choice among the nvertices and moves to that vertex at time t+1. Since our
analysis is concerned with active sets, we want to find an expression for the probability
that |St+1| = M for any M ∈ [1, 2s]. This involves counting the size of the sample space
subject to the requirement that the 2s tokens select M vertices. Hence, we have M!{ 2s

M },
where { 2s

M } is the Stirling number of the second kind, which counts the number of ways
to place 2s unlabeled balls into M unlabeled bins. Here, our tokens are unlabeled but
our bins (vertices) are not, and we multiply through by a M! to account for the labeling.
Therefore, the total probability that 2s tokens will choose M vertices is given by:

Pr
[|St+1| = M

] =
(

n
M

)
M!

{2s
M

}
n2s .

Taking advantage of the identity M!{ n
M } = Mn −∑M−1

i=1
M!
i! {n

i }, we can bound the prob-
ability of having an active set of size M as: Pr[|St+1| = M] < ( n

M) M2s

n2s . We noted earlier
that s ≤ δn, and for the following calculation, we want to calculate the probability when
M = (1 + c)s = ŝ, for a constant c ∈ (0, 1). Thus, we also require that ŝ < n/2. We have:

Pr
[|St+1| = ŝ

] ≤
(

n
ŝ

)
ŝ2s

n2s ≤ nŝ

ŝŝ eŝ ŝ2s

n2s = nŝ−2sŝ2s−ŝeŝ.
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We next need to show that Pr[|St+1| = ŝ] < 1/n4 for all s, ŝ in the valid range. When
s, ŝ = (1 + c)s are constants, the n(c−1)s term dominates. For c = 0.5, if s > 10, the
inequality holds for sufficiently large n. On the other hand, when s = δn, replacing
(1 + c) = ε for simplicity, we have:

nŝ−2sŝ2s−ŝeŝ ≤ nεδn−2δn(εδn)2δn−εδneεδn

= (εδ)(2−ε)δneεδn

≤ (e)−6(2−ε)δn eεδn

= e−(12−7ε)δn

= e−1.5δn = e−n/e6

if we let ε = 1.5 and δ is chosen such that εδ = e−6. Due to the presence of −n in the
exponent of the last line, it should be clear that Pr[|St+1| = εn] is much less than n−4.

We are, of course, interested in the probability that |St+1| < (1 + c)s = εs, which can
be given as

∑εs
k=1 Pr [|St+1| = k] ≤ εs · ( n

εs ) (εs)2s

n2s ≤ εs ( εs
n )(2−ε)seεs. The second inequality

comes from the fact that middle term ( n
εs ) (εs)2s

n2s is increasing over the range [1, εs] as
long as εs � 1/2. For values of s at the lower end of the range [C, . . . , δn], when s = C,
by this reasoning, we have that the total probability is less than n−3. We next show
that this holds for the entire range by proving that the function f (s) = εs ( εs

n )(2−ε)seεs

is decreasing over the range [C, δn]. The first derivative of the expression with regard
to s is:

f ′(n, s, ε) = −εeεs
(εs

n

)(2−ε)s [
(ε − 2)s ln

(εs
n

)
− 2s − 1

]
. (3)

This will be negative when the quantity in brackets is positive. This is equivalent to:

(ε − 2)s ln
(εs

n

)
− 2s − 1 > 0

(ε − 2)s[ln(ε) + ln(s) − ln(n)] > 2s + 1
(2 − ε)[ln(n) − ln(ε) − ln(s)] > 2 + 1/s.

Clearly, this will hold when s is small, and since the function g(s) = ln n − ln ε − ln s]
is a convex function on the range [C, δn], it will not achieve a value greater than
max g(C), g(δn). Thus, we only need to show that the inequality above also holds for
s = δn. As before, we set ε = 1.5 and δ = 1/(εe6):

(2 − ε)
[
ln(n) − ln(ε) −

(
ln

n
εe6

)]
> 2 + 1

n/(εe6)

(2 − ε)
[
ln(n) − ln ε − ln n + ln ε + 6

]
> 2 + εe6

n

3 > 2 + 1.5e6

n
for sufficiently high values of n. Therefore, function f (s) is decreasing and is less than
1/n3 for all values of s in range [C, δn], proving the lemma.

Now we are ready to complete the proof of Theorem 5.2.

PROOF. There are three different phases we need to analyze. The first phase is when
the active set is in the range [1, . . . , C). Here, however, it is easy to show that the
active set grows with a constant probability, and thus it grows in a sufficient number
of continuous steps to achieve a value of C with constant probability. Thus, we only
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need O(log n) such steps to achieve a size C with high probability. The next phase is
covered by Lemma 5.2. When the active set is between [C, δn], with probability 1−n−3,
it grows by a factor of 1.5 in each step. Thus, with high probability, it will grow for
log n steps in a row, achieving an active set of size δn. Once the active set reaches size
δn, with high probability, it will not go below δn for more than 1/2 of the next 2 log n
steps. Meanwhile, each token of the cobra walk can choose any vertex of Kn uniformly
at random. Therefore each vertex, in each time step, has at least a δn/n = δ probability
of being selected by a token in each round. Thus, within another O(log n) steps, each
vertex will have been visited by at least one token with high probability, completing
the proof.

6. EXPANDERS

For expander graphs, we prove a high probability cover time of O(log2 n). The proof is
divided into two phases. In the first phase, we show that a cobra walk starting from any
vertex will reach a constant fraction of the vertices in logarithmic (in |V |) time with
high probability. In the second phase, we create a process that stochastically dominates
the cobra walk and show that this new process will cover the entire rest of the graph
again in polylogarithmic time with high probability.

The main result of this section can be stated formally as follows:

THEOREM 6.1. Let G be any d-regular ε-expander with ε, δ not depending on n (the
number of vertices in G), with δ < 1

2 , and ε, a sufficiently small constant such that

1
ε2(1 − δ) + δ

>
d(de−k + (k − 1)) − k2

2

d(e−k + (k − 1)) − k2

2

. (4)

Then, with high probability, a cobra walk with branching factor k = 2 and starting
from any vertex in G will cover G in O(log2 n) time.

Recall that d-regular ε-expanders are defined in Definition 2.1, and Theorem 2.2
places a lower bound on the size of neighborhoods in such an expander.

We also note that the condition in Theorem 2.2 is satisfied if ε is sufficiently small
for a fixed k. However, k can also be viewed as an adjustable parameter. Increasing k
would allow for graphs with worse expansion to be covered by this result.

In the case where k = 2, this condition holds for strong expanders, such as the
Ramanujan graphs, which have ε ≤ 2

√
d − 1/d and random d-regular graphs for d

sufficiently large.
As described earlier, the proof of Theorem 6.1 has two parts. The first part, Phase I,

handles the behavior of the cobra walk on G in the period between its start at a single
vertex in G and the time when there are a linear number of active vertices (i.e., a
constant fraction of the vertices). We show that this phase lasts no longer than O(log n)
time.

The second part, Phase II, shows that once the cobra walk has reached a state in
which a large fraction of vertices are active, the rest of the vertices will be hit by
the walk within at most O(log2 n) rounds. The method of showing this is somewhat
indirect, in that the bound is shown for a somewhat similar process that stochastically
dominates a cobra walk. The main idea, however, is that any vertex in G will be hit
by the cobra walk within O(log n) time with constant probability. Thus, after �(log n)
runs of O(log n) steps, any (single) vertex will be hit with high probability. Performing
a union bound over all vertices and choosing constants appropriately achieves the
O(log2 n) bound for the whole graph.
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We next state the two lemmas associated with Phase I and Phase 2, respectively.
Combining these two lemmas proves Theorem 6.1

LEMMA 6.2. Let G be any d-regular ε-expander with ε, δ not depending on n (number
of vertices in G), with δ < 1

2 , and ε satisfying 4. Then, in time O(log n), with high
probability, a cobra walk on G with branching factor k will attain an active set of size
δn.

LEMMA 6.3. Let G be as above, and let W be a cobra walk on G that at time T has
reached an active set of size δn. Then, with high probability, in an additional O(log2 n)
steps every vertex of G will have been visited by W at least once.

6.1. Phase 1

To prove Lemma 6.2, we prove that active sets up to a constant fraction of V are
growing at each step by a factor greater than 1. To do this, we show first that the size
of the active set is growing by an exponential factor in expectation (c.f. Lemma 6.4).
We then use a standard martingale argument to show that this growth occurs in any
single step with high probability (c.f. Lemma 6.5). Finally, to complete the proof of
Lemma 6.2, we show that there are a sufficient number of growth steps within the first
O(log n) rounds. To do this, we view the size of the active set itself as a random variable
and show that it is dominated by a random process derived from a negative binomial
random variable that itself satisfies the O(log n) bound.

LEMMA 6.4. Let G be any ε-expander with ε, δ satisfying the conditions of Theorem 6.2.
Then, for any time t ≥ 0, the cobra walk on G with active set St such that |St| ≤ δn
satisfies E[|St+1|] ≥ (1 + ν)|St| for some constant ν > 0.

PROOF. We instead show that the portion of N(St) not selected by the cobra walk is
sufficiently small, E[|N(St) − St+1|] ≤ |N(St)| − (1 + ν)|St|, and the result of the lemma
will follow immediately.

For each vertex u ∈ N(St), define Xu as an indicator random variable that takes value
1 if u /∈ St+1 and 0 otherwise. Then, Pr[Xu = 1] = (1 − 1/d)kdu, where du is the number
of neighbors u has in St. Thus:

E[|N(St) − St+1|] =
∑

u∈N(St)

Xu =
∑

u∈N(St)

(
1 − 1

d

)kdu

≤
∑

u∈N(St)

e− kdu
d .

Because
∑

u∈N(St) du = d|St| and we are working with a convex function, we have that∑
e− kdu

d is maximized when all the values of du are equal to either 1 or d, with the
exception of possibly one du to act as the remainder. Let R1 be the number of vertices
in N(St) where du = 1, and let R2 be the number of vertices where du = d. We have the
following system of equations:

R1 + R2 = |N(St)| (5)
R1 + dR2 = d|St|. (6)

Solving for R1 and R2, we get:

R1 = d
d − 1

(|N(St)| − |St|) (7)

R2 = 1
d − 1

(d|St| − |N(St)|). (8)
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We now want to show that

E[|N(St) − St+1|] ≤ R1e− k
d + R2e−k = d

d − 1
(|N(St)| − |St|)e− k

d + 1
d − 1

(d|St| − |N(St)|)e−k

≤ |N(St)| − (1 + ν)|St|.
Rearranging, we want to show that

|N(St)|
(

1 − d
d − 1

e− k
d + 1

d − 1
e−k

)
+ |St|

(
d

d − 1
e− k

d − d
d − 1

e−k − 1
)

≥ ν|St|.

We let α = 1
ε2(1−δ)+δ

, then |N(St)| ≥ α|St| (by Theorem 2.2), and we can divide through
by |St| in the preceding expression. Since the first quantity in parenthesis is positive,
and we don’t care what ν is as long as it’s a positive constant, we are down to needing:
α(1 − d

d−1 e− k
d + 1

d−1 e−k) + ( d
d−1 e− k

d − d
d−1 e−k − 1) > 0. Rearranging, we want

(α − 1)
(

1 − d
d − 1

e− k
d

)
− d − α

d − 1
e−k > 0.

Taking the second-order Taylor approximation e− k
d ≤ 1 − k

d + k2

2d2 , (6.1) will be satisfied
if

(α − 1)
(

1 − d
d − 1

(
1 − k

d
+ k2

2d2

))
− d − α

d − 1
e−k > 0,

which will be true for

1
ε2(1 − δ) + δ

= α >
d(de−k + (k − 1)) − k2

2

d(e−k + (k − 1)) − k2

2

.

Next, we use a martingale argument to show that the number of vertices in St is
concentrated around its expectation.

LEMMA 6.5. For a cobra walk on a d-regular ε-expander that satisfies the conditions
in Lemma 6.4, at any time t

Pr[|St+1| − E[|St+1|] ≤ −τ |St|] ≤ e− τ2 |St |
2k (9)

PROOF. Arbitrarily index the the vertices of St, i = {1, . . . , |St| = m}. Let (Zj
i ) be

a sequence of random variables ranging over the indices i and j = {1, . . . , k}, where
Zj

i = v indicates the ith element of St that has chosen vertex v to place it’s jth pebble.
Define A as the random variable that represents the size of St+1. Then,

Xj
i = E

[
A|Z1

1, . . . , Zk
1, . . . , Z1

i , . . . , Zj
i

]
is the Doob martingale for A, with Xk

m = |St+1|. Since Xj
i − Xj−1

i ≤ 1 and X1
i − Xk

i−1 ≤ 1
for all i, j, Azuma’s inequality yields:

Pr[|St+1| − E[|St+1|] ≤ −τ |St|] ≤ e− τ2m2
2km = e− τ2m

2k . (10)

We now complete the proof of Lemma 6.2. Using the bound of Lemma 6.5, we show
that, with high probability, we will cover at least δn of the vertices of G with a cobra
walk in logarithmic time by showing that the active set for some t = O(log n) is of size
at least δn.

The key to this proof is to view a cobra walk on G as a Markov process over a state
space consisting of all the possible sizes of the active set. In this interpretation, all
configurations of pebbles in a cobra walk in which i vertices are active are equivalent.
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The goal is to show that this new Markov process will reach a state corresponding to
an active set of size δn quickly with high probability. To prove this, we first show that
it is dominated by a restricted Markov chain over the same state space in which any
negative growth in the size of the active set is replaced with a transition to the initial
state (in which only one vertex is active). We then in turn show that the restricted
walk is dominated by an even more restricted walk in which the probability of negative
growth is higher than in the first restricted walk, bounded from below by a constant
and no longer dependent on the size of the current state. We then show that the goal of
the lemma is achieved even in this walk by relating the process to a negative binomial
random variable.

PROOF. We view a cobra walk on G as a random walk W over the state space consisting
of all the possible sizes of the active set: S(W) = {1, . . . , n}. We then define a Markov
process M1 that stochastically dominates W : Let τ = ν/2, where ν is the expected
growth factor of the active set as shown in Lemma 6.4. The states of M1, S(M1), are the
same as W ’s, but the transitions between states differ. Each i ∈ S(W) can have out-arcs
to many different states, but the corresponding i ∈ S(M1) has only two transitions.
With probability pi = 1 − e− ν2i

8k transition to state (1 + ν/2)i, and with probability 1 − pi
transition to state 1. Note that pi is derived from Lemma 6.5.

In M1, each transition probability is still a function of the current state i, and, as
mentioned earlier, we would like to eliminate this dependence. Thus, define M2 as a
random walk over the same state space. However, we will deal only with a subset of
S(M2): the states: (1+ν/2)iC for i ∈ Z and a suitably large constant C. We then have the
following transitions for each state in the chain (which will begin once it hits C). Setting
r = ν2/8k, at state (1 + ν/2)iC: (i) Transition to state (1 + ν/2)i+1C with probability
p′

i = 1 − e−rC(1+ iν
2 ). (ii) Transition to state C with probability 1 − p′

i. This Markov chain
oscillates between failure (going to C) and growing by a factor of 1 + ν/2. Note that to
succeed (i.e., reach a state of at least δn), we need �(log n) growing transitions.

The probability that in a walk on this state space we “fail” and go back to C before
hitting δn is bounded by 1/2, since

∑∞
i=0 e−rC(1+i ν

2 ) ≤ e−rC ∑∞
i=0 eirC ν

2 = e−rC

1−e−rC ν
2

≤ 1
2 ,

provided that C is sufficiently large as a function of r (which is itself only a function of
the branching factor and the constant ν).

Consider each block of steps that end in a failure (meaning that we return to C).
Then, clearly, with high probability after b log n trials, for some constant b, we will
have a trial that ends in success (i.e., reaching an active set of size δn vertices). In these
b log n trials, there are exactly that many returns to C. However, looking across all
trials that end in failure, there are also only a total of O(log n) steps that are successful
(i.e., involve a growth rather than shrinkage). To see why this is true, note that the
probability of a failure after a string of growth steps decreases supralinearly with
each step, so that if we know we are in a failing trial, it is very likely that we fail
after only a few steps. Thus, there cannot be too many successes before each failure.
Indeed, the probability that we fail at step i within a trial can be bounded. Thus,
Pr[Failure at step i| eventual failure]

= Pr[Failure at step i]
Pr[Eventual failure]

= e−rC(1+iν/2)∑∞
i=1

(∏l−1
j=1(1 − e−rC(1+ jν/2)

)
e−rC(1+lν/2)

≥ 1∑∞
i=1 e−irCν/2

≥ 1 − e−rCν/2
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and thus the probability of advancing is no more than e−rCν/2, also a quantity that
does not depend on i. This is a negative binomial random variable with distribution
w(k, p), the number of coin flips needed to obtain k heads with heads probability p.
Identifying heads with a failure (i.e., returning to C) and tails with making a growth
transition, we have a random variable w(k, p), the number of coin flips needed for k
failures with probability of failure p = 1 − e−rCν/2. It is well known that Pr[w(k, p) ≤
m] = Pr[B(m, p) ≥ k], where B(m, p) is the binomial random variable counting the
number of heads within m p-biased coin flips. Thus, Pr[w(k, p) > m] = Pr[B(m, p) < k].
Setting k = a log n and m = b log n, we have Pr[B(m, p) ≤ E[B(m, p)] − t] = Pr[B(m, p) <

pm− t] ≤ e
−2t2

m . We let k = pm− t, and, solving for t, we get t = (pb− a) log n. This gives
us

Pr[B(m, p) < k)] ≤ 1

n
(pb−a)2

b

,

establishing that there are at most O(log n) successes within O(log n) trials ending
in failure. Via stochastic dominance, this bound holds for our original cobra walk
process.

6.2. Phase 2

Once the active set has reached size �(n), we need a different method to show that the
cobra walk achieves full coverage in O(log2 n) time. We cannot simply pick a random
pebble and restart the cobra walk from this point O(log n) times because we know
nothing about the distribution of the δnpebbles after restart, and the restarting method
would require the pebbles to be independently identically distributed uniformly across
the vertices of G. As a result, we are unable to establish a straightforward bound on
hmax and invoke Matthew’s theorem.

Hence, to prove Lemma 6.3, we develop a different process, which we call Walt, that
stochastically dominates the cobra walk. In Walt, no more branching or coalescing
occurs, and we also modify the transition probabilities of the pebbles on a vertex-by-
vertex basis depending on the number of pebbles at a vertex. For technical reasons, we
also make the Walt process lazy in that, in any given round, with probability 1/2, the
pebbles all remain in the same location.

Definition 6.6. For any time t and any collection of S pebbles on V (there can be
more than 1 pebble at a vertex), define Walt(t + 1) as follows. With probability 1/2, all
the pebbles remain in the same location; with probability 1/2, the pebbles move as
follows. Let A ⊆ V be the set of all vertices with 1 pebble at time t. Let B ⊆ V be
the set of all vertices with exactly 2 pebbles, and let C be the set of all vertices with
more than 2 pebbles. Then, (i) for every v ∈ A, the pebble at v uniformly at random
selects a vertex in 	(v) (the neighborhood of v not including itself) and moves to it;
(ii) for every v ∈ B, each pebble at v uniformly at random selects a vertex in 	(v) and
moves to it; (iii) for every v ∈ C, arbitrarily index the pebbles at v. Then, the first two
pebbles each (index 1, 2) then pick a neighbor ∈ 	(v) to move to, uniformly at random.
Let u, w be the two neighbors picked by pebbles 1, 2. (Note that w = u is a possible
outcome). The remaining pebbles (those with index > 2), still in the same time step,
each independently pick u or w with probability 1/2 and move to the vertex they have
selected.

The process Walt can be thought of as a kind of coalescing (lazy) random walk in which
the threshold for coalescence is three pebbles on a vertex rather than the standard two,
with the added condition that the third (and higher) token chooses which of the first
two tokens to coalesce with by flipping an unbiased coin.
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Furthermore, at any time t, when Walt is not lazy, a vertex with two or more pebbles
behaves locally exactly the same in Walt and a cobra walk. The divergence in behavior
occurs only for those vertices with one pebble. In Walt, they behave like vertices par-
ticipating in a simple lazy random walk (or like vertices in a cobra walk in which both
pebbles have chosen the same neighbor to move to in the next round). In light of these
modifications, the active set of Walt at any time t can be viewed as a (possibly proper)
subset of the active set of a cobra walk on G at an earlier time that accounts for the
lazy steps of Walt, if both are started from identical initial conditions (i.e., distribution
of pebbles). Therefore, the probability that the cover time of Walt is greater than some
value x is at least the probability of the cover time of the cobra walk being greater than
x. Thus, the cover time of Walt stochastically dominates the cover time of a cobra walk
when started from the same initial condition.

Thus, if we can prove that the cover time of Walt on G is O(log n) with high probability,
this will imply that the cover time of the cobra walk on G has the same upper bound
as well.

LEMMA 6.7. Let G be a bounded-degree d-regular ε-expander graph, with ε sufficiently
small to satisfy the conditions in Lemma 6.4. Let there be δn pebbles distributed arbi-
trarily over V , with at most one pebble per vertex, for a constant δ < 1/2. Starting from
this configuration, the cover time of Walt on G is O(log2 n), with high probability.

PROOF. Our proof relies on showing that each vertex in G has a constant probability
of being visited by at least one pebble during an epoch of Walt lasting �(log n) time.
Once this has been established, all vertices of G will be covered with high probability
after O(log n) epochs lasting �(log n) steps each.

Define Ei to be the event that pebble i covers an arbitrary vertex v at time s = �(log n),
where the constant hidden in the � notation is chosen to be sufficiently large. We want
to prove that the probability that v is covered by at least one pebble, Pr[

⋃
i Ei], is

constant. For pebbles i and j, we cannot assume that Ei and Ej are independent since
the transition probabilities of the walks of i and j will not be independent if they are
spatially and temporally co-located. However, we can calculate an upper bound using
a second-order inclusion-exclusion approximation:

Pr

[⋃
i

Ei

]
≥

∑
i

Pr
[
Ei

] − 1
2

∑
i �= j

Pr[Ei ∩ Ej].

As a marginal probability, Pr[Ei] can be viewed as the probability that the (simple)
random walk of pebble i hits v at time s. This is justified because if we only observe the
movement of pebble i, at any time t, if i is at vertex w, its probability of walking to each
of w’s d neighbors is 1/2d, regardless of whether it is the first, second, or third pebble
at w. Since it reduces to analyzing a simple random walk, we only need to look at the
elements of zAs, where A is the stochastic transition matrix of the simple lazy random
walk on G and z is a vector with z(l) equal to 1 for l equal to the position of pebble i at
the beginning of the epoch and 0 in all other positions. By a standard analysis [Alon
et al. 2008, Lemma 4.8], it follows that each coordinate of Asz differs from 1/n by at
most 1

2n for s ≥ c log n, where c is a sufficiently large constant. Thus, Pr[Ei] ≥ 1
2n.

Next, we establish an upper bound for Pr[Ej ∩ Ei], the joint (and hence nonindepen-
dent) walks of pebbles i and j. For the purposes of this analysis, we consider pebble i
to be the higher priority pebble: That is, if at any time i and j are co-located at some
vertex and the process is not lazy in that round, we assume that i has first priority and
chooses a neighbor to move to in the next step independently with uniform probability.
We assume that j has third or lower priority and will choose i’s destination with prob-
ability 1/2 and thus with probability 1/2 choose a neighbor uniformly at random. We
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can view the walks of i, j as a random walk on the tensor product G × G. The tensor
product has vertex set that is the Cartesian product V (G)×V (G). Vertex (u, u′) of G×G
has an edge to (v, v′) if and only (u, v) and (u′, v′) are edges of G. Note that the joint
walk of i, j on G does not map to a simple random walk on G × G; rather, it maps to a
walk on a directed graph formed from G × G with weights chosen appropriately based
on the process Walt. In Lemma 6.8, we show that this walk, viewed as a nonreversible,
irreducible Markov chain, has a stationary distribution close to 1/n2, that it converges
rapidly to the stationary distribution, and, thus, after s steps, the probability that i
and j are at the same vertex in G is no more than 2/(n2 + n) + 1/n4.

With this result, we then have:

Pr
[⋃

Ei

]
≥

∑
i

Pr[Ei] − 1
2

∑
i �= j

Pr[Ej ∩ Ei]

≥ δn
1
2n

−
(

δn
2

) (
2

n2 + n
+ 1

n4

)

≥ δ

2
− δ

2
(δn2 − n)

(
2

n2 + n
+ 1

n4

)

≥ δ

2
− δ2n2

n2 + n
− δ2

n2

≥ δ

2
− δ2,

which is a positive constant for any δ < 1/2. The last inequality holds because the term
n2/(n2 + n) + 1/n2 is at most 1 for n ≥ 2.

LEMMA 6.8. Let G and s be defined as in Theorem 6.7. Let i and j be two pebbles
walking on G according to the rules of Walt. If Ei ∩ Ej defined as the event in which i
and j are both at arbitrary vertex v ∈ G at time s, then Pr[Ei ∩ Ej] ≤ 1/n2.

PROOF. Let G × G be the tensor product chain as just defined. We first make some
observations about the structure of this graph. We note that there are two types of
vertices of G × G. The first type involves all vertices that have the form (u, u), where
u ∈ V (G). A pebble at (u, u) would correspond to two pebbles occupying u in the paired
walk of i, j on G. We label this set S1. The cardinality of S1 is n. The remaining vertices,
which we place in the set S2, are of the form (u, v) for u �= v. There are n2−nsuch vertices.
Also note that, in the undirected graph G× G, each vertex has degree d2. Furthermore,
every vertex in S1 will have d neighbors also in S1 by virtue of G being d-regular.

Many of the spectral properties of G apply to G × G as well. Primarily, because G
is an ε-expander, the transition matrix of a simple random walk on G has a constant
second eigenvalue α2(G) bounded away from 0. It is well known [Levin et al. 2009] that
G × G will have α2(G × G) = α2(G), which we refer to as α2 henceforth.

We now take the undirected graph G × G and transform it into a directed graph
D(G × G) as follows. For every undirected edge (x, y) in G × G, replace it with two
directed edges: x → y and y → x. As mentioned, every vertex in S1 will have d neighbors
also in S1, meaning there will be one directed arc x → y for every vertex x ∈ S1 and
y ∈ N(x), y ∈ S1. We now add an additional d copies of edge x → y for every such
original edge. Finally, to account for the fact that Walt is a process in which all pebbles
stay simultaneously at their respective locations with probability 1/2, we add as many
self-loops at each vertex of D(G × G) as the number of outgoing edges at the vertex.

It is relevant for our analysis to note that because of the regularity of the subgraph
of G×G induced on S1, for every vertex in D(G×G), the number of out-edges will equal
the number of in-edges, and hence D(G × G) is an Eulerian digraph. Furthermore, we
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can now calculate the transition probabilities of a random walk on D(G × G) where
an outgoing edge from vertex x is picked with probability equal to the reciprocal of its
out-degree. For all vertices in S2, the probability that the walk stays at the vertex is
1/2; every other transition occurs with probability 1/(2d2). This includes edges from
S2 into S1. On the other hand, although the probability that the walk stays at a vertex
in S1 is 1/2, the probabilities of transitions from a vertex in S1 to any other vertex
is modified: The probability of transitioning from a vertex x ∈ S1 to one of its d2 − d
neighbors in S2 is now 1/(4d2), whereas the probability of transitioning to a neighbor in
S1 has become (d+1)/(4d2) on account of the multiple edges. We have thus constructed
a walk on digraph D(G × G) that maps exactly to the joint walk of pebbles i, j on G
according to the rules of Walt.

Because the walk on D(G×G) is irreducible, it has a stationary distribution π , which
is the (normalized) eigenvector of the dominant eigenvalue of the transition matrix M
of the walk on D(G × G). Furthermore, because D(G × G) is Eulerian, the stationary
distribution of vertex x is exactly given by d+(x)/m, where m is the number of edges.
Therefore, there are only two distinct values of the components of the stationary vector:
For all x ∈ S1, π (x) = 2/(n2 + n), while for all y ∈ S2, π (y) = 1/(n2 + n).

Because G and hence G×G have such nice spectral properties, and because D(G×G)
represents a minor modification of G×G, it would be reasonable to intuit that D(G×G)
also has some of the same properties. Yet one must proceed with caution when analyzing
Markov chains on directed graphs because some properties that hold for chains on
undirected graphs do not carry through. However, following closely the work of Chung
[2005], we can verify that the random walk on D(G × G) converges rapidly to its
stationary distribution.

For succinctness of notation, denote D = D(G×G). Consider the function Fπ : E(D) →
� given by Fπ (x, y) = π (x)P(x, y), where π (x) is the x-th component of the stationary
distribution of the walk onD, and P(x, y) is the associated transition probability moving
from x to y. Then Fπ is the circulation associated with the stationary vector as shown
in Lemma 3.1 of Chung [2005]. Note that a circulation is any such function that satisfies
a balance equation:

∑
u,u→v F(u, v) = ∑

w,v→w F(v,w).
There is a Cheeger constant for every directed graph, defined as:

h(G) = inf
S

Fπ (∂S)
min{Fπ (S), Fπ (S̄)} , (11)

where Fπ (∂S) = ∑
u∈S,v /∈S F(u, v), F(v) = ∑

u,u→v F(u, v), and F(S) = ∑
v∈S F(v) for a set

S. Furthermore, Theorem 5.1 of Chung [2005] shows that the second eigenvalue, λ, of
the Laplacian of D satisfies:

2h(D) ≥ λ ≥ h2(D)
2

. (12)

The Laplacian of a directed graph is defined slightly differently than for an undirected
graph. However, because we will not use the Laplacian directly in our analysis, we
refer the reader to Chung [2005] for the definition. We will directly bound the Cheeger
constant for D, and hence produce a bound on the second eigenvalue of the Laplacian.
This second bound will then be used to provide a bound on the convergence of the chain
to its stationary distribution (see Theorem 6.9).

First, without loss of generality, assume that Fπ (S) is smaller than its comple-
ment. Furthermore, assume that S is the set that satisfies the inf condition in
the Cheeger constant. We have Fπ (∂S) = ∑

x→y,x∈S,y∈S̄ π (x)P(x, y), and Fπ (S) =∑
x→y,x∈S π (x)P(x, y). The first sum occurs over all (directed) edges that cross the cut

of S. Fortunately, we are already able to provide a lower bound on the size of this cut.
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Observing that D has at least as many edges crossing the cut as a cut on the equivalent
set S in G × G, and recalling that G × G has second eigenvalue α2, we can appeal to
α2 being bounded away from zero by a constant (by virtue of G’s expansion, recall) to
state that there exists some constant β (depending on α2) such that there are at least
β|S| edges crossing the cut. We can thus provide a lower bound for the entire Cheeger
constant:

h(D) = inf
S

Fπ (∂S)
min{Fπ (S), Fπ (S̄)}

≥ β|S|Pminπmin

|S|Pmaxπmax

= β ·
1

4d2

1
(n2 + n)

1
2

2
(n2 + n)

= β

4d2

We can then apply the lower Cheeger inequality to have λ ≥ β2

32d4 . We now show the
rapid convergence (in logarithmic time) of the walk on D to the stationary distribution.
To measure distance from the stationary distribution, we use the χ–square-distance:

�′(t) = max
y∈V (D)

⎛
⎝ ∑

x∈V (G)

(Pt(y, x) − π (x))2

π (x)

⎞
⎠

1/2

. (13)

It can be shown that a rapid convergence for �′ implies a rapid convergence for
the total variational distance, and thus the distribution of a random walk starting
anywhere in D will be close to its stationary distribution for every vertex.

We next apply Theorem 7.3 from Chung [2005], which we state here for clarity:

THEOREM 6.9. Suppose a strongly connected directed graph G on n vertices has
Laplacian eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. Then, G has a lazy random walk
with the rate of convergence of order 2λ−1

1 (− log minx π (x)). Namely, after at most
t ≥ 2λ−1

1 ((− log minx π (x) + 2c) steps, we have:

�′(t) ≤ e−c.

Recall that we provided a constant lower bound for λ, the second-smallest eigenvalue
of the Laplacian of D. Hence, we can apply it to the minimum running time of the
random walk on D to show that after at most

s = 32d4

β2 (log(n2 + n) + 4 log n2)

steps, we will have �′(t) ≤ 1
n4 . Therefore, for the random walk on D, after a logarithmic

number of steps s (in n, the size of G), a walk that starts at any initial distribution on
V (D) will be within 1/n−4 of the stationary distribution of any vertex. Mapping our
analysis back directly to the coupled walk of i, j on G, Pr[Ei ∩ Ej] ≤ 2/(n2 + n) + 1/n4

when pebbles i and j start from any initial position.

7. CONCLUSION

We studied a generalization of the random walk—namely, the cobra walk—and ana-
lyzed its cover time for trees, grids, complete graphs, and expander graphs. The cobra
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walk is a natural random process with potential applications to epidemics and gossip-
based information spreading. We plan to explore further the connections between cobra
walks and the SIS model and pursue their practical implications. From a theoretical
standpoint, there are several interesting open problems regarding cobra walks. The
first one is to obtain a tight bound for the cover time of cobra walks on expanders.
Our upper bound is O(log2 n), whereas the diameter �(log n) is an easy lower bound.
Another pressing open problem is to determine the worst-case bound on the cover time
of cobra walks on general graphs; we conjecture that it is O(n log n) with high proba-
bility. It will also be interesting to establish and compare the message complexity of a
cobra walk with the standard random walk and other gossip-based rumor spreading
processes.
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