
Analysis of Random Processes via And-Or Tree Evaluation

Michael G. Luby� Michael Mitzenmachery

M. Amin Shokrollahiz

Abstract

We introduce a new set of probabilistic analysis tools based on the analysis of And-Or trees
with random inputs. These tools provide a unifying, intuitive, and powerful framework for
carrying out the analysis of several previously studied random processes of interest, including
random loss-resilient codes, solving random k-SAT formula using the pure literal rule, and the
greedy algorithm for matchings in random graphs. In addition, these tools allow generalizations
of these problems not previously analyzed to be analyzed in a straightforward manner. We
illustrate our methodology on the three problems listed above.

1 Introduction

We introduce a new set of probabilistic analysis tools related to the amplification method in-
troduced by [12] and further developed and used in [13, 5]. These tools provide a unifying,
intuitive, and powerful framework for carrying out the analysis of several previously studied
random processes of interest, including the random loss-resilient codes introduced in [9], the
greedy algorithm for matchings in random graphs studied in [7], and the threshold for solving
random k-SAT formula using the pure literal rule [4]. In addition, generalizations of these prob-
lems not previously analyzed can now be analyzed in a straightforward manner. For example,
we can analyze generalizations of the loss-resilient codes considered in [9] where the goal is to
recover a certain fraction of the message packets. As another example, we can analyze the be-
havior of the pure literal rule on random SAT formulae chosen from distributions not considered
by previous analyses.

Our main tool is a simple analysis of the probability an And-Or tree formula evaluates to
1. The simple version of this And-Or tree evaluation problem is the following. Let T` be a tree
of depth 2` with each leaf node labeled with either 0 or 1. (The root of the tree is at depth 0,
and the leaves are at depth 2`.) Each node at depth 0; 2; 4; : : :; 2` � 2 is labeled as an “OR”
gate (and it evaluates to the “OR” of its children), and each node at depth 1; 3; 5; : : :; 2` � 1

�Digital Equipment Corporation, Systems Research Center, Palo Alto, CA. Research partially supported by NSF
operating grant NCR-9416101.

yDigital Equipment Corporation, Systems Research Center, Palo Alto, CA.
zInternational Computer Science Institute Berkeley, and Institut für Informatik der Universität Bonn, Germany. Re-

search supported by a Habilitationsstipendium of the Deutsche Forschungsgemeinschaft, Grant Sh 57/1–1.

1

is labeled as an “AND” gate (and it evaluates to the “AND” of its children). We say the tree is
(dor,dand)-regular if each “OR” node has dor children and each “AND” node has dand children.

Our analysis is related to the study of amplification, initiated by Moore and Shannon [12],
and continued in several works [13, 5]. Consider the probability that the root of the tree evalu-
ates to 0 when the value of each leaf is independently chosen to be 0 with probability p. Let us
denote this probability as y`. One typical amplification question with respect to And-Or trees
is whether or not there is a threshold phenomenon, i.e., is there a critical value � such that if
p > � then y` goes to 1 as ` goes to infinity and if p < � then as y` goes to 0 as ` goes to
infinity. Of primary interest in these studies is the rate of amplification, i.e., the rate at which y`
goes to either 0 or 1 as a function of `.

One work that uses exactly this type of analysis is the elegant randomized construction,
given in [13], of a polynomial size monotone boolean formula that computes the majority func-
tion. The basic idea behind the construction and proof exploits the fact that a (2; 2)-regular
OR-AND tree has a critical value of � = (3�p5)=2, and that if y`�1 = �+� then y` > �+c�
for a constant c > 1. (Analogously, if y`�1 = � � �, then y` < � � c�.) In further work, [3]
and [5] provide beautiful proofs that the construction size of [13] is optimal, this time using
amplification analysis to prove a lower bound.

Our work has a similar spirit to the amplification work, but it differs in several ways. We
generalize to allow the number of children of each node to vary in the following way. Let
(�0; �1; : : : ; �A) be a probability vector, i.e., �i � 0 for all i 2 f0; : : : ; Ag and

PA

i=0�i = 1.
Similarly, let (�0; �1; : : : ; �B) be a probability vector. Starting at the root and working down
the tree, each “OR” node chooses to have i children with probability �i independent of any
other node, and similarly each “AND” node choose to have j children with probability �j
independent of any other node. (Some previous research, e.g., [5], introduced a variant of this
form and used it in a limited way in their construction.) A further generalization is to allow two
positive values a and b such that each “OR” node is independently short circuited to produce the
value 1 with probability a, and each “AND” node is independently short circuited to produce
the value 0 with probability b.

Our new analysis is based on the following simple definitions and lemma. Define

�(x) =
AX

i=0

�i � xi;

�(x) =
BX

i=0

�i � xi;

f(x) = (1� a) � �(1� (1� b) � �(1� x)):

Lemma 1 Define y0 = p to be the probability a leaf node is labeled 0. Then, for all ` � 1,
y` = f(y`�1).

Although this lemma is simple to prove (in fact, we leave it as an exercise), as we shall see it is
quite powerful.

The most significant difference between our work and previous work on amplification is
our goal. For example, for the loss-resilient codes, our final goal is to design (�0; : : : ; �A) and
(�0; : : : ; �B) so that the average number of children per node is not too large, so that the ratio
between the average number of children for an “OR” gate and for an “AND” gate satisfies a
certain ratio, and so that for as small as possible a value of a and as large as possible a value of
b the critical value of the tree is as close to 1 as possible.

Some of the analyses we present in the paper were previously done using different method-
ologies. One common technique involved modeling the random process using differential equa-

2

tions. This type of approach was pioneered in the analysis of algorithms domain by Karp and
Sipser, who used it to analyze a greedy algorithm for matchings in [7]. It has also been used
to analyze the pure literal on random k-SAT formulae [11]. (See also [10, 11] for references
to other uses.) Similarly, the analysis of the loss-resilient codes described in [9] was done by
modeling the random process using differential equations, solving the equations to obtain a
polynomial, and using a version of Kurtz’s theorem [8] to make the connection between the
behavior of the random process and that of the polynomial. One of the ingredients lacking in
the previous analysis of these codeswas a simple intuitive connection between the polynomial
solution and the original process. With the new analysis, this intuitive connection is direct and
compelling. In addition, the new tools can be easily used to analyze important generalizations
of the original process, which would have been much more difficult using the previous analysis.
Finally, the simplicity and generality of the new analysis will undoubtably lead to a number of
other applications.

In the next three sections, we apply this simple lemma to the analysis of loss-resilient codes,
the pure literal rule for random k-CNF formula, and sketch its application to the greedy match-
ing algorithm for random graphs.

2 Loss-Resilient Code Analysis

2.1 Essentials of the Codes

The codes described in [9] consist of a cascading sequence of random bipartite graphs. Because
the code requires the same properties from all of these bipartite graphs, it is enough consider
one generic bipartite graph in the sequence when describing the encoding and decoding process
and its analysis. Let G be a bipartite graph with n nodes on the left side, m nodes on the
right side, and e edges in total between the nodes on the left and the right. We associate one
message bit with each left node and one check bit with each right node. (This is for simplicity
of description, in practice it is more efficient to associate several bytes of information with each
node.) The encoding process computes the check bits from the message bits in the obvious way:
the check bit associated with right node w is computed as the exclusive-or of all the message
bits associated with the neighbors of w.

The entire encoding is transmitted, and we would like to recover all the message bits from
a random fraction of the entire encoding, where this fraction is as small as possible. Assume
inductively that all the check bits associated with the right nodes have already been recovered.
Label the left nodes with a 0 if the associated message bit is missing, and with a 1 if the
associated message bit has been either received directly or recovered indirectly as described
below. The decoding process to recover the missing message bits invokes the following rule as
long as it is applicable.
Substitution Recovery Rule: The rule can be applied at any left node v with label 0 that has
at least one right neighbor w such that all the left neighbors of w excluding v are labeled with
a 1. The value of v can be recovered by computing the exclusive-or of the check bit associated
with w and all the values associated with neighbors of w excluding v. Since the message bit
associated with v has been recovered, the label of v is changed to 1 at this point.

In terms of a graph process, the substitution recovery rule can be written more succinctly as
follows:
Graph Substitution Recovery Rule: A left node v with label 0 is allowed to change its label
to a 1 if it has at least one right neighborw such that all left neighbors ofw except v have label
1.

3

The decoding process terminates successfully with all message bits recovered iff the graph
substitution recovery rule ends with no remaining left nodes with label 0.

2.2 New Analysis of the Original Process

The paper [9] gave an analysis of the decoding process described in the previous subsection
using differential equations to model the process, and then solving these equations as poly-
nomials. In this subsection, we obtain the same result using Lemma 1. The advantage of the
analysis here is that it gives direct and intuitive insight into how the final condition arises. In the
following subsections we show how this new analysis can be used to derive several additional
results.

Let (p0; p1; : : : ; pL) and (q0; q1; : : : ; qR) be probability vectors. As in [9], consider choos-
ing a random bipartite graph with n left nodes and m right nodes as follows: each node on the
left is chosen to have degree i with probability pi, and each node on the right is chosen to have
degree j with probability pj, where all choices are made independently. Counting the number
e of edges using the left and the right nodes gives

e = n �
LX

i=0

ipi = m �
RX

j=0

jqj:

A random permutation � of f1; : : : ; eg is chosen, and then, for all i 2 f1; : : : ; eg, the edge with
index i out of the left side is identified with the edge with index � i out of the right side.

For fixed probability vectors (p0; p1; : : : ; pL) and (q0; q1; : : : ; qR) and for a fixed constant
c > 0, we are interested in properties of such a graph as n and m = cn grow to infinity.

Consider the random subgraph G` of this graph obtained by the following process: choose
an edge (v; w) uniformly at random from among all edges, and then consider the subgraph G`

induced by the left node v and all neighbors of v within distance 2` after deleting the edge
(v; w).

We claim that the probability that G` fails to be a tree is proportional to 1=n, i.e., asymp-
totically this probability goes to zero as n grows to infinity for a fixed value of `. Further-
more, asymptotically the distribution on the shape of G` can be described as follows. For all
i = 1; : : : ; L, �i := ipi=

PL

j=1 jpj is the probability that a uniformly chosen edge is attached

to a left node of degree i. Similarly, for all i = 1; : : : ; R, �i = iqi=
PR

j=1 jqj is the probabil-
ity that a uniformly chosen edge is attached to a right node of degree i. The distribution on the
shape ofG` is as described above for a randomly chosen And-Or tree with the following param-
eters: the number of children of an “OR” node is i� 1 with probability�i, for all i = 1; : : : ; L;
the number of children of an “AND” node is i� 1 with probability �i, for all i = 1; : : : ; R.

Consider a process where at the start each left node in the graph is labeled with 0 initially
with probability �, and is labeled with 1 with probability 1 � �. This corresponds to missing
a random fraction � of the message bits. The goal is to eliminate as many as possible 0 labels
according to the graph substitution recovery rule described in the previous subsection, i.e., to
recover as many of the missing message bits as possible using the simple decoding process.

Let us analyze the probability y` that the left node v of a uniformly chosen edge (v; w) is
labeled with 0 considering the process running only on the subgraph G` induced by v. (It is
clear that v will definitely change its label to 1 in the process running on the entire graph if it
does so with process running just on G`.) Note that v obtains the label 1 with respect to G1 if
it is either received directly (with probability 1 � �, or if for at least one of its right neighbors
w0 (w 6= w0), all left neighbors of w0 excluding v are received directly. Note that v has i � 1
right children excluding w with probability � i, and that for any child w0 of v, w0 has i� 1 left

4

children excluding v with probability � i. Define the polynomials

�(x) =
LX

i=1

�i � xi�1; and

�(x) =
RX

i=1

�i � xi�1:

Then, from Lemma 1, ỳ = � � �(1 � �(1 � y`�1)). Using this equation, the probability that
v has label 0 with respect to G` can be computed iteratively starting with the equation y0 = �.
We would like that y` goes to 0 as ` grows. This condition will be true if � ��(1��(1�x)) < x
for all x 2 (0; �], or more precisely, if there is a constant � > 0 such that

� � �(1� �(1� x)) < x(1� �) (1)

for all x 2 (0; �]. This turns out to equivalent to the condition given in [9] for this process to
end successfully.

2.3 The Overall Analysis

It is not hard to argue that the process terminates with all message values successfully recovered
if the probability that a message bit is not directly received is � and if Condition (1) is fulfilled.
However, the details are somewhat tedious and thus we only sketch the proof here.

Suppose that �, �, �, and � satisfy Condition (1). Then it is trivial to see is that if ` is set
to c=� for some c > 1, then y` � �= exp(c). Thus, for any constant > 0 we can set ` to a
constant so that y` < . If ` is a constant then the number of nodes in the graph G` is also a
constant. Using this, and a standard generalization of Markov’s inequality to argue about large
moments of a distribution, it follows that the number of message bits not recovered at the end of
the decoding process is greater than 0n with probability exponentially small in n �

0

, for 0 �
and for a constant �0 > 0. Then, using the expansion properties of the random graph, which
follows from standard combinatorial arguments as outlined in [9], it is not hard to argue that
if at most 0n message bits are left recovered then the decoding process fails to recover more
than O(n

00

) message bits with probability at most inverse polynomial in n, for some constant
00 < 1. Finally, by a small supplement to the graph (adding a few nodes on the right and having
three additional edges out of each node on the left mapping randomly to these few additional
right nodes), one can see that if the process fails to recover at most O(n

00

) of the message bits
in the original graph, then in the supplemented graph all message bits fail to be recovered with
probability at most inverse polynomial in n. From this it follows that, with high probability,
when the decoding process terminates all message bits have been successfully recovered.

2.4 The Dual Inequality

In [9] a procedure is described for finding (close to) optimal right probabilities �1; : : : ; �R for
a given set of left probabilities �1; : : : ; �L using a linear programming approach. However, [9]
did not describe how to find the optimal left probabilities for a given set of right probabilities.
Using Condition (1), it is easy to see how to use the methodology described in [9] to do exactly
this. In fact, Condition (1) is in some sense the dual of the corresponding condition described
in [9], which was

�(1� � � �(1� x)) > x(1 + �) (2)

5

for some constant � > 0 and for allx 2 (0; 1]. It is from Condition (2) that [9] shows how to find
the optimal right probabilities for a given set of left probabilities. We leave it as an exercise how
to use the And-Or tree analysis to easily derive Condition (2). It turns out that Condition (2)
can also be derived from Condition (1) using a few simple algebraic manipulations. We leave
this as an exercise as well.

One advantage of being able to solve for both the optimal left probabilities for a given set
of right probabilities and the optimal right probabilities for a given set of left probabilities is
that we can invoke a “back and forth” strategy to get a good pair of distributions. This strategy
consists of starting with any given set of left and right probabilities with a given average degree,
and then iteratively invoking the “find the best left for the given right” followed by “find the
best right for the given left”. We have tried this strategy and it gives good results, although at
this point we have not proved anything about its convergence to a (possibly optimal) pair of
probability distributions.

2.5 Fraction of Left Nodes Unrecovered

The new analysis of the decoding process also yields extensions that help to overcome other
practical problems in the design of loss-resilient codes. In the original analysis it is assumed
inductively that all the check bits are received when trying to recover the message bits. The
reason we made this assumption is that in the original construction the cascading sequence of
bipartite graphs is completed by adding a standard loss-resilient code at the last level.

There are some practical problems with this. One annoyance is that it is inconvenient to
combine two different types of codes. A more serious problem is that standard loss-resilient
codes take quadratic time to encode and decode. Suppose the message is stretched to an encod-
ing twice its length. In order to have the combined code run in linear time, this implies that the
last graph in the cascading sequence has

p
n left nodes, where n is the number of nodes associ-

ated with the original message, i.e., there are log(n)=2 graphs in the sequence. In the analysis,
we assume that an equal fraction of the nodes in each level of the graph are received. However,
there is variance in this fraction at each level, with the worst expected fractional variance at the
last level of 1= 4

p
n. Thus, if a message of length 65; 536 is stretched to an encoding of length

131; 072, then just because of the variance of 1= 4
p
n = 0:063, we expect to have to receive

1.063 times the message length of the encoding in order to recover the message.
A solution to this problem is to use many fewer levels of graphs in the cascade, and at the

last level also use a random graph in place of a standard loss resilient code. We have tried this
idea, with the last graph chosen from an appropriate distribution, and it works quite well. For
example, using only three levels of graphs we can reliably recover a message of length 65; 536
from a random portion of length 67; 700 (i.e., 1.033 times the optimal of 65; 536) of an encoding
of length 131; 072.

To design the graph for this solution, we need to analyze the decoding process when a
random portion of both the message bits and the check bits are missing. With the And-Or tree
analysis, this is straightforward. Recall the terminology established in Subsection 2.2. Suppose
that a random fraction � of the message bits are not received directly and a random fraction �0 of
the check bits are not received directly. The generalization of Condition (1) for this case when
there are losses on both sides is that the process terminates in a state where a uniformly chosen
edge is adjacent to a left node with a missing message bit with probability at most if there is
a constant � > 0 such that

� � �(1� (1� �0) � �(1 � x)) < x(1� �) (3)

for all x 2 (; �].

6

The more general version of Condition (2), when a fraction �0 of the right nodes are missing,
is

�(1 � � � �(1 � (1� �0)x)) > x(1 + �): (4)

The Condition (4) is not possible to satisfy for all x 2 (0; 1] if � 0 > 0, for any value of �. This is
because there is a constant probability that all the right neighbors of a missing left node are also
missing, e.g., if the left node has degree d then the probability is �0d. However, it turns out to be
an interesting question to see what fraction of the left nodes can be recovered when a fraction
�0 of the right nodes are missing. The answer to this question can be used to design cascading
codes where the decoding process moves from right to left bootstrapping up to recover a higher
and higher fraction of nodes at each successive decoded layer of the graph until it is in practice
able to recover all of the first (message) layer. That is, the constant fraction left unrecovered is
so small that in practice all nodes corresponding to the message are recovered.

Given the fractions of left nodes pi and right nodes qi of degree i for all i, �(x) and �(x)
can be easily derived, and then the largest value x� for which Condition (4) is valid can be
computed. We show here how to compute the fraction of unrecovered nodes on the left at this
final value x�.

The value of x� has a natural interpretation, i.e., it is the fraction of edges (v; w) for which
all of the left neighbors of w, excluding v, have label 1 at the end of the process. Thus, this
is the fraction of edges (v; w) which could cause v to receive the label 1, assuming that w is
directly received. Define

p(x) =
LX

i=0

pi � xi:

From this interpretation, it can be seen that the fraction of unrecovered left nodes at the termi-
nation of the process is

� � p(1� (1 � �0)x�):

This is because y = 1� (1� �0)x� is the fraction of edges (v; w) which cannot help to recover
v. Thus, a left node v of degree i is not recovered at the end with probability � (its original
missing probability) times yi, and there is a pi fraction of such left nodes.

3 Pure Literal Analysis

In this section, we consider a simple heuristic, called the pure literal rule, for finding a satisfying
truth assignment to a boolean formula. The behavior of the pure literal rule has been studied
previously with respect to randomly chosen k-SAT formula ([4, 11]). (See also [6] for related
results using more sophisticated heuristics.) Here, we show how the tree analysis gives a direct
explanation of the behavior of the pure literal rule for a randomly chosen k-SAT formula with
respect to the same distributions considered in [4] and [11]. With this new analysis, it is also
straightforward to analyze distributions that were not previously considered and which would
be much harder to analyze using previous techniques applied to this problem.

A k-SAT formula F with m clauses on n variables fX1; : : : ; Xng consists of m clauses
C1; : : : ; Cm, each clause containing exactly k of the 2n possible literals

� := fX1; �X1; : : : ; Xn; �Xng:

Then, the formula F is the “and” of the m clauses, and each clause is the “or” of the k literals
it contains, i.e., for any 0/1 assignment to the variables, F evaluates to 1 if and only if in
each clause there is at least one literal that has value 1 with respect to the assignment. The

7

most widely studied distribution on F is the uniform distribution. For fixed value of k, m,
n the uniform distribution on choosing a formula F can be described as follows: for each
i 2 f1; : : : ;mg and for each j 2 f1; : : : ; kg, each of the 2n possible literals is chosen with
equal probability to be the jth literal in clause Ci.

The pure literal rule heuristic for finding a satisfying assignment consists of repeated appli-
cation of the following:
Pure Literal Rule: While there is a literal Z 2 � that appears in zero clauses, remove all
clauses containing the negation �Z of Z, assign �Z the value 1 (and thus Z is assigned 0), and
remove both Z and �Z from �.

The problem of interest is to study the asymptotic behavior of the pure literal rule with
respect to uniformly chosen k-SAT formula for a fixed value of k, and for a fixed ratio c = m=n
of the number of clauses to the number of variables, as the number of variables n grows to
infinity. The more particular question is for which values of k and c will the pure literal rule
almost surely (with respect to a uniformly chosen formula F) find an assignment which makes
F evaluate to 1 as n goes to infinity.

Similar to the loss-resilient codes, we can describe the structure of the formula F as a
bipartite graph; only in this case the edges are labeled. There are n right nodes in the graph
corresponding to the variables, and there are m left nodes corresponding to the clauses. There is
an edge labeled “+” from variable X to all clauses that contain X, and there is an edge labeled
“�” from variable X to all clauses that contain �X.

One can describe the behavior of the pure literal rule on this graph. The pure literal rule is
equivalent to repeated application of the following process on this graph:
Graph Pure Literal Rule: If there is a variable X such that all edges touching X have the
same label (either all “+” or all “�”) then delete X, all neighboring clauses of X, and all
edges touching any of these nodes.

The pure literal rule finds an assignment that satisfies the formula iff there are no remaining
right nodes after all possible applications of this process have been made.

We describe a general way of choosing a random formula F in the terminology of bipartite
graphs. Let (p0; p1; : : : ; pL) and (q0; q1; : : : ; qR) be probability vectors. Suppose each clause
chooses independently to have degree j with probability pj. Suppose each variable X chooses
independently to have i edges attached to it with the same label with probability qi, and the
distribution is the same for both possible labels. Counting the number e of edges using the left
and the right nodes gives

e = m �
RX

j=0

jpj = 2n �
LX

i=0

iqi:

A random permutation � of f1; : : : ; eg is chosen, and then, for all i 2 f1; : : : ; eg, the edge with
index i out of the left side is identified with the edge with index � i out of the right side.

For the special case of the uniform distribution on k-SAT, each clause has degree k, and
the number of edges with the same label out of each variable (corresponding to the number of
appearances of the corresponding literal in clauses) is asymptotically distributed according to
the Poisson distribution with mean � = km=2n as n goes to infinity, i.e., the probability that a
particular literal appears in i clauses is asymptotically exp(�) � �i=�!.

Consider the random subgraph G` of this graph obtained as follows: choose an edge uni-
formly at random from among all edges, and suppose it is an edge between clause C and
variable X with label � 2 f+;�g. Consider the subgraph G` obtained by the following search.
Consider variable X to be at the zeroth level of the search. Follow all the edges out of X with
the opposite label of �. This leads to a first level of clause nodes. Let C0 be one of the clauses at
the first level. Follow all edges out of C 0 except the edge that led intoC 0. This leads to a second

8

level of variable nodes. Let �0 2 f+;�g be the label of an edge from C0 to some variable X0.
Follow all the edges out of X 0 with the opposite label of �0. In a similar pattern, continue this
breadth first search out to level 2`.

As was the case for the loss-resilient codes, G` is a tree with high probability for a fixed
value of ` as n goes to infinity. Furthermore, asymptotically the distribution on the shape of G`

can be described as follows. For all i = 1; : : : ; L, let �i = ipi=
PL

j=1 jpj be the probability
that a uniformly chosen edge is attached to a clause node of degree i. For all i = 0; : : : ; R, let
�i = qi be the probability that a uniformly chosen edge is attached to a variable node with i
edges of the opposite label attached. Then, the distribution on the shape of G` is as described
above for a randomly chosen And-Or tree with the followingparameters: the number of children
of a clause node is i � 1 with probability �i, for all i = 1; : : : ; L. The number of children of a
variable node is i with probability �i, for all i = 0; : : : ; R.

Consider the following labeling process of the nodes in the tree G` that starts at the leaves
at level 2` and works up towards the root at level 0. A leaf variable node is labeled with a 1 iff it
would have no descendants if the tree were extended one additional level. An internal variable
node is labeled with a 1 iff it either has no direct descendants or else they are all labeled with
a 1. A clause node is labeled with a 1 iff at least one direct descendant is labeled with a 1. It
can be checked that if the root node receives the label 1 then the pure literal rule will give that
variable an assignment.

Let y` be the probability that the root node of G` will receive the label 1 by the above
labeling process. Define the polynomials

�(x) =
LX

i=1

�i � xi�1 and

�(x) =
RX

i=0

�i � xi:

From Lemma 1 it follows that this can be expressed as

y` = �(1 � �(1� y`�1))

In order for the pure literal rule to end with a complete assignment that satisfies the formula,
we want all variables to disappear from the formula, or equivalently, receive the label 1. This
means that we want

�(1 � �(1� y)) > y (5)

for all y in the range [�0; 1) (Noting that y0 = �0.)
For a uniformly chosen k-SAT formula we have �(x) = xk�1 and �(x) = exp(�(x � 1)),

where � = kc=2. For a specific k we can easily determine the threshold value c for which (5)
is satisfied. In particular, for k = 3 we obtain the value c � 1:63. This result has been
found previously by [4] and [11] using a different approach. The advantage of the tree analysis
approach employed in this paper is that, with little additional difficulty, it is easily possible to
analyze substantially different distributions for choosing the formula, merely by establishing
the proper functions �(x) and �(x).

4 Greedy Matching Analysis

In the paper [7], the analysis of a simple and fast heuristic for finding matchings was described
and analyzed with respect to randomly chosen graphs. The tree analysis approach can be used

9

to provide an alternative analysis (of what they call “Phase 1”). The details are similar to,
but somewhat different than, those presented above to analyze the loss-resilient codes. As
mentioned above, the advantage of the tree analysis is that it can be adopted to analyze a variety
of distributions on the graph with little additional effort. For lack of space, we omit details of
this analysis in this version of the paper.

References

[1] N. Alon, J. Edmonds, M. Luby, “Linear Time Erasure Codes With Nearly Optimal Re-
covery”, Proc. of the 36th Annual Symp. on Foundations of Computer Science, 1995,
pp. 512-519.

[2] N. Alon, M. Luby, “A Linear Time Erasure-Resilient Code With Nearly Optimal Recov-
ery”, IEEE Transactions on Information Theory (special issue devoted to coding theory),
Vol. 42, No. 6, November 1996, pp. 1732–1736.

[3] R. Boppana, “Amplification of probabilistic Boolean formulas”, Advances in Computer
Research, Vol. 5: Randomness and Computation, JAI Press, Greenwich, CI, 1989, pp. 27–
45.

[4] A. Broder, A. Frieze, E. Upfal, ‘On the Satisfiability and Maximum Satisfiability of Ran-
dom 3-CNF Formulas”, Proc. of the 4th ACM-SIAM Symp. on Discrete Algorithms, 1993,
pp. 322-330.

[5] M. Dubiner, U. Zwick, “Amplification by Read-Once Formulas”, Siam J. on Computing,
Vol. 26, No. 1, Feb. 1997, pp. 15–38.

[6] A. Frieze, S. Suen, “Analysis of Two Simple Heuristics on a Random Instance of k-SAT”,
J. of Algorithms, Vol. 20, 1996, pp. 312–355.

[7] R. Karp, M. Sipser, “Maximum Matchings in Sparse Random Graphs”, FOCS, 1981,
pp. 364–375.

[8] T.G. Kurtz, Approximation of Population Processes, CBMS-NSF Regional Conf. Series
in Applied Math, SIAM, 1981.

[9] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. Spielman, V. Stemann, “Practical
Loss-Resilient Codes”, Proc. 29th Symp. on Theory of Computing, 1997, pp. 150–159.

[10] M. Mitzenmacher, Ph.D. thesis. University of California, Berkeley, 1996.

[11] M. Mitzenmacher, “Tight Thresholds for the Pure Literal Rule”, DEC/SRC Technical Note
1997-011, June 1997.

[12] E. Moore, C. Shannon, “Reliable circuits using less reliable relays”, J. Franklin Inst., 262,
1956, pp. 191–208 and 281–297.

[13] L. G. Valiant, “Short Monotone Formulae for the Majority Function”, J. of Algorithms,
Vol. 5, 1984, pp. 363–366.

10

