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Abstract

We analyze the performance of greedy routing for array net-
works by providing bounds on the average delay and the
average number of packets in the system for the dynamic
routing problem. In this model packets are generated at
each node according to a Poisson process, and each packet
is sent to a destination chosen uniformly at random. Our
bounds are based on comparisons with computationally sim-
pler queueing networks, and the methods used are generally
applicable to other network systems. A primary contribu-
tion of the paper is a new lower bound technique that also
improves on the previous lower bounds by Stamoulis and
Tsitsiklis for heavily loaded hypercube networks. On heav-
ily loaded array networks, our lower and upper bounds differ
by only a small constant factor.

We further examine extensions of the problem where our
methods prove useful. For example, we consider variations
where edges can have different transmission rates or the des-
tination distribution is non-uniform. In particular, we study
to what extent optimally configured array networks outper-
form the standard array network.

1 Introduction

1.1 Statement of the Problem

In this paper, we consider the important problem of dynamic
routing in an n by n array mesh network. Our model can
be described as follows: nodes (or processors) on an array
mesh generate packets at random times. Each packet must
be routed to a unique destination that is chosen uniformly
at random from the nodes on the array. (For convenience,
we allow a packet’s destination to be the same as its starting
point; the arguments can be modified easily.)

We make standard assumptions about the network for
our analysis. The unit of transmission is a packet, which
transverses an edge in the network in unit time. Only one
packet can be in transit across an edge at any time, although
a node with multiple input/output connections can receive
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and transmit more than one packet at any instant. Packets
are buffered when an edge on their path is busy, and nodes
are assumed to have infinite buffer capacity. We model ar-
rivals to the network by Poisson processes at each node.

We will analyze the greedy routing method, an intuitively
powerful paradigm whereby packets travel on natural short-
est paths between nodes. On a mesh network, greedy rout-
ing corresponds to packets first being routed to the correct
column and then to the correct row. Greedy routing has
proven successful because it is simple to implement and gen-
erally effective in practice. As we shall show, it also proves
amenable to theoretical analysis.

1.2 Previous Work

Leighton’s previous work on greedy routing for arrays and
tori motivates this study [8, 9]. Leighton finds probabilistic
bounds on the maximum delay and buffer size, given the fol-
lowing assumptions: packets are generated only at discrete
time intervals, packets are generated with a fixed constant
probability at each node at each discrete unit of time, and
packets with the furthest to travel in each direction are sent
first. His derivations also yield results for first-in first-out
(FIFO) service, but only at low arrival rates. Recently, sim-
ilar work improving on the combinatorial analysis has been
done by Kahale and Leighton [3].

Primarily we follow a different method of analysis based
on the work of Stamoulis and Tsitsiklis in [12], which uses
comparison methods. Such methods have been used for
other stochastic models, but primarily for single queues.
Some examples of various applications can be found in [13].
Stamoulis and Tsitsiklis present sufficient conditions for when
the average delay in a network with FIFO service and unit
service times can be bounded above by a comparison with a
modified, simpler network, and then apply their methods to
greedy routing on hypercube and butterfly networks. They
also find lower bounds on the average delay a packet ex-
periences in these networks. Here, we deviate from their
methods and demonstrate a stronger lower bound technique
also based on comparisons that is both powerful and easily
generalizable.

Recently, this problem has been studied using the Jack-
son open queueing network model in [1]. This model differs
from others in that the transmission time across an edge,
instead of being constant, is exponentially distributed with
unit mean [2]. Although this model is less realistic, it proves
easier to analyze using standard queueing theory techniques.
We shall relate our results closely to this model. One inter-
pretation of these results is that the average delay given by



the Jackson open queueing network model (i.e., when trans-
mission times are exponentially distributed) yields an upper
bound for the average delay when transmission takes con-
stant time for this and other similar problems.

1.3 Summary of Results

We provide new, rigorous upper and lower bounds for the
average time a packet spends in a mesh network. The up-
per bound is derived by comparing the array mesh network
to a similar network with a different service policy, which
has a computationally simple equilibrium distribution, and
is based on work by Stamoulis and Tsitsiklis in [12]. The
new lower bound technique we develop is also based on a
comparison argument that does not seem to appear in pre-
vious literature. On the array, as the network load reaches
capacity, our upper and lower bounds differ by a factor of at
most either 3 or 6, depending on whether the array has an
even or odd number of nodes. Our lower bound technique
also improves on the results of Stamoulis and Tsitsiklis for
heavily loaded hypercube networks.

The analysis also applies to interesting generalizations
of the standard problem. For example, we also examine
the problem of bounding the average delay when one can
vary the transmission rates of the wires, subject to a fixed
linear constraint that corresponds intuitively to the cost of
the network. Besides yielding an upper bound, our analysis
shows how much more traffic an optimally configured array
network can handle over the standard configuration. While
the standard configuration of an n by n array is stable for
external arrival rates up to 4/n (for even n), we prove that
the optimally configured network is stable for arrival rates
up to 6/(n +1). We also consider special situations where
the destination distribution is non-uniform, but depends on
the distance of the destination from the packet source, as
well as other common extensions.

The paper proceeds as follows: in section 2, we provide
some basic definitions that describe the problem. In sec-
tion 3, we apply the work of Stamoulis and Tsitsiklis to the
array and describe the relation of our result to the Jack-
son open queueing network model. In section 4, we derive
a rigorous lower bound on the average delay as well as pro-
vide a useful approximation. We consider generalizations of
the problem in section 5, including non-uniform destination
distributions and varying transmission times. We conclude
with a discussion of possible future directions.

2 Definitions and Background

2.1 Definitions for the Model

We begin with the definitions we will use throughout the
paper. We first describe the topology of an array network.
The underlying graph consists of an n by n array of nodes.
(For convenience we only consider square arrays; rectangular
arrays are easily handled similarly.) Nodes are connected
by directed edges to their neighbors in the same row and
column. Note that two directed edges connect each pair of
neighbors, one in each direction. These edges correspond
to an input and an output wire for each pair in the obvious
manner. For the underlying graph G = (V, E), we shall label
the nodes by the ordered pairs (4, 5), where i represents the
node row and j represents the node column, and 1 <3,5 <
n. We assume the node (1,1) lies in the upper left-hand
corner. Edges are denoted by ordered pairs of nodes.

In our standard model packets are generated at the nodes
as independent Poisson processes with rate A. Their desti-

nations are uniformly distributed over all nodes in the net-
work. Packets travel along the directed edges, with at most
one packet on any edge at any given time. Nodes have infi-
nite buffer space available to hold waiting outgoing packets.
The packets are sent out according to the FIFO discipline.
Packets move to their destination greedily, first to the cor-
rect column along only row edges and then to the correct
row along only column edges.

We model this network by considering an associated queue-
ing network, Q, where each directed edge is a FIFO server
with unit service time. Since edges represent queues, we use
the terms interchangably throughout the paper. Our up-
per bound uses in comparison a similar queueing network,
where the servers are Processor Sharing, or PS. Under the
PS discipline, all customers queued at a server receive an
equal proportion of the available service simultaneously.

In order to compare networks, we require the concept of
stochastic domination. We say a random variable Y stochas-
tically dominates a random variable X, and write X <. Y,
if Pr[X > a] < Pr[Y > a] for all a.

Certain classes of queues will naturally arise as we de-
velop our bounds. For an M/D/1 queue, the arrivals to the
queue constitute a Poisson process, the service time required
by the arrivals are constant, and there is only one server.
Similarly, a queue is said to be of type M/M/1 if the above
conditions hold but the service times are exponentially dis-
tributed. Notice that although the external arrivals to each
queue in the array system we have described form a Poisson
process, the arrival process of all packets to a queue does
not. Thus the queues in our standard system are neither
M/M/1 nor M/D/1 queues.

Finally, we make note of variables used throughout the
paper. The variable A refers to rate at which packets are
generated at each node, while A. refers to the total rate of
packet arrivals on edge e. The service rate at an edge e
will be denoted by ¢.; notice that in the standard prob-
lem ¢. is always 1. We define the network load, p, to be
p = max.eg Ac/p.. For single M/M/1 and M/D/1 queues,
it 1s well known that when p < 1 the queue is stable, mean-
ing that there is a unique equilibrium distribution and that
such quantities as the average delay and queue size are well
defined [6]. We shall generally assume stability for the net-
works analyzed in this paper without further concern; in-
deed, the upper bounds given demonstrate the stability of
the networks for p < 1.

The variable T' represents the average delay, by which we
mean the average time a packet spends in the system from
generation to arrival at its destination. The average distance
a packet travels, by which we mean the number of edges it
passes through, will be denoted by f. A simple counting
argument reveals that 7 = %(n - %) in the two-dimensional
n by n array. Sometimes we will also wish to refer to the
average distance, excluding packets with the same source
and destination. We will refer to this average as 2, which
is 2n/3 in the two-dimensional array.

2.2 Product-form Networks

The comparison that yields the upper bound proves use-
ful because under the PS discipline the network becomes a
product-form network. A network is product-form if in the
equilibrium distribution each queue appears as though it
were an independent process with Poisson arrivals [14]. For
the PS network, under the invariant distribution the number
of packets at each queue has a geometric distribution with

mean X_ek . The A. can be determined either by solving a




system of equations [6], or by using the technique of [1], so
computing the expected number at each queue (and hence
in the system) is a simple exercise. The average delay is
then easily derived using Little’s Law [10]
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where in the above equation N is the average number of
packets in the system, 7' is the average time a packet spends
in the system, and Z A is the overall rate at which packets
enter the system.

As it happens, the equilibrium distribution under the
PS discipline is the same as the equilibrium distribution for
the equivalent Jackson network. This relationship will be
explained more fully in section 3.3 and used to compare the
upper and lower bounds.

3 An Upper Bound

3.1 A Bounding Theorem

We begin by reviewing the results of Stamoulis and Tsit-
siklis [12], and then demonstrate that their result applies to
array networks. Before providing the relevant theorem, we
briefly explain the intuition. Stamoulis and Tsitsiklis define
a sample path of a system to be all the information regarding
packet arrival times (from outside the system) and routing
information. (Technically, they require that this informa-
tion is in a special form, such as “the fifth packet arriving
at queue 5 continues along to queue 7.”) They show that
for certain networks, the PS network is a delayed version of
a standard FIFO network. That is, given any fixed sample
path, if we look at the ordered list of times when packets
exit the system from a queue, every time for the PS net-
work is at least as large as the corresponding time in the
FIFO network. In this respect, the PS network looks like
a slowed-down version of the original FIFO network. This
leads to the following theorem:

Theorem 1 (Stamoulis and Tsitsiklis) Let Q be a queue-

ing network satisfying the following properties with unit ser-
vice times and FIFO servers:

o The network is layered. That s, the arcs are labeled
with numbers from the set {1,..., N} for some N, and
any packet crossing an arc labeled 1 thereafter only
crosses arcs with labels 3,5 > 1 until exiting the net-
work.

o Routing 1s Markovian. In other words, the probability
distribution of the next arc to be crossed depends only
on the arc just traversed, instead of on the complete
path the packet has taken.

o The external arrival streams at each arc are indepen-
dent Poisson streams with a fized rate (which may de-
pend on the arc).

Let Q be an identical network with PS servers. Then if N(t)
(resp N(t)) denotes the (random) total number of packets
present in Q@ (resp Q) at time t, then

N(t) <o N(t), ¥Vt>0.

This theorem bounds the average number of items in the
system, and with Little’s Law one can bound the average
delay. Note that, as mentioned in Section 2.2, N(t) is easy to
compute, so the bound is also meaningful. It would be even
more desirable to bound each individual queue the same
way, but the argument only holds for the system as a whole.
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Figure 1: Layering the Array

3.2 The Conditions of the Theorem

We now demonstrate that the conditions of the theorem hold
for the array. In our model the packets generated at each
node are Poisson processes, and newly generated packets
correspond to external arrivals. Hence the external arrival
streams at each arc are Poisson processes, so the third condi-
tion is trivially satisfied. We must also demonstrate that the
array 1s layered and the greedy routing scheme is Markovian.

Although the array is not layered under general routing
schemes, it is under the greedy routing scheme with the de-
fined topology. An example of a labeling that layers the
array is given in Figure 1. The labeling suggests the follow-
ing lemma:

Lemma 2 The following labeling layers the array under greedy

routing:
|edge |label |
(ACYESIF
(g +1).009) [ =3
(L), G+ L) [nFi=T
G+ L) () [Zn—i—T

Proof: The proof is immediate, since packets first head left
or right and then only up or down. |

To show the routing process is Markovian, we demon-

strate a Markov process that moves a packet along a row/column

such that it stops uniformly at every node. From this it is
clear that there is a Markov process simulating greedy rout-
ing with uniform destinations.

Lemma 3 Given a linear array of n elements, there is a
Markov chain that simulates an entering packet being trans-
ferred with uniform probability to every position on the ar-
ray.

Proof: Label the nodes 1,...,n in the obvious fashion.
Suppose a packet enters at node k. It remains at its en-
try point with probability 1/n; otherwise, it moves left with



probability kn;l and right with probability "n;k Now sup-

pose the packet is moving to the left. After each move, a
packet at node j stops with probability 1/5 and continues
to the left otherwise. By symmetry the case to the right can
be handled similarly. This clearly defines a Markov process,
and it is a simple exercise to show that each packet goes to
each possible destination with probability 1/n. |

Corollary 4 Greedy routing on an array s Markovian.

From our previous discussion, we can conclude the fol-
lowing theorem:

Theorem 5 The expected number of packets in an array
network with unit service times under the PS service model
yields an upper bound for the expected number of packets
of the equivalent array network with unit service times un-
der the FIFO model. Similarly, the same holds true for the

average delay experienced by a packet.

3.3 Relation to the Jackson model

The Jackson open queueing network model differs from the
standard model in that transmission times (i.e., service times)
are exponentially distributed with mean 1. The equilibrium
distribution of the Jackson model is the same as the PS ser-
vice model with unit edge time. This follows from a sequence
of standard results from queueing theory [4, 6, 14].

This model was recently examined by Harchol-Balter and
Black to approximate greedy routing behavior [1]. We can
interpret our result as saying that for the array, the Jackson
model provides an upper bound on the average lifetime of a
packet in the system for the standard (unit-time transmis-
sion) model. As described in [1] and noted as far back as [7],
the arrival rates at a queue edge can be easily determined
combinatorially.

Theorem 6 (Harchol-Balter and Black) The total ar-
rival rate of packets at an edge directed from (1,7) is given
by the following table:

| Direction | Rate |
Left 2D —g+1)
Right %](n —J)
Up %(i—l)(n—i—l—l)
Down %z(n —1)

From Theorems 5 and 6 and Little’s Law we can derive
a formula for the upper bound:

Theorem 7 The average time a packet spends in an ar-
ray network with constant unit edge transmission times is
bounded above by

n—1
1 Ae 4 1
T<— ==y —
_)‘n221_)\e )\nzﬁ—l
ecE =1

This relation between the upper bound and the Jackson
open network model will continue to prove useful throughout
the paper.

4 An Approximation and Lower Bounds

4.1 Previous lower bound methods

Stamoulis and Tsitsiklis developed a lower bound technique
for routing on butterfly and hypercube networks [12]. Es-
sentially, the bounds are achieved by looking at a subset

of the edges that satisfies the condition that a packet only
crosses one edge from that subset. For example, one can
examine edges crossing a single dimension of the hypercube
or the first layer in the butterfly. Equivalent results for the
array follow by considering an appropriate subset of edges.
We state the results here, without proof:

Theorem 8 For any routing scheme on the array, the av-
erage delay T satisfies

r=f

p
t 2n(1—p)]’

where f =1/2 if n is even, f = 1/2 —1/n® if n is odd.
For any oblivious routing scheme, the average delay T
satisfies

r=f

p
1+,
2(1 - p)]
where f is as above.

Of course, we also have trivial lower bound T > #. This
is immediate, since a packet experiences a unit delay at each
edge it passes through.

We develop a different method for lower bounds on greedy
routing that is easier to generalize and yields better bounds
for heavily loaded networks. The asymmetry of the array
will in fact allow us to achieve a very strong lower bound
when the network is near capacity. We begin by examining
a good approximation for the average delay.

4.2 A useful approximation

As discussed in Section 3.3, the upper bound we found for
the average delay in the array network derives from the
equivalent Jackson queueing network. The equilibrium dis-
tribution of this system, as we have noted, is product-form;
it is as though the queues were independent M/M/1 queues.

Since we know the service times are actually constant,
it seems reasonable to consider an approximation where in
equilibrium each queue is an independent M/D/1 queue. In
effect, we simply assume initially that all queues are inde-
pendent; this type of idea seems to have first been considered
by Kleinrock as far back as in [5]. Of course this assump-
tion is unwarranted, but in practice, it proves accurate in
many situations. Moreover, this approximation will provide
a useful intermediate step in establishing our lower bounds.

The average time a packet spends in the queue in this
case can be derived from the Pollaczek-Khinchin mean value
formula [6]. Let Aq be the arrival rate at an M/D/1 queue,
Ng be the expected number of packets in the queue in equi-
librium, and S be the random variable representing the ser-
vice time for a packet. Then we have (for a stable system):

XaB[S%]

In our standard case, E[S] = 1, yielding:

M(1 4 Var[S])
2(1 = Aa)

When the service time is constant, the Var[S] term dis-
appears, but when the service times are exponentially dis-
tributed, the variance in the service time is 1. Thus for small
arrival rates, the expected number is almost the same, re-
gardless of the service; for large arrival rates, however, the

Ng=Xa+



expected number of packets may differ by almost a factor of
2 between the two models. In fact, regardless of the value
of E[S], the value of E[S?] differs by a factor of 2 between
the cases where S is constant and S is exponentially dis-
tributed, and hence N4 differs by at most a factor of 2 as
well. Applying Little’s Law, we have the following lemma:

Lemma 9 The average delay of a packet under the Jackson
queueing network model s at most twice the average delay
of a packet in the equivalent system of independent M/D/1
queues, where corresponding queues have the same arrival
rate.

The corresponding approximation for the array network,
based on a system of M/D/1 queues, is:

n—1

T (4/3n) )

=1

(Ai(n —2))[(n — Ai(n — z))2 +n?]
2n%(n — Xi(n — 1))

In practice, simulation results suggest that this is a much
better approximation than the upper bound. Table 1 com-
pares the above estimate for T" and the results from a small
set of simulations. As one might expect, the estimate is
more accurate for lightly loaded networks, where there is less
interference and hence dependence. Interestingly, in heav-
ily loaded networks assuming independence overestimates
T, suggesting that the dependence inherent in the network
actually helps performance.

This suggestion has recently been borne out by the work
of Kahale and Leighton in [3]. They show that the average
delay T, for a fixed p, is at most some constant greater than
ni, the average distance a packet travels. The approxima-
tion for T' above yields that the difference between 7' and
i is linear in n for a fixed p. In this light, the discrepancy
between the simulation results and the approximation is to
be expected. We believe that the approximation may still
be useful as a rough estimate, especially when the network
size or the arrival rate is small.

4.3 A new lower bound technique

We now demonstrate a new lower bound for the average
delay under greedy routing based on a comparison with a
network of M/D/1 queues. The method can be applied to
various queueing networks and routing schemes, such as tori,
hypercubes, or butterfly networks under greedy routing with
uniformly distributed destinations. Although this technique
does not provide the best lower bounds at low arrival rates,
for high arrival rates we achieve better bounds for both the
array and the hypercube than previous methods.

We first provide a general version of the lower bound,
and follow up with a specialization of the bound for Marko-
vian networks. Recalling that the upper bound was derived
from a delayed version of the network, we develop a rushed
version to find a lower bound. The trick is to send a copy of
a packet to all the queues it will visit immediately, and have
each duplicate exit the system after it has been served by the
single queue. Intuitively, this system will work faster than
the standard system, since queues receive their packets im-
mediately. However, the expected number of packets in the
system increases by a factor corresponding to the number of
duplicates of a packet.

Theorem 10 Let @ be a queueing network with unit service
times, FIFO servers, and Poisson external arrivals. Let d

[n [p | T (Sim.) [ T (Est.) |
5 0.2 3.545 3.256
0.5 4.176 3.722
0.8 6.252 5.984
0.9 8.867 8.970
0.95 | 12.172 12.877
0.99 | 20.333 21.384
10 | 0.2 6.929 6.711
0.5 7.748 7.641
0.8 10.652 12.183
0.9 14.718 18.444
0.95 | 21.034 28.014
0.99 | 63.950 77.309
15 | 0.2 10.289 10.123
0.5 11.192 11.518
0.8 14.563 18.329
0.9 19.226 27.718
0.95 | 26.867 41.990
0.99 | 68.220 103.312
20 | 0.2 13.649 13.523
0.5 14.589 15.383
0.8 18.191 24.465
0.9 20.041 36.983
0.95 | 31.771 56.015
0.99 | 77.283 141.127

Table 1: Simulation vs. M/D/1 estimate

be the mazximum number of distinct services required by any
packet over all possible source and destination pairs. Let Q
be a corresponding set of queues with unit service times and
FIFO servers, each having independent Poisson arrivals at
a rate equal to the total arrival rate for the corresponding

queue in Q. If N(t) (resp N(t)) denotes the (random) total
number of packets present in Q (resp. Q) at time ¢, then

E[N(t)] < E[N(t)ld, vt > 0.

Proof: The theorem will come about from a series of com-
parisons of similar queueing networks. We assume without
loss of generality that a packet’s complete route through Q is
determined according to the correct probabilities at its gen-
eration time. For convenience we also assume that a packet
visits each queue at most once. (This restriction could easily
be removed.) Note that d can be thought of as the maximum
distance a packet travels in the natural manner.

We first examine a new system, Q1, associated with the
network @. When a packet is generated in Q, for each queue
in @ that the packet will travel through a copy is generated
at each corresponding queue in Q;. Packets do not move
from queue to queue in Q;; instead, when a packet finishes
being serviced, it simply leaves the system. Of course dif-
ferent copies of a packet may complete service at their re-
spective queues at different times.

Each queue in @Q;, when examined in isolation, acts as
an M/D/1 queue, with arrival rate A.. The queues are not
independent; however, the expected number of packets in
each queue is just that of an M/D/1 queue with Poisson ar-
rivals. By the linearity of expectations, the expected number
of packets in @Q; is the same as the expected number in Q~,
that 1is: ~

EIN ()] = BIN: (1),

where Ni(t) has the obvious meaning.



We now consider a fixed sample path, where here a sam-
ple path consists of all information regarding packet arrival
times and destinations. We would like to say that any packet
pis finished in @1, in the sense that all copies of it have been
serviced at all the appropriate queues, before p exits in Q.
This statement, however, may not be true, since packets may
be serviced in different orders in the two networks. In par-
ticular, a packet ¢ that gets serviced after p at some queue
in @ may arrive in the system before p does, in which case
q is serviced before p at that queue in Q.

To avoid this complication, we consider a new system Q>
that acts exactly as @; with the additional constraint that
the servers must handle packets in the same order as @. We
allow edges in Q> to remain idle even if there are packets
queued, if this 1s necessary, to satisfy this constraint. Note
that, in the worst case, Q> services packets at the same times
that @ does. As the order in which packets are serviced does
not affect the number in the queue, and adding idle time only
increases the number of packets in the queue, the expected
number of packets in Q- is still at least the expected number
in Qp; that is,

BIN(6)] < BN (1),

where N3(t) has the obvious meaning.

We now bound the expected number of packets in the
network Q. For any fixed sample path, a packet cannot be
in @, unless its corresponding packet is still in @. Thus we
can think of @ as a delayed version of Qs, except that Q-
may contain multiple copies of a packet. As the number of
copies of each packet is at most d, the expected number of
packets in Q> is at most d times the expected number of
packets in Q; that is,

E[N>(8)] < B[N (#)]d.

Combining the determined inequalities yields E[N(t)] <
E[N(t)]d, as was to be shown. ]

By Lemma 9 and Little’s Law, this yields a lower bound
for the average delay that is within a factor of 4n — 4 of the
upper bound for the array.

Although Theorem 10 is sufficient for our model, note
that the theorem can be generalized to systems that are not
FIFO and have varying service times. The same idea holds;
a similar system that immediately receives a copy of a packet
at each queue the packet visits will be faster, at the expense
of having more packets in the system. Taking into account
this factor provides a lower bound. In particular, note that
unlike the result on upper bounds, this proof also holds for
non-Markovian systems, such as toroidal meshes.

For general networks, Theorem 10 appears to be the

best possible. For a single queue, for instance, E[N(t)] =

E[N(t)]d, and for a linear array of M/D/1 queues, E[N(t)] &
E[N(t)]d. However, we can improve the results for Marko-
vian networks.

Definition 11 For each queue e in a Markovian queueing
network, let d. be the expected number of distinct services
a packet queued at e has left before reaching its destination
(including the service at e). We define the maximum ex-
pected remaining distance of the network, d, by d = max d.,
where the maximum s taken over all queues in the network.

In an n by n array network under greedy routing, the
maximum expected remaining distance is achieved by a packet
located at node (1,1) and headed right. In this case d =
n—1/2.

Theorem 12 Let Q be a Markovian queueing network as
in Theorem 10, with maxtmum expected distance d, and let

Q be a corresponding set of queues as in Theorem 10. Then
E[N(t)] < E[N(t)]d, ¥t>O0.

Proof: The proof is entirely the same as Theorem 10
up to the last paragraph, where we bounded the expected
number of packets in the network @. We now make more
careful use of the fact that Qs is a delayed version of @ by
noting that a packet cannot be in Q2 at queue e unless its
corresponding packet is still in @ and has not yet completed
service in e. Thus, for each packet in @, the number of
copies in Q2 corresponding to that packet is at most the re-
maining number of services that packet has yet to complete.
Let R(t) be a random variable representing the number of
services yet to complete over all packets in Q at time t. We
have

E[N2(6)] < EIR())

Since the network @ is Markovian, the expected remain-
ing number of services before a packet reaches its destina-
tion depends only on its current location, and in particular
is independent of the number of packets in the network. In
fact, regardless of a packet’s location, its expected remaining
number of services is at most d. Thus, we have that

E[R(t)] < E[N(8)]d.

The result follows. |

By Lemma 9 and Little’s Law, this yields a lower bound
for the average delay that is within a factor of 2n — 1 of the
upper bound.

4.4 The strength of the lower bound

For most networks, the bound given in Theorem 12 is clearly
not tight. Using the maximum expected remaining distance
to bound the expected remaining number of services appears
excessive. However, the example of a linear array of queues
again demonstrates that the bound given is essentially the
best possible in general. One might also think that d could
be replaced by iz, the expected number of queues a packet
travels through. Indeed, the author made this mistake in
an earlier version of the paper [11]. However, the remaining
distance a packet has left to travel depends on its location,
and the distribution of packet locations is not, in general,
independent of the number of packets.

In an array network, intuition suggests that the queues
in the middle of the array should have higher expected queue
sizes, since the number of packets passing through them is
larger than for other queues. Thus one would expect that
the lower bound of Theorem 12 is very weak for the array.
One might well expect that the expected remaining number
of services per packet would be well under fiz. Simulations
show this to be the case. Let R be the expected remaining
number of services in equilibrium, and 7 be the E[R]/E[N].
Table 2 presents some estimates for 7 for array networks of
various sizes. The simulations suggest that 7 is indeed less
than fi2, and that r/fi2 < 0.7 for large enough n.

It seems possible that better bounds on the expected
remaining number of services could be found for the array
by making use of the underlying topology. Such a bound
would be directly translatable into a stronger lower bound
on the average delay by Theorem 12. Indeed, any results on
the distribution of the remaining number of services would
be interesting; the value corresponds to the amount of work
necessary to empty a system.
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5 3.333 0.2 2.568
0.5 2.574
0.8 2.600
0.9 2.610
0.99 | 2.613
10 | 6.667 0.2 4.665
0.5 4.694
0.8 4.746
0.9 4.775
0.99 | 4.776
15 | 10 0.2 6.755
0.5 6.796
0.8 6.875
0.9 6.913
0.99 | 6.924
20 | 13.333 | 0.2 8.841
0.5 8.887
0.8 8.982
0.9 9.041
0.99 | 9.029

Table 2: Simulation measurement of 7

4.5 Application of the lower bounds

Stamoulis and Tsitsiklis make careful note of the difference
between their upper and lower bounds at high loads, that
is, as p approaches 1. This case is significant since it cor-
responds to the worst case for network performance. Theo-
rems 10 and 12 improve on their results for the hypercube
and match their result for the butterfly for this case.

Following their lead, we consider a hypercube of dimen-
sion d, where the destination distribution is such that node
of distance k from the node of entry is a packet’s destination
with probability p*(1—p)4~*. Note that when p = 1/2, this
distribution is uniform over the nodes of the network. For
smaller values of p, packets tend to travel to nearer neigh-
bors, whereas for larger values, packets tend to reach more
distant neighbors. Under greedy routing, the system can be
thought of as a Markovian network where each packet con-
siders each dimension in some canonical order and crosses
an edge in each dimension with probability p.

The previous bounds for the hypercube yield that

P <tim[(1 = p)(T - dp)] < dp.

p—1

In particular, since dp is fixed for a given network, in the
limit as p approaches 1, their bounds on T for a d-dimensional
hypercube differ by a factor of 2d for all values of p. Since
this lower bound is derived by primarily examining only
edges crossing one dimension, this factor makes intuitive
sense; afactor of 2 arises from the difference between M/M/1
and M/D/1 queues, while the factor of d corresponds to
considering only one dimension of edges. Our lower bound
improves on this result. The maximum expected remaining
distance stems from a packet that is queued to cross an edge
in the first dimension and is 1 4 p(d — 1). By Theorem 12,
as p approaches 1 our upper and lower bounds differ by a
factor of 2(dp+1—p), which is less than 2d for all p € (0, 1).
As p approaches 0 the factor separating the upper and lower
bounds approaches 2, and it is bounded by a constant for
p = O(1/d). In the more usual case of p = 1/2, the upper
and lower bounds differ by a factor of d + 1.

For the butterfly consisting of d levels, all packets go
through d edges. By Theorem 10, in the limit as p ap-
proaches 1 our lower bound is within a factor of 2d of the
upper bound. This matches the results of Stamoulis and
Tsitsiklis, as one would expect [12].

The lower bounds for both of these networks could be im-
proved by better bounds on the expected remaining number
of services in equilibrium. However, at this time we know of
no stronger bounds for these topologies.

4.6 Improving the lower bound in high traffic

The lower bound of Theorem 12 is somewhat disappointing,
in that its separation from the upper bound for the array
is a factor linear in n. We improve our result so that as p
approaches 1 the difference is a constant factor. Let us call
a queue saturated if A\e/¢d. = p and unsaturated otherwise.
The key is that only saturated edges are important as p — 1.
Intuitively, this is because the saturated queues grow much
larger than all the others. Examining only saturated edges
will allow us to reduce the number of copies of a packet we
consider In the network Q;.

We consider the subnetwork of the array network given
by the saturated edges. Asin Theorems 10 and Theorem 12,
we will find a lower bound on the number of packets in the
array network; however, this time we only consider packets
that cross a saturated edge.

Definition 13 For each queue e in a Markovian queueing
network, let s. be the expected number of distinct services
from saturated servers a packet queued at e has left before
reaching its destination (including the service at e). We
define the maximum expected remaining saturated distance
of the network, 3, by 3 = max s., where the maximum s
taken over all queues in the network.

Theorem 14 Let Q be a network such that for any unsat-
urated queue e, Ae/¢p. is bounded away from 1 as p — 1.
Let s be the maxtmum number of saturated queues a packet
can traverse. In the limit as p goes to 1, the expected delay
18 within a factor 2s of the upper bound of Theorem 6. If
the network is Markovian, then the expected delay is within
a factor of 23 of the upper bound.

Proof: We sketch the proof, which is similar to Theo-
rems 10 and 12. Consider the original network Q. It is
clear that the average delay of a packet can only decrease
if we assume that crossing an unsaturated edge incurs no
delay. We may think of a modified version of Q, call it §,
that offers no delay at unsaturated edges. In this case, the
number of packets in the system can be found by examin-
ing only the queues at the saturated edges; other edges are
assumed to be empty.

We can now proceed as in Theorems 10 and 12 to lower
bound the expected number of packets in 8. By Little’s Law
this will provide us with a lower bound on the average delay
in §. (Keep in mind that the total arrival rate into S is still
)\n2!) The modifications are simple; when a packet enters
S, we introduce a copy of the packet at each saturated edge
that it will cross in the corresponding network.

This effectively bounds the expected number of pack-
ets in the saturated queues to within a factor of s of the
expected number if the system were composed of indepen-
dent M/D/1 queues. It is simple to show that as p goes
to 1 the expected number of packets at unsaturated M/D/1
queues is bounded, while the expected number of packets
at saturated M/D/1 queues is unbounded. For Markovian
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Figure 2: Examples of Saturated Edges in Array Networks
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networks, one can similarly examine the expected number
of remaining services through saturated queues to replace s
by 3. By Lemma 9 and Little’s Law, the theorem follows. B

Theorem 14 applies to array networks, as the expected
number of packets at unsaturated queues is bounded by a
function of n. Whether n is even or odd makes a significant
difference in our lower bound, since a packet can go through
at most 2 saturated edges when n is even, and up to 4 when
n 1s odd; see Figure 2. Indeed, by simple combinatorial
calculations, one finds that 5§ = 3/2 when n is even, and
5 < 3 when n is odd. (In fact s — 3 as n — oo.) Thus
under high loads the upper and lower bounds we have found
differ by a factor of 3 when n is even and at most 6 when
n is odd. Although this difference seems unusual, it may
reflect a real phenomenon in array networks. For example,
when n is even the network is stable for A < 4/n, but for
odd » we must have A < 4n/(n® — 1) for stability.

Note that Theorem 14 yields no improvement over The-
orem 12 for the hypercube or butterfly, since all queues are
saturated by symmetry.

- (Sim)

5 1.875
10 | 1.250
15 | 2.106
20 | 1.230
25 | 2.209

Table 3: Simulation measurement of r.

As with Theorem 12, we expect that the lower bound
of Theorem 14 is far from tight, as 3 overestimates the ex-
pected remaining number of services at saturated queues per
packet. Let R. be a random variable corresponding to the
remaining number of services at saturated queues at equilib-
rium, and let r. = F[R:]/FE[N]. In Table 3 some estimates
for r. found by simulation are given. The estimates reflect
the value for r; observed for p = 0.99; simulations for other
values of p suggest the dependence of r. on the arrival rate
is minimal.

5 Extensions

5.1 Variable transmission rates

The techniques we have used prove applicable to a number of
extensions of the original problem. The first generalization
we consider involves varying transmission times across the
wires. For example, since edges along the periphery of the
array receive less traffic, one might wish to place slower wires
there than in the center of the array to build a system with
a better performance to cost ratio. How should one build
the network to optimize performance?

The problem for the Jackson network model has been
considered extensively. The results yield upper bounds that
can be applied to the case where service times are constant,
using a variation of the proof of Theorem 5.

As an example, we consider the case where service rates
are bound by a linear constraint. Imagine that the cost for
a server of a given rate is linear; that is, a service rate of
¢; for the jth server costs d;¢;. Assuming we have a total
of D (dollars) to spend on the network, then the service is
bound by the constraint:

> dié; =D.
J

Theorem 15 Given a Jackson network, suppose the service
rates are subject to the overall constraint Z] d;¢; = D,

where ¢; is the service rate of the jth queue and D > Z] Aj.

Then if A; is the overall arrival rate at queue j, the optimal
allocation to minimize the mean number of customers in the
network (and thus the average delay) is

UNd D=, Aeds
> VArdy d; 7

where the sum is over all queues in the network.

¢J:)‘J+

The theorem is a simple application of Lagrange multi-

pliers. Recall that N = Z] Aj /(5 — Aj). One forms the

Lagrangian

N/:ZAJ/(¢J_AJ)+6 ZdJ¢J_D
J J



and satisfies the equations % =0 for all j. (See, for exam-
ple, [7] or [4].) Note that when all the d. =1, so improving
any queue can be done with equal expense, the optimal allo-
cation corresponds to first allocating each queue just enough
service capability to handle its arrival load, and then dis-
tributing the remaining money proportionally to the square
root of the arrival rates.

Since in equilibrium in the Jackson model all queues are
independent, one can easily determine the average number of
packets in the system in equilibrium, and hence the average
delay from Little’s Law. We apply this analysis to the array.
Define D* by D* = D — ZeGE Aed.. An interpretation of
D* is the extra money available after assigning each queue
the minimum service rate necessary for stability. Then the
average delay is given by:

2
n [Aede

T = .
D= A

ecE

As previously noted, the expression for T' above is an
upper bound for the case where service requirements are
discrete instead of exponentially distributed. It is not clear,
however, that the allocation described in Theorem 15 re-
mains optimal for this case; indeed, this seems an interest-
ing open question. Using Theorem 10, one also has a lower
bound within 2n —1 of the upper bound. Note that one can-
not apply the argument of Theorem 12, since all queue sizes
become unbounded as the arrival rate increases to capacity.

In a system with optimal service rates, the average delay
tends to infinity as D* approaches 0; however, the system
is stable for any positive value of D*. From this we show
that, as one might expect, a modified network can handle
a higher rate A of incoming packets. If all d; = 1, then
for the original array network D = 4n(n — 1), and thus
D* = 4n(n—1)—zeeE Ae. We use the identity that the sum
of the arrival rates at each node equals the average distance
traveled by a packet multiplied by the total external arrival
rate. (See, for example, [7].) Thus

D* =dn(n—1) = Y A =4n(n — 1) — a(n’X),

and hence D* is positive whenever

(-0 ="

A .
< n n+1

IS

If transmission capacity is optimally distributed, then the
array will remain stable under arrival rates of A < 6/(n+1),
as opposed to 4/n. Since this stability condition holds when
the transmission times are exponentially distributed, it also
holds in the model where transmission times are constant,
since the first model yields an upper bound for the second.
This condition is necessary for stability for all nondetermin-
istic arrival schemes.

One can similarly find solutions for the problem when
other, non-linear constraints are imposed, or where costs
vary from edge to edge. Natural constraints depend on the
relationship between cost and transmission speed. Further
examples of the method can be found in [7]. In practice,
one might instead wish to choose transmission rates from
a finite set of possibilities. Although this method does not
yield an optimum solution for this problem, it can provide
a suitable first approximation.

5.2 Further extensions

We can to some extent remove the assumption that a packet’s
destination is uniform over the array. Theorem 1 requires
only that the routing process can be considered Markovian.
Thus, for example, one could have the packet move along
each row/column in some direction, stopping movement in
that direction at each point with probability 1/2, except at
the edge of the array (where the packet must stop). This
corresponds to a distribution where packets are more likely
to travel to nearby destinations. Theorem 12 also applies in
this case, and Theorem 10 can be used when the routing is
not Markovian.

The methods presented here easily extend to array net-
works in higher dimensions under the greedy routing paradigm.
The derivation seems relatively straightforward; one can ex-
plicitly determine the arrival rates at individual queues com-
binatorially or by solving a large system of equations, as
described in [1].

Finally, the results here also hold asymptotically for slot-
ted time, where the time axis is not continuous but instead
consists of slots of some fixed duration 7. Arrivals in this
model are assumed to come in batches, the number of ar-
rivals at a slot being a Poisson random variable with mean
At. It is clear that the average time in this case is within 7
of the average time in the continuous case; one can simply
imagine that the packets instead arrived over the interval as
a Poisson process, already having incurred some delay of at
most 7. A more detailed argument can be found in [12].

6 Open Problems

Leighton also examines toroidal networks, which appear very
similar to array networks [8, 9]. Although the lower bound
techniques described in this paper apply to this case, the
methods of Stamoulis and Tsitsiklis do not. In fact any
network containing a ring of directed edges cannot be lay-
ered, and the greedy routing scheme on the torus is clearly
not Markovian. An upper bound for the average delay on
toroidal networks thus remains open. Similarly, one might
consider a randomized version of greedy routing, where pack-
ets randomly decide whether to move to the correct row
or the correct column. The same approximation and lower
bounds given for the standard greedy routing algorithm ap-
ply, but the upper bound argument fails. We note that in
simulations the randomized greedy routing scheme performs
slightly worse than the standard scheme; thus further study
of it may be only of academic interest.

Of course there remains room to tighten the bounds given
in this paper. It is not yet clear how much better the lower
bounds can be tightened, but it seems likely that they could
be improved by a constant factor on array, hypercube, and
butterfly networks by suitably bounding the expected re-
maining distance the packets have left to travel. Also, it
would be a significant improvement if we could compare the
original network directly to a system of M/D/1 queues, with-
out introducing the copies of Theorem 12. Finally, it seems
undesirable that the bounds we achieve depend on whether
n is odd or even. Perhaps another technique could remove
this distinction.
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