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Abstract

In the bus network problem, the goal is to generate a
plan for getting from point X to point Y within a city
using buses in the smallest expected time. Because bus
arrival times are not determined by a �xed schedule
but instead may be random, the problem requires more
than standard shortest path techniques. In recent
work, Datar and Ranade provide algorithms in the case
where bus arrivals are assumed to be independent and
exponentially distributed.

We o�er solutions to two important generalizations
of the problem, answering open questions posed by
Datar and Ranade. First, we provide a polynomial time
algorithm for a much wider class of arrival distributions,
namely those with increasing failure rate. This class
includes not only exponential distributions but also
uniform, normal, and gamma distributions. Second,
in the case where bus arrival times are independent
and geometric discrete random variables, we provide
an algorithm for transportation networks of buses and
trains, where trains run according to a �xed schedule.

1 Introduction

Imagine trying to travel across a city by bus, with the
goal of minimizing the total travel time. There may
be several di�erent possible routes, with some requiring
changing buses. If buses followed a �xed schedule, then
standard shortest-path techniques would be su�cient to
�nd the best travel plan. However, bus arrivals rarely
follow a �xed schedule (even when they are supposed
to). Bus arrivals are more naturally modeled as a ran-
dom process, in which case a natural goal is to develop
a plan that minimizes the total expected travel time.
Although this bus network problem appears speci�c, it
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is representative of a wide class of scheduling problems
where an appropriate plan must be developed with in-
complete information that is modeled probabilistically.

The bus network problem was recently examined by
Datar and Ranade [3], in the case where arrival distri-
butions are independent Poisson processes, i.e. the in-
terarrival times are exponentially distributed, with the
mean of each distribution �xed for all time. Their re-
sults are based on the key insight that in this case, the
optimal plan is composed of statements of the follow-
ing form: \When at station i, wait for one of buses
Xi1; Xi2; : : : ; Xiki ; take the �rst of these buses that ar-
rives." Moreover, they show that because optimal plans
have such a simple form, they can be calculated in poly-
nomial time using a dynamic programming algorithm.

On reection it is clear that the simple form of the
optimal plan is highly dependent on the assumption of
independent Poisson arrival processes with �xed means.
(We will see examples below.) This assumption is
problematic: indeed, the authors admit, \Perhaps the
most unfounded assumption in our model is that of
Poisson arrivals of the buses."

As our �rst result, we show that an optimal plan
has only a slightly more complex form when the arrival
distributions for buses are assumed to be independent
and have increasing failure rate. Intuitively, the waiting
time for a bus has increasing failure rate if the longer
you wait, the more likely the bus is about to arrive. 1

Many natural models|including uniform, normal, and
gamma distributions|have increasing failure rate, so
our result may be much more appropriate for real-world
data. We describe how the optimal schedule in this case
can be determined in polynomial time, assuming that we
can compute with the relevant probability distributions
in an e�ective manner. Finally, we demonstrate that

1The term increasing failure rate is generally used in reliability

theory to study for example lifetimes of machines; in our case the

\failure" is actually a positive occurrence, namely a bus arrival.
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assuming a slightly weaker property than increasing
failure rate for the bus arrival distributions is insu�cient
for our results.

As our second result, we partially answer another
open question posed by Datar and Ranade: how can we
handle both buses and trains in our transportation net-
work? Here we use the term trains to represent trans-
portation running on a �xed schedule, as opposed to
buses which arrive according to a random distribution.2

We demonstrate how to solve this problem in the case
where time is discretized and interarrival times for buses
are given by discrete geometric random variables. Note
that discrete geometric random variables provide natu-
ral approximations for continuous exponential random
variables, where the accuracy of the approximation de-
pends on the granularity of the time interval for the
discretization. Hence our result can be used to approx-
imate the continuous Poisson arrival case. Although
our solution is polynomial in the number of time steps
modeled, we believe it may be e�ective for problems of
a reasonable size.

1.1 Related work

The earliest reference we have found to bus network
problems is by Hall [4]. The starting point of our work
is the recent paper by Datar and Ranade, who solved
the problem of bus transportation networks when all bus
arrivals are independent and Poisson [3]. An interesting
aspect of this work is the on-line decision making process
of the traveler, who chooses whether or not to take a bus
as it arrives. Previous approaches required schedules
that force the rider to commit to a single transit choice
upon arriving at a stop, rather than exibly choosing
based on what bus gets there �rst [4, 9].

We also view this work as an interesting connection
between algorithmic analysis and Markov decision pro-
cesses. For more background on Markov decision pro-
cesses, see for example [1, 6]; we o�er a brief description
here. In a Markov decision process, there is an under-
lying Markov process with associated actions and re-
wards. By choosing an action at a state, one a�ects the
progress of the Markov process; the goal is to choose op-
tions that optimize the cumulative reward. In the case
of the bus network problem, the actions in each state
are whether or not to take a bus when it arrives, and
the function we wish to optimize is the expected time to
the destination. In the cases we consider here, the state
also explicitly includes a time component, and hence it
�ts into the framework of time-dependent Markov deci-
sion processes introduced in [2]. Our work demonstrates

2We acknowledge that our use of the terms buses and trains

may be inaccurate for practice; still, they are useful.

that under certain probabilistic assumptions, there are
e�cient algorithms to determine the actions that yield
an optimal solution in the bus network setting. Our
algorithms all rely on dynamic programming, which is
the fundamental technique for solving problems based
on Markov decision processes [1, 6].

2 Buses with IFR Waiting Times

2.1 Probability Preliminaries

For completeness we cover basic de�nitions and proper-
ties of distributions we will use throughout the paper.
Further information can be found in texts such as [7] or
[8].

We will generally assume throughout that our ran-
dom variables are non-negative with absolutely continu-
ous cumulative distribution functions3 and �nite means,
although our results can be modi�ed to handle other
cases, including for example discrete distributions.

For a nonnegative random variable X with cumu-
lative distribution function F (t), we de�ne the survival
function to be �F (t) = 1 � F (t). Formally, X is said
to have increasing failure rate (or be IFR) if log �F (t) is
concave on the support of �F . That is, �F (t) is logcon-
cave. Alternatively, if f(t) = F 0(t) is the corresponding
density function, the failure rate is r(t) = f(t)= �F (t).
The condition that log �F (t) is concave is equivalent to
the condition that r is increasing.4 The function r(t)
satis�es

r(t) =
f(t)
�F (t)

= lim
�t!0

Pr(t < X � t+�t j X > t)

�t
:

Informally, if X represents a time spent waiting for a
bus and X has increasing failure rate, it means the
probability of the bus suddenly appearing increases the
longer we wait.

Similarly, X has decreasing failure rate (or is DFR)
if log �F is convex on its support, or equivalently, X is
DFR if r(t) is decreasing.

The mean residual life of X at time t is de�ned as

mX(t) = E[X � t j X > t]:

For example, ifX represents the time until a bus arrives,
the mean residual lifemX(t) represents the average time
until the bus arrives, given that it has not arrived during
the �rst t units of time. Note that mX(t) is de�ned to

3For our purposes, absolutely continuous means that the �rst

derivative exists almost everywhere.
4Here we follow the perhaps unfortunate but apparently stan-

dard practice and use \increasing" to mean \non-decreasing" and

\decreasing" to mean \non-increasing" throughout. So IFR really

means the failure rate is non-decreasing, even though IFR is the

standard term.
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be 0 where �F (t) = 0. The random variable X is said to
have decreasing mean residual life or be DMRL if mX(t)
is decreasing. An interesting lemma left to the reader is
that if X is IFR then it is DMRL, but the reverse need
not hold.

The exponential distribution is both IFR and DFR.
Uniform distributions are clearly IFR. Normal distribu-
tions can be shown to be IFR [5], as can gamma dis-
tributions with certain parameters [7]. In particular,
any gamma random variable that is the sum of a �nite
number of exponential random variables is IFR.

2.2 Form and Computation of the Optimal

Schedule

We begin with a theorem that shows the form of the
optimal schedule when the waiting times for buses are
IFR.

Let T (s; d; h) denote the expected time to reach
d from s using at most h bus changes. Similarly, let
Tb(s; d; h) be the expected time to reach d from s using
at most h bus changes, given that the rider gets on bus
b now.

We will focus on a single stop s with buses
B1; B2; : : : ; Bk stopping there. (For convenience, we do
not include s in the variable description of the buses,
but leave it implicit.) We will also use Ti as an implicit
shorthand for TBi

(s; d; h � 1). We let Wi be the ran-
dom variable representing the waiting time for bus i,
and let Wi(t) be the random variable corresponding to
the remaining waiting time, [Wi � t jWi > t].

There are a few additional concerns we mention
here. If a bus travels through multiple stops, we
must assume that the arrival distributions of buses at
each stop and the travel times from stop to stop are
independent. With this framework, we may assume
without loss of generality that each bus travels only to
a single next stop; our results below can be modi�ed so
the rider chooses the best of several possible stops along
the route if there are several stops. We will make this
assumption in the theorem below. Second, suppose a
bus Bi visits the stop s but the rider chooses not to take
it. It is not clear what arrival distribution we should
use for the next visit by a bus Bi. The distribution
Wi represents the waiting time from our arrival; it is
not clear that we should use the same distribution after
Bi itself arrives. Theorem 2.1 actually holds under any
distribution for the waiting time of a \re-visit" by a bus
Bi.

Theorem 2.1. Suppose that at every bus stop, the
waiting times for the buses are independent random
variables with increasing failure rate. Let B1; B2; : : : ; Bk

be the buses passing through a stop s, sorted in order of

increasing Ti (expected total remaining travel time to the
destination d using at most h� 1 further bus changes).
Then the optimal travel plan from s to d using at most
h bus changes has the following form: take B1 whenever
it arrives; take B2 if it arrives before time t�2; take B3

if it arrives before time t�3; and so on, where the t�i are
decreasing (1 � t�2 � t�3 � � � � � 0).

Proof. We �rst provide the important intuition. It is
clear that in the optimal schedule, bus B1 is taken
whenever it arrives, since the expected time to reach
d by taking any other bus must be at least as great as
T1.

When bus B2 arrives, however, the best plan may
involve trying to wait for bus B1. Clearly, the rider
should wait for bus B1 if the expected time to wait for
and then take B1 to get to d is less than the expected
time if the rider now takes B2. That is, suppose B2

arrives at time t, and

T2 > T1 +E[W1(t)];(2.1)

then it is better to wait for bus B1. (Note that we have
used in equation (2.1) that the waiting time for bus B1

is independent of the arrival of bus B2.) The reverse
is less clear; even if T2 < T1 + E[W1(t)], perhaps it
could be better on average to wait for a following bus,
hoping that it is B1 but settling for B3 or B4 if we are
unlucky. In fact this is not the case; we will show that
the condition

T2 � T1 +E[W1(t)](2.2)

is su�cient as well as necessary for taking bus 2 at time
t. Using this equivalence, and the fact that E[W1(t)]
is decreasing in t (since W1 is assumed IFR), we can
conclude that there is a threshold time t�2 such that the
rider should take bus B2 if it arrives before t

�

2, where

t�2 = infft : T2 � T1 +E[W1(t)]g:

Note that at times where there is equality in the
above expression, either waiting or taking the bus yields
the same expected time, and hence without loss of
generality we may say that the optimal schedule takes
B2 if and only if it arrives before t�2. The argument for
other buses will be similar, using induction on the Bi.

To show that condition (2.2) is su�cient seems
di�cult, since ostensibly we need to consider all possible
other plans and arrival patterns of buses. We avoid this
complexity by introducing an option argument. Let us
suppose that when bus 2 arrives, we give the rider an
option to force bus B2 to wait; the rider can then board
B2 and have it leave at his or her discretion, or board
another bus that arrives later. It is clear that this added
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option only helps the rider. Moreover, for any plan in
the original setting where the rider waits for some other
bus Bi with i � 2 and boards that bus, there is a plan
at least as good in the option setting where the rider
exercises the option and takes bus B2 at the time it
would have taken the other bus. Hence we need only
consider whether the rider should take B2 now, exercise
the option (taking B2 in the future), or wait for bus B1.

In this context, however, choosing to take bus B2 in
the future can never be optimal. This follows again from
the fact that E[W1(t)] is decreasing, so the longer B2

sits idle, the more appealing B1 becomes. Therefore,
the only two potentially optimal choices are to board
and take B2 immediately, or to commit to waiting for
B1. This decision is precisely the test of Equation 2.2,
resulting in the simple outcome that B2 should be taken
if and only if it arrives before time t�2.

Now let us consider the similar inductive argument
for Bj , where j > 2. Let Zm be the random vari-
able representing the time to reach d using at most
h bus changes, if the rider waits for one of buses
B1; B2; : : : ; Bm and uses the optimal policy for these
m buses. Similarly, let Zm(t) be the time to reach d
after having already waited t seconds at s. We know
the form of the optimal policy on j � 1 buses via the
inductive hypothesis. Clearly it is necessary that

Tj � E[Zj�1(t)](2.3)

for it to be optimal for the rider to take bus j if it arrives
at time t. To show that (2.3) is also su�cient, it su�ces
to show that Zj�1 is DMRL from the option argument.

We use the fact that the distribution of the Wi are
IFR to show that Zj�1 is DMRL. Unfortunately, a direct
argument is somewhat di�cult, as a natural expression
for E[Zj�1(t)] is di�cult to write; the buses involved
with the calculation of Zj�1(t) change with t. (The
correct expression is therefore a sum, split according to
the condition of when the �rst relevant bus arrives.)

We instead show that Zj�1 is DMRL over successive
intervals. Inductively, it su�ces to consider the interval
[0; t�j�1]. The argument is simpli�ed by constructing
a new random variable Yj�1, which is similar to Zj�1
except for the following changes. First, we replace the
waiting time distribution for bus j� 1 by a distribution
that is equal toWj�1 for all t � t�j�1 and is t

�

j�1 with all
remaining probability. That is, for the variable Yj�1 we
assume that bus j � 1 arrives at time t�j�1 if it has not
otherwise arrived. Note that E[Yj�1(t)] = E[Zj�1(t)]
over the interval [0; t�j�1], as this change does not a�ect
the expected travel time over this interval. Second,
for Yj�1 we assume that if the bus Bi is boarded,
the remaining travel time is exactly the expectation Ti
instead of a random variable. Again, with this change

we still have E[Yj�1(t)] = E[Zj�1(t)] over the interval
[0; t�j�1] (by linearity of expectations). Hence it su�ces
to show that Yj�1 is IFR to prove Zj�1 is DMRL.

Note that

Pr(Yj�1 � x) = Pr(Wj�1 � x� Tj�1)

� Pr(Wj�2 � x� Tj�2)

� : : : � Pr(W1 � x� T1):

But the survival functions of every term in the product
on the right hand side are logconcave in x, since the Wi

are IFR. Hence the left hand side is logconcave in x,
and since the left hand side is the survival function of
Yj�1, we have that Yj�1 is IFR. Hence inductively Zj�1
is DMRL and the optimal policy has the form given in
the statement of the theorem.

Finally, note that t�i � t�i�1 since the Zi(t) are
decreasing in i and the Ti are increasing in i.

Theorem 2.1 immediately provides an \elementary"
proof of the main result by Datar and Ranade (Lemma
3.1 of [3]).

Corollary 2.1. When arrivals for all buses are Pois-
son, then the optimal schedule has the following form:
take one of buses B1; B2; : : : ; Bj as soon as it arrives.

Proof. In this case, the Wi(t) are independent of t, so
in the proof of Theorem 2.1 we must have that the t�i
are all in�nity or 0.

In the case of Poisson arrivals, Datar and Ranade
show that the optimal schedule and the resulting ex-
pected travel times can be computed exactly e�ciently
[3]. Theorem 2.1 also suggests a natural way of com-
puting an optimal schedule for our more general set-
ting. Let Q be the maximum number of buses that
pass through a station and S be the number of stations.
We may compute optimal plans involving at most h bus
changes inductively. This �rst involves sorting the buses
at each station according to the time to reach the des-
tination using h�1 further bus changes. Then we com-
pute successive values of t�i for each stop.

For distributions more complex than the exponen-
tial, computing the t�i is non-trivial. It requires com-
puting the expected time to reach the destination using
buses B1; B2; : : : ; Bi�1, which may require multiple in-
tegrations over the corresponding distributions (to �nd
the distribution of the time the �rst of these buses that
the rider will take arrives and the corresponding prob-
ability for each bus; note the time the bus arrives and
which bus it is are correlated in our case!). In practice
we expect computing the t�i would be done numerically
to suitably high precision, or possibly even by Monte
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Carlo simulation. We believe that the numerical analy-
sis issues are outside the scope of this paper. Hence we
simply assume the existence of a \black box" calculator
for computing the t�i . Given this, we have the following
corollary:

Corollary 2.2. The optimal travel plan under the
conditions of Theorem 2.1 can be computed in polyno-
mial time, assuming a polynomial time black box for
computing the t�i .

Proof. The total work from the sorting is O(hSQ logQ),
and there will be O(hSQ) computations using the black
box.

2.3 Are IFR distributions necessary?

One might ask if IFR distributions are required for
the result of Theorem 2.1. The proof itself requires
only that the time to reach the destination if the rider
waits for lower numbered buses is DMRL; other sets of
distributions may have this property without being IFR.
One natural suggestion is that perhaps if the Wi are
simply DMRL then this is su�cient. We show, however,
that Theorem 2.1 does not hold under this condition.

Theorem 2.2. The results of Theorem 2.1 fail to hold
if the Wi are only DMRL.

Proof. We construct a counterexample. Let X be
uniform over the range [0; 2] [ [4; 12]. It is simple to
check that X is DMRL. Now suppose there are two
types of buses traveling from point a to point b, each
with waiting distribution X . Fast buses have a constant
travel time of 1; slow buses have a constant travel time of
2. Clearly if a fast bus come the rider should always take
it. Intuitively, however, if there are enough distinct fast
buses, the rider should not take a slow bus that arrives
early, because it is likely that a fast bus will shortly
come. Once the rider has waited almost two time units,
however, he should take a slow bus if it comes, since
no buses arrive in the interval [2; 4] and otherwise he is
likely to end up waiting substantially before a fast bus
appears. A calculation shows that if there is one slow
bus and twelve fast buses, we should take a slow bus
only if it arrives in the interval [0:558; 2].

The counterexample of Theorem 2.2 can be modi-
�ed in various ways. For example, we can change the
distribution X so that its support is a closed interval by
adding a small � weight over the interval [2; 4]. Also, by
considering distributions X that consist of more disjoint
intervals, we can construct examples where the proper
times to take the slow bus consist of two or more disjoint
intervals. The point behind Theorem 2.2 is that even

.

A

B

C

D

1 hr.

1 hr.

10 min.

5 min.

Trains leave on 
the hour, half hour.

Trains leave at quarter past,
quarter until the hour

Buses arrive at A
headed to B or C.

Figure 1: A basic bus and train network. Arrivals of
buses from A to B and from A to C are each Poisson
with an average wait of ten minutes. Travel times are
constant. Trains from B leave on the hour and the half
hour; trains from C leave �fteen and forty-�ve minutes
into the hour.

though each fast bus has decreasing mean time to live,
the random variable for the time until the �rst fast bus
arrives does not. That is, the family of random variables
with decreasing mean time to live is not closed under
minimization, while IFR random variables are.

An interesting open question this counterexample
raises is whether there is a natural way to relate the
complexity of the waiting time distributions and the
complexity of the form of the optimal schedule.

3 Buses and Trains

We now consider another issue suggested in the con-
clusion of [3], and also examined in [2]: networks with
mixed forms of transportation, such as buses and trains.
Recall that in our model buses have an associated ran-
dom waiting time distribution and an associated ran-
dom travel time distribution. We shall use the term
train to refer (metaphorically) to transportation that
arrives and departs at �xed absolute times. For exam-
ple, consider Figure 1. From station A, the rider may
catch a bus to either station B or station C. We assume
the travel time from A to B is a constant �ve minutes
and the travel time from A to C is a constant ten min-
utes. Arrivals of buses that travel from A to B are a
Poisson process, with an average waiting time of ten
minutes; the same holds for buses from A to C. At both
stations B and C there are trains that run to station D,
with the travel time on the train being one hour. Trains
from B leave on the hour and the half hour; trains from
C leave �fteen and forty-�ve minutes into the hour.

This simple example highlights that introducing
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trains leads to substantial di�culties. Of primary
importance is the introduction of absolute time; we are
not only concerned with how long the rider has spent at
the bus station, as in the problem with only buses, but
the actual time until the trains depart. The expected
time to reach the destination D from train stations B
and C is not constant, as it was in the pure-bus setting
of Section 2, but depends on the time the rider arrives
at D. Because of this, the ideas behind Theorem 2.1
no longer directly apply. In particular, there are times
where the rider should pass up the bus to B in order
to wait for the bus to C, and other times when the
rider should do the opposite. For example, if a bus to
station B arrives at station A just four minutes before
the hour, we know that taking the bus will cause us to
wait at station B. The rider is better o� waiting for a
bus to station C, and possibly catching a bus to station
B later if necessary.

In this section, we present an approach for handling
mixed networks of buses and trains in the case where bus
arrival times are discrete geometric random variables,
which can be used to approximate the case of the
continuous Poisson arrival process. Our method will be
to set up the problem as a large dynamic programming
problem, or equivalently, as a Markov decision process.
(Dynamic programming is a standard technique for
Markov decision processes; again, see [1, 6].) We �rst
present our approach via the example above, and then
discuss the general framework for larger problems.

We �rst clarify here why we limit the bus arrival
processes to be discrete geometric random random
variables. From our example, we can see that it is
possible in mixed bus and train networks that the rider
chooses not to take a bus at some time, only to take a
bus on the same route later. If the bus arrival process is
a geometric random variable, the fact that a bus has
previously arrived need not be recorded in the state
space; we may forget that the bus has arrived, as it
does not a�ect the arrival of future buses. (This is the
memorylessness property of geometric and exponential
random variables.) If, however, a bus has a more
complicated arrival process, then the last time a bus
on that route arrived may be relevant information for
determining the arrival of the next bus on that route.
Keeping track of such information as the last arrival
of each bus would lead to a more complex, higher-
dimensional state. Although handling such a state is
theoretically feasible using the techniques we suggest,
we do not address this issue here.

For our problem, the state space will be pairs (s; t),
where s is a station and t is the current absolute time.
To be at the state (s; t) denotes that the rider is still
waiting at station s at time t. In order to make the

underlying state space countable, we must assume time
is discretized. Moreover, for the state space to be �nite,
we must also assume an ending time for the process. For
example, we may assume that the buses and trains start
running at noon and stop running at midnight, at which
point one must call a friend for a ride. To penalize this
action, we make the cost associated with it very high
but �nite (such as two hours).

Discrete geometric random variables can naturally
be used to approximate continuous exponentially dis-
tributed random variables; the error in the approxi-
mation depends on the granularity of the discrete time
scale. Hence this approach can be used to approximate
behavior when bus arrival processes are Poisson. On
the other hand, the number of states required is pro-
portional to the number of discrete time steps being
modeled.

Finally, for convenience we will assume here that
each bus travels from our current stop to a unique other
stop as opposed to multiple stops. The case where buses
have multiple stops can be handled in an similar fashion
(with a possible increase in the size of the state space).

3.1 The Dynamic Program

We �rst consider our example. For convenience let us
assume that time is discretized in minutes, and buses
leave on the minute. Hence for example the rider may
begin at state (A,11:59 am), and if a bus arrives in the
intervening minute, he may get on the bus and leave
station A at 12:00. Of course the rider may choose not
to get on the bus, in which case the rider will be at state
(A,12:00 pm). We wish to optimize the expected time
of arrival at station D.

The possible actions at each state consist of the list
of buses we will take if such a bus arrives at the station
over the next minute from that time. We assume in this
discretized version that buses may arrive in the same
interval, so that our possible action at each state is a
sorted list of buses that we will take if a bus arrives,
with the sorted order giving a preference if two buses
arrive at the same time.

In our simple example, let E(s; t) be the expected
time to reach D from state s at time t. Note that
E(B; t) and E(C; t) are trivial to compute. Let z =
1� exp(�0:1) be the probability that a bus headed for
B (or equivalently for C) arrives at A during a minute.
We have the recurrence

E(A; t) = (1� z)2E(A; t+ 1) +

z(1� z)min(E(A; t+ 1); E(B; t+ 6)) +

z(1� z)min(E(A; t+ 1); E(C; t+ 11)) +

z2min(E(A; t+ 1); E(B; t+ 6); E(C; t+ 11)):
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We solve this recurrence for decreasing t. From the
recurrence we can naturally derive the correct actions;
for example, if E(A; t + 1) < E(B; t + 6) then we will
not take the bus to B. The results for our example are
given in Table 1.

Time 0-2 3-4 5-21 22-24 25-30
Action C C,B B B,C C

Table 1: At more than a few hours from the end of the
day, the optimal strategy has a half hour cyle. At states
where t is 0 to 2 minutes over the half hour, plan only
to take bus C if it arrives over the next minute.

Theorem 3.1. The travel plan for optimizing the ex-
pected travel time for networks with buses and trains,
where buses have discrete geometric arrival distribu-
tions, can be computed in time polynomial in the number
of stops, the maximum number of buses and trains at a
stop, and the total number of time units simulated. This
holds even if bus travel times are random variables that
depend on the time of arrival to the station.

Proof. We provide a more general framework and cor-
responding bounds on the time to compute the optimal
strategy. We use dynamic programming, computing the
E(s; t) in reverse temporal order; that is, we start at
the end of the process, and compute E(s; t) for all s (in
any order) using already computed values E(s; u) with
u > t. Suppose that a maximum of Q buses or trains
pass through any of S total stops, and our process lasts
for T units of time. For each time state (s; t), there are

at most
PQ

i=0

�
Q
i

�
i! possible actions, as each ordered

subset of the buses and trains are a possible action.
However, following the idea of Theorem 2.1 we can sim-
plify considerably by sorting the buses and trains by the
expected time to reach the destination if we choose that
option at that time. Every action that is better than
waiting at the current stop (i.e, better than E(s; t+1))
is one that will be taken, and the sorted order provides
the preference. Note that we can sort the transport op-
tions, but the results may be di�erent for di�erent time
steps.

In our example, we have that the bus travel times
are constant. In this case, once we have the sorted
order, computing E(s; t) can be done in time O(Q) by
considering the arrival possibilities in sorted order. For
convenience suppose there are only buses at the station
(trains are easy to handle, as they are either ready to
leave or not). If the �rst bus arrives, we take it; if not,
but the second bus arrives, we take that; and so on.
There are only O(Q) possibilities to consider. Hence the
total time to compute optimal schedules in this case is
O(STQ logQ).

If instead bus travel times are given by a �xed dis-
crete random distribution, or even a discrete distribu-
tion that varies over time, this only increases the work to
compute the expected times to reach the destination by
a factor of O(T ), for total work O(STQ logQ+SQT 2).

(Note: in the case where bus travel times are
given by �xed discrete random variables, standard
convolution techniques may reduce the total work to
O(STQ logQ + SQT logT ); however, it appears some
additional assumptions are necessary for these methods
to apply. We will explain further in the �nal version of
the paper.)

Although the complexity of these solutions may be large
when computing over long time intervals, they appear
feasible for reasonable-sized systems. We also note that
another advantage of this setup is that we can handle
value functions more general than the expected travel
time; for example, we could use the same approach to
maximize the probability of reaching our destination by
a certain time.

To summarize, this framework improves over previ-
ous work in the following respects. In comparison to the
work of [3], we show that handling buses with Poisson
arrivals and trains is possible; moreover, we show that
the simple form of the optimal schedule we have shown
in Section 2 is not possible in this setting. In compar-
ison with previous work on Markov decision processes
such as [2, 9], we have shown how to handle the problem
of waiting for multiple buses at a station in the case of
a geometric arrival process, which leads to a relatively
simple state space.

4 Conclusions and Future Work

We have expanded previous work on stochastic trans-
portation networks in two ways. First, we provided an
algorithm for �nding optimal schedules for bus networks
where bus arrival distributions have increasing failure
rate. Second, we have given an algorithm for �nding
optimal schedules in mixed networks of buses and trains
when the bus arrival distributions are discrete geomet-
ric random variables. We plan to implement these algo-
rithms and test them on arti�cially generated and real
data in the near future.

There remain many open questions to pursue; we
suggest two here. First, fast approximation algorithms
would be useful, especially for transportation networks
that change often. Moreover, approximation algorithms
may allow more general distribution classes to be han-
dled. Second, we might consider the situation when the
transportation network may provide additional infor-
mation. For example, buses equipped with global posi-
tioning equipment and wireless communication may be
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able to provide their position. In this situation, a rider
determining whether or not to get on a bus may have
more detailed information available about the waiting
time for other buses.
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