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Abstract

We analyze the relationship between the expected packet delay in rooted tree networks and
the distribution of time needed for a packet to cross an edge using convexity-based stochastic
comparison methods. For this class of networks, we extend a previously known result that the
expected delay when the crossing time is exponentially distributed yields an upper bound for the
expected delay when the crossing time is constant [20] using a di�erent approach. An important
aspect of our result is that unlike most other previous work, we do not assume Poisson arrivals.
Our result also extends to a variety of service distributions, and it can be used to bound the
expected value of all convex, increasing functions of the packet delays. An interesting corollary
of our work is that in rooted tree networks, if the expectation of the crossing time is �xed,
the distribution of the crossing time that minimizes both the expected delay and the expected
maximum delay is constant. Our result also holds in multi-casting rooted tree networks, where
a single message can have several possible destinations.

Besides o�ering a useful analysis on this restricted class of networks, we also provide a small
improvement to the bounding technique. Surprisingly, this improvement is also applicable to
previously developed comparison methods, leading to an improvement in the upper bounds for
greedy routing on buttery and hypercube networks given by Stamoulis and Tsitsiklis [20].

Key words: queueing theory, stochastic comparisons, increasing convex ordering, tree networks.

1 Introduction

We consider the problem of bounding the average packet delay in dynamic packet routing networks.
One way to formulate the problem is to consider the packet-routing network as a queueing network,
where edges in the graph that models the network behave as servers. In many real-life networks,
it takes a �xed constant time for a packet to cross an edge; however, most queueing theory results
require the assumption that the service time be exponentially distributed. Stamoulis and Tsitsiklis
developed a method to tackle this discrepancy by comparing the two types of networks to determine
upper bounds [20]. They showed that in all layered Markovian networks the expected delay when

�An earlier version of this paper appeared in the 1996 ACM Symposium on Parallel Algorithms and Architectures.
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the service times are exponentially distributed provides an upper bound for the expected delay when
the service times are constant with the same mean.

We apply an alternative, weak stochastic ordering that achieves more general results on a more
restricted class of networks: rooted tree networks. Two rooted tree networks can be compared if the
service distribution in one is \more variable" than that of the other, in a sense we shall de�ne in
Section 2. This comparison method has several advantages over previous techniques: it does not
require Poisson arrivals; the method can be used for many classes of service distributions, not just
those corresponding to constant or exponentially distributed services; the comparison can be used
on many non-Markovian networks; and the results can provide bounds not only for the expected
delay, but for increasing convex functions of the delay as well.1

From our comparison method, we develop a slight improvement in the bounding technique. Instead
of comparing the network where service times are constant to the network where service times are
exponentially distributed, we use a network where there are edges of both types. Surprisingly, this
technique can also be used with the comparison approach of Stamoulis and Tsitsiklis. As a result we
can improve their upper bounds on the performance of greedy routing in hypercube and buttery
networks.

1.1 The Model

We briey describe the model. The underlying network is a rooted tree, where packets enter at the
root and proceed away from the root until they reach their destination and exit the system. The
edges of the network are represented by servers, and the time to cross an edge is referred to as the
crossing time or the service time. Packets are served First Come-First Served (FCFS) at each queue.
The delay of a packet is the di�erence between the time the packet enters and the time the packet
exits the network. We associate the following parameters with the ith packet that arrives to the
system:

� A �nal destination di.

� A random variable Xi that represents the time between the (i� 1)st and ith packet arrival.

� A vector of random variables Si;j that represent the service time the ith packet requires at
server j if it visits that server.2

For convenience we assume the �rst arrival occurs at time 0. The destinations di are assumed to be
generated by some process independent of all Xi and Si;j ; we call this process the routing discipline.
We enforce the requirement that the random variables Xi and Si;j be independent unless otherwise
noted, and similarly the random variables associated with packets i and i0 are independent unless
otherwise noted. Note, however, that the distributions of Xi and Si;j , as well as the destination di,
can depend on the packet number i.

We note that this model is strong enough to handle, for example, any Markovian routing scheme on
the network. A routing scheme is Markovian if the probability that, after completing service at queue
j, the next destination of a packet is queue k (or that the packet leaves the network) is dependent
only on j and is independent of its previous history and the state of the system. For example, on
rooted tree networks, if the packet destinations are determined by some �xed distribution, then the

1In this paper, increasing is meant to be synonymous with nondecreasing, and is di�erent from strictly increasing.
2Although in packet routing servers usually model just the edges, we may also have servers at each node to model

work there as well.
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network can be modelled with a Markovian routing scheme, and vice versa. Our model also includes
many non-Markovian routing schemes, however. For example, �nal packet destinations might run
through the leaves in some �xed cyclic order, as in a round-robin scheme.

Although rooted tree networks are perhaps the simplest type of network topology, they provide
natural representations of several real systems. For example, video transmission from a single server
to several destinations can be represented by rooted tree networks. Also, in many systems, there
may be small tree-shaped subnetworks that receive all outside tra�c through a single source; for
example, a university may have one direct server link to the Internet, from which external mail is
distributed to the various departments. Such a subnetwork can be modeled by a rooted tree network.
This method may also be useful for studying the behavior of some distributed data structures, such
as distributed search trees.

The main result (Theorem 8) will require de�ning the proper notation. The following corollary of
our main result, however, appears to be interesting in its own right:

Corollary: Let the service times in a rooted tree network be Si;j. Suppose also that we may vary
the Si;j subject to keeping E[Si;j] �xed. Then the expected delay for each packet is minimized when
Si;j = E[Si;j], that is, when the Si;j are constant random variables. Similarly, the expected value of
the maximum delay for the �rst k packets is minimized when the Si;j are constant random variables.

Thus we �nd not only that constant time servers are better than servers with exponentially dis-
tributed service time in rooted tree networks, but that for these networks, constant service time is
the best possible.

Our results also apply to multi-casting rooted tree networks. In a multi-casting system, a single
message can have several destinations. The model does not need to be dramatically changed for
such a system; the only di�erence is that at a node a packet may instantaneously split into multiple
copies, to traverse multiple paths in the network at the same time. We provide a method for
determining upper bounds on the expected delay on certain multi-casting systems under the same
conditions we use for the standard routing problem.

1.2 Previous Work

Stochastic comparison techniques have been used previously primarily on single queues, for example
in [15, 21]. These techniques have also been applied and generalized to more complicated processes [1,
13, 14, 19, 22]. Indeed, although our work was derived independently, it strongly resembles the work
of Niu [13], who examined tandem queues using a similar approach. A good modern treatment of the
subject is given by Shaked and Shanthikumar [19]. In the computer science literature, comparison
results have primarily been based on the work of Stamoulis and Tsitsiklis [20]. Using coupling and
stochastic comparison they showed that if the underlying network is layered and Markovian, and
servers use a First Come First Served (FCFS) policy, then changing the servers in the network from
constant time to exponential time with the same mean does not decrease the expected time a packet
spends in the network [20]. This work was applied to greedy routing on array networks in [11] and
generalized to non-layered networks by Harchol-Balter and Wolfe in [4]. Methods for lower bounds
are also suggested in [20] and [11]. This approach, however, has certain limitations: it requires
Poisson arrivals into the network, the comparison holds only between constant and exponential
service times, and the bounds apply only to expected delay. Results similar to but more general
than those of [20] and [4] were also discovered independently by Righter and Shanthikumar in [14]
using more general stochastic comparisons.
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Other approaches besides stochastic comparison have also proven successful. Better bounds can often
be obtained by examining speci�c networks, as was done by Leighton in [9] and later by Kahale and
Leighton in [5]. Recently, a new approach for modeling routing networks has been suggested by
Borodin et al., where one assumes that packets are injected into the network by an adversary. This
method has proven useful for showing the stability of networks under many di�erent routing policies
given reasonable conditions on the adversary, and it can also give loose bounds on the expected
delay [2].

The rest of the paper is organized as follows: in Section 2, we will provide the necessary background
on the stochastic order relation we use to prove our results. We will prove the main theorem in
Section 3, and then examine its implications through various corollaries in Section 4. In Section 5,
we o�er an improvement to the standard bounding technique and discuss its application to hypercube
and buttery networks. We clarify the reasons for the restriction to rooted tree networks in Section 6.

2 The Increasing Convex Ordering

Our work will require using a stochastic order relation similar to the concept of stochastic domination
of random variables. We present the necessary background, based primarily on the treatment by
Ross; the proofs can all be found either in [17, pp.270-279] or [19, Section 2.A].

De�nition: A function f : R! R is convex if

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2)

for all x1; x2; and 0 < � < 1.

De�nition: For random variables X and Y , we say that X is greater than Y with respect to the
increasing convex ordering, and write X �icx Y , if E[h(X)] � E[h(Y )] for all increasing, convex
functions h for which the expectations exist. If X and Y have cumulative probability distributions F
and G respectively, we may also write F �icx G in place of X �icx Y .

The partial order relation X �icx Y should be contrasted with the standard notion of stochastic
domination: to say that X is stochastically larger then Y , or X �st Y , is equivalent to E[h(X)] �
E[h(Y )] for all increasing functions h. Hence X �st Y immediately implies that X �icx Y , and the
�icx relation can be considered a relaxation of the standard notion of stochastic domination.

Following [17], we shall also use the following more convenient terminology: if X �icx Y then we
shall say that X is more variable than Y . The following lemma comparing the moments of random
variables indicates why this phrasing appears appropriate:

Lemma 1 If X �icx Y , then E[Xk] � E[Y k] for k � 1. Also, if E[X] = E[Y ], then X �icx Y
implies V ar(X) � V ar(Y ).

The following pictorial condition provides perhaps more intuition for the increasing convex ordering.

Lemma 2 Suppose that for two random variables X and Y with �nite means E[X] � E[Y ] and
cumulative distribution functions F and G, respectively, there exists a � such that

F (x) � G(x) for x � �; and

F (x) � G(x) for x > �:

Then X �icx Y .
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Figure 1: An application of Lemma 2. The constant random variable with distribution F is less
variable than the random variable with distribution G, assuming that they both have the same
mean, since the distribution functions cross at a single point.

See, for example, Figure 1. Note that if E[X] = E[Y ], the pictorial condition suggests that more
of the weight of Y 's distribution lies further from the mean than X's, so it stands to reason that Y
will be more variable than X.

Since our primary motivation for using these methods is to compare systems that have exponentially
distributed service times to systems with other service times, we de�ne classes of random variables
that can be ordered against exponential random variables.

De�nition: A nonnegative random variable X is new better than used in expectation (NBUE) if

E[X � ajX > a] � E[X] 8a � 0:

X is said to be new worse than used in expectation (NWUE) if

E[X � ajX > a] � E[X] 8a � 0:

In particular, a constant random variable is NBUE (see [17, Proposition 8.6.1, p. 273]). The class of
NBUE random variables will be useful because they are easily compared to exponentially distributed
random variables in this partial ordering.

Lemma 3 If X is NBUE (NWUE) with mean �, and Y is exponentially distributed with mean �,
then X �icx Y (X �icx Y ).

Thus an exponentially distributed random variable is more variable than a constant one, as one
would hope! In fact, as one would expect, of all the random variables with a �xed mean, a constant
random variable is the smallest in the increasing convex ordering.

Lemma 4 If X is a random variable with mean �, and Y is a constant random variable of mean �,
then X �icx Y .

In the networks we consider, we will be able to express the time a packet spends in the system as a
function of several random variables, including the service times. Thus we must also consider how
this stochastic ordering behaves when we take functions of random variables.
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Lemma 5 If X1; X2; : : : ; Xn are independent and Y1; Y2; : : : ; Yn are independent, and Xi �icx Yi
for 1 � i � n, then

g(X1; : : : ; Xn) �icx g(Y1; : : : ; Yn)

for all functions g that are increasing and convex in each argument.

The following lemma, combined with Lemma 5, shows that any function g designed by composing
addition and maximum operations will be increasing and convex. This fact will be crucial to the
proof of the main result.

Lemma 6 The functions max(X;Y ) and X + Y are convex and increasing in X and Y . Also, if
g(x) and h(x) are convex and increasing functions, then so is g(h(x)).

Finally, the following technical facts regarding the increasing convex ordering will also be useful.

Lemma 7

� If E[X] = E[Y ], then X �icx Y implies �X �icx �Y .

� For random variables X;Y; and �, if fX j� = �g �icx fY j� = �g for all � in the support of
�, then X �icx Y .

� Suppose fXig and fYig are sequences of random variables that converge in distribution to X
and Y respectively, such that

E[Xi]! E[X] and E[Yi]! E[Y ]:

Then if Xi �icx Yi for all i, then X �icx Y .

3 More Variability Increases Delay

We are now ready to state and prove our main theorem, which is a natural extension of known
results for the case of a single queue. (See, for example, [17, p. 274].)

Theorem 8 Consider two rooted tree networks Q1 and Q2 with the same underlying topology and
routing discipline. Let Q1 (Q2) have packet interarrival times X1

i (X2
i ), and let S1i;j (S2i;j) be the

service times of the ith packet at server j in Q1 (Q2). Let T 1k (T 2k ) be the departure time of the
kth packet to arrive in Q1 (Q2), and let D1

k (D2
k) be the delay of the kth packet in the system. If

X1
i �icx X

2
i and S1i;j �icx S

2
i;j for all i; j, then T 1k �icx T

2
k for all k. Furthermore, if E[X1

i ] = E[X2
i ]

for all i, then D1
k �icx D

2
k for all k.

We shall discuss speci�c rami�cations of Theorem 8 after the proof.

Proof: Without loss of generality, let the servers be numbered in increasing order from the root. We
begin by coupling the networks so that the routing choices made are the same for both networks; that
is, without loss of generality we may assume that for all i the ith packet has the same destination
in each network. This assumption is valid because if

fT 1k j d1 = �1; d2 = �2; : : : ; dk = �kg �icx fT
2
k j d1 = �1; d2 = �2; : : : ; dk = �kg;
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then it follows from Lemma 7 that T 1k �icx T
2
k , under the assumption that Q1 and Q2 have the same

routing discipline. A similar statement is true for D1
k and D2

k.

To prove that T 1k �icx T
2
k , from Lemma 5 it su�ces to show that the departure time in both systems

of the kth packet can be expressed as the same increasing convex function of a �nite number of the
Xi and the Si;j . For convenience we drop the superscripts when the equation holds in both systems.

First, note that the service time of the kth packet cannot depend on any Si;j with i > k or any of
the Xi with i > k. Thus the departure time depends only on �nitely many of the random variables.

Now consider any of the random variables Si;j; Xi that Tk may depend on. Consider the exit time
as a function of one of these random variables Z, with all the other random variables instantiated.
It is clear that as Z increases the exit time can only increase, and that the exit time as a function of
Z has the following form: it consists of two piecewise linear segments, the �rst of which is constant
(if the kth packet is not held up by an increase in Z) and the second of which has non-negative slope
(if the kth packet is held up by an increase in Z). Hence the exit time is convex in Z.

More concretely, let T 1i;j and T 2i;j be the exit time of packet i from queue j in the two systems. We

show by induction on i and j that T 1i;j �icx T
2
i;j . Let i

0 be the packet that completes service at queue
j before i, and let j0 be the queue which served i and i0 before queue j. Both i0 and j0 are well
de�ned, since the network is a tree and the routing decisions are the same for both systems. Then
packet i begins service at queue j either after i0 �nishes service or as soon as i arrives, yielding the
recurrence

Ti;j = max(Ti0;j ; Ti;j0) + Si;j:

Inductively, from Lemmas 5 and 6, one can show that T 1i;j �icx T 2i;j. Note that Ti0;j and Ti;j0 are
not independent; the induction shows that Ti;j can be written as a function of the Xi and Si;j built
up from max and addition operations. The base case for each queue corresponds to the �rst packet
through the queue, which can be handled similarly.

A similar recurrence holds for the Di;j :

Di;j = max(Di0;j �

iX
k=i0+1

Xk; Di;j0) + Si;j :

Hence, inductively, we �nd that Di;j is a convex increasing function in the Si;j and �Xi. This has an
interesting interpretation: as the interarrival time Xi decreases, the delay increases; or, the sooner
a packet arrives, the longer it has to wait.

Now, if E[X1
i ] = E[X2

i ], then by Lemma 7, �X1
i �icx �X

2
i . Hence, with this additional hypothesis,

D1
k = T 1k �

kX
i=1

X1
i �icx T

2
k �

kX
i=1

X2
i = D2

k;

proving the theorem.

Remark: In the similar proof by Niu for tandem queueing systems, he shows that the delays can
be ordered according to the increasing convex ordering only when the arrival process is the same
[13, Theorem 3]. For the case where the interarrival processes can be ordered, that is, X1

i �icx X
2
i ,

but the processes do not have the same distribution, he proves only a weaker statement comparing
the expectations of the delays [13, Theorem 2]. Our result is stronger because we demonstrate that
the delays are convex and increasing in �Xi. Niu's result appears to have led to a misconception
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that the delays can not be ordered in the variability ordering [23, p.514]; our proof shows that the
delays can be so ordered.

We note that the proof of Theorem 8 cannot be extended in its current form to networks where
packets may arrive from more than one entry point. For example, consider a node with external
arrivals from outside the network and internal arrivals from other nodes in the network. The time
of the �rst arrival at such a node would be the minimum of the �rst arrival time from outside the
network and the �rst arrival time inside the network, and this is no longer a convex function of the
appropriate random variables. In general, the expression for the time at which the ith packet enters
such a node would not be expressible solely using addition and maximum functions, and thus the
restricted network con�guration is necessary. A more detailed counter-example is given in Section 6.

From Theorem 8 and Lemma 3, we derive a useful corollary.

Corollary 9 In a rooted tree networks where the service times are NBUE (NWUE), the expected
time a packet spends in the system is at most (at least) the expected time when the service times are
exponentially distributed with the same mean. Furthermore, the same results hold for any convex
increasing function of the delays.

Remark: Previously, the primary use of results of this type has been to show that, in equilibrium,
the expected delay when arrivals are Poisson and the service times are exponentially distributed
provides an upper bound for the case where arrivals are Poisson and service times are constant.
This conclusion follows from Theorem 8 and Lemma 7, using the fact that the delays Di converge
to the delay of a packet in equilibrium. As the expected time a packet spends in the system in
equilibrium given Poisson arrivals and exponential service times can generally be computed explicitly
in Markovian networks (for example, see [6] or [23, Section 6.3]), this bounding technique can give
useful upper bounds. Our result shows that these bounds can be generalized on Markovian rooted
tree networks. For example, the upper bound also holds for the case where the service times are only
NBUE and/or the interarrival process is not Poisson, but only NBUE; and the exponential/Poisson
case is a lower bound when the service times and/or arrival process are NWUE. These techniques
may also provide useful bounds in discrete time settings as well, through comparisons with the
corresponding discrete time networks [10].

The fact that not just the expected delay, but any convex increasing function in the delay, can be
similarly bounded is also important because in many settings, such as video or audio transmission,
the variance in the delay can be as important as the delay itself. Also, bounding the higher moments
can yield probabilistic bounds on the delay that are more useful than just the bounds on the expected
delay.

Using Theorem 8 and Lemma 4, we may conclude that constant service times are optimal for rooted
tree networks.

Corollary 10 Let the service times in a rooted tree network be Si;j . Suppose also that we may vary
the Si;j subject to keeping E[Si;j] �xed. Then the expected delay for each packet is minimized when
Si;j = E[Si;j], that is, when the Si;j are constant random variables. Similarly, the expected value
of the maximum delay (or any increasing function of the delays) of the �rst k packets is minimized
when the Si;j are constant random variables.

For rooted tree networks, this result strengthens previous results based on the techniques of Stamoulis
and Tsitsiklis ([20] and [4]), which show that constant service times are better than exponential ser-
vice times on Markovian networks. Our comparison applies to a wider range of service distributions,
albeit on a restricted class of networks.
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A counter-example developed by Harchol-Balter and Wolfe in [4] demonstrates that constant service
times are not always optimal (in terms of minimizing the expected delay) in non-Markovian networks,
even under the assumption of Poisson arrivals. Harchol-Balter and Wolfe raise the following question:
for what class of networks does replacing servers with exponentially distributed service times by
servers with constant service times reduce the expected time a packet spends in the system? We
suggest an interesting re�nement:

Question: For which networks (under a suitably general interarrival distribution) does replacing
servers using constant service time with servers using any other service distribution with the same
mean increase the expected time a packet spends in the system?

We have shown that rooted tree networks lie in this class.

4 Extensions

With some simple modi�cations, the proof of Theorem 8 can be extended to handle several other
interesting cases. For example, we briey explain how the proof can be extended in some cases of
dependent interarrival times and dependent service times.

Corollary 11 The result of Theorem 8 also holds in the case where X1
i = X2

i in distribution and
the variables Xi are dependent.

Proof: The proof of Theorem 8 is extended simply by coupling the arrival process as well as the
destinations. That is, we prove that

fT 1k j d1 = �1; : : : ; dk = �k; X1 = x1; : : : ; Xk = xkg �icx fT
2
k j d1 = �1; : : : ; dk = �k; X1 = x1; : : : ; Xk = xkg:

This su�ces by Lemma 7. In this case, for any �xed values for the Xi, the Ti;j are convex increasing
functions of the Si;j . The proof for the Di;j is similar.

Corollary 12 Suppose that the ith packet has a length li determined by a random variable Li, where
the Li are independent. Also suppose that Si;j = �j(li) for some increasing convex functions �j for
all i. Then the results of Theorem 8 hold if we replace the hypothesis S1i;j �icx S2i;j for all i; j with

L1i �icx L
2
i .

Proof: The proof of Theorem 8 carries over, except that Ti;j and Di;j are now convex increasing
functions in the Li.

Corollaries 11 and 12 demonstrate that the comparison can be useful even when realistic restrictions
on the independence of certain variables apply. Corollary 12 seems particularly interesting, since
it is often di�cult to analyze systems where service times are dependent. Indeed, in practice the
issue is often circumvented by assuming the service times at di�erent queues are independent as an
approximation; this idea appears to date back to Kleinrock [7].

Our results also extend easily to multi-casting networks.

Corollary 13 The results of Theorem 8, Corollary 9, and Corollary 10 also hold for multi-casting
rooted tree networks.
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Figure 2: Tree bounds: replace non-leaf edges with exponential servers, while leaf edges have constant
servers.

Proof: The proof of Theorem 8 is easily modi�ed to handle multi-casting rooted tree networks; one
must couple the packet destinations, and then consider each duplicate of a packet separately.

In the case where arrivals are Poisson and the packet destinations are given by a �xed distribution,
this result can be used in a manner similar to the results of [20] to obtain an upper bound on the
expected delay of packets in a multi-casting rooted tree system in many cases. Actually, one could
also achieve this result by modifying the argument of [20], but for this class of networks our results
are much more general.

5 Leaf Edges

As we mentioned in the remark after Corollary 9, the case where packets take exponential time
to cross an edge provides an upper bound on the expected delay for the case where packets take
constant time to cross an edge, and this leads to a computable upper bound on the expected delay
for Markovian rooted tree systems with Poisson arrivals.3 Here we provide a small improvement
to this approach by leaving the crossing times of some edges constant. In fact, we can apply this
improvement to the bounds obtained using the techniques developed by Stamoulis and Tsitsiklis as
well.

We begin by considering just Markovian rooted tree networks. In a single queue, if the external
arrivals are Poisson and all service times are exponential, then the departures also form a Poisson
process [6, Theorem 2.1]. Hence, if the arrivals in a Markovian rooted tree network are Poisson and
the service times are exponential, the arrivals at and departures from each queue form a Poisson
process as well. This is the fact we will use to improve the bounds.

Consider the queue edges connected to the leaves of the rooted tree; call these edges leaf edges. We
compare the network Q1 where all crossing times are constant to the network Q2 where the crossing
times for all non-leaf edges are exponentially distributed and the crossing times for all leaf edges
are constant. We assume that for each edge the expected time to cross the edge is the same for all
packets in both Q1 and Q2. By Theorem 8, the expected time a packet spends in Q1 is bounded
above by the expected time a packet spends in Q2. (See Figure 2.)

3In this section, we assume that for each edge, the crossing time for every packet has the same expectation.
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Figure 3: Buttery bounds: replace all but the last layer with PS servers.

The advantage of leaving the time to cross the leaf edges constant is that the expected time of a
packet in such a system in equilibrium can still be explicitly computed. This is because all the
non-leaf edges correspond to queues with Poisson arrivals and exponential service times, while leaf
edges correspond to queues with Poisson arrivals and constant service times; the expected time a
packet spends in both types of systems can be determined by standard queueing theory. By the
Pollaczek-Khinchin formula [8], the expected time E[T ] a packet spends in an M/G/1 queue (a
queue with Poisson arrivals and service distribution S) in equilibrium is given by

E[T ] =
�E[S2]

2(1� �E[S])
+ E[S]: (1)

Hence, if the routing is Markovian, we can explicitly calculate the expected time in Q2 queue by
queue, and hence bound Q1. Note by equation (1) that this bound is strictly better than the
bound one would obtain if the crossing time for leaf edges were exponentially distributed. Also, this
approach does not depend on the service time of leaf edges in Q1 being constant; as before, they
can be NBUE, and using the Pollaczek-Khinchin formula we can again compute a bound given the
variance of the service distribution. Similarly, the bound also holds if the interarrival distribution is
NBUE as well, and the approach can be used for any convex increasing function in the delay.

A natural question is whether this same improvement can be applied with the Stamoulis-Tsitsiklis
technique that bounds all Markovian networks, not just rooted trees. For such networks we de�ne
a leaf edge to be any edge such that after crossing that edge, the packet must leave the system.
In the standard Stamoulis-Tsitsiklis approach, all edges in the network are initially represented by
constant time servers, and for the comparison they are replaced by Processor Sharing (PS) servers,
which divide the total available service among all waiting packets equally. A delay argument then
shows that the expected time a packet spends in the PS network is at least the expected time a
packet spends in the constant server network. Assuming arrivals are Poisson and using standard
results ([6, Theorem 3.7]), one has that the expected time in the PS network is the same as in a
network where service times are exponentially distributed [4, 20]. This leads to computable bounds.
We improve these bounds by replacing all non-leaf edges with PS servers, but leave all leaf edges
with constant time servers. In this case as well, if the arrivals to the network are Poisson then in
equilibrium the input stream to leaf edges will be Poisson [6, Theorem 3.7].
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This leads to an improvement on the bounds for the expected delay of greedy routing on hypercube
and buttery networks given in [20]. (The technique also applies to the bounds on greedy routing on
array networks given in [11], but these bounds have previously been improved by Kahale and Leighton
[5].) The interested reader is referred to [20] for the full details of the underlying models; here we
briey describe the new bounds. For convenience we use the notation of [20] in this comparison.
First consider hypercube networks of dimension d, where for each packet each dimension must be
crossed with probability p (when p = 1=2, destinations are uniformly distributed), and dimensions
are crossed in some �xed order (this corresponds to greedy routing). It take constant time 1 to cross
an edge in any dimension. Packets are generated at each node as a Poisson process of rate �, and the
load � for each edge is thus � = �p. The expected time a packet spends in the system in equilibrium
is T .

Stamoulis and Tsitsiklis [20, Proposition 11] derive an upper bound of

T �
dp

(1� �)
:

Here edges that cross the �nal dimension are leaf edges, and hence we can improve this bound to

T �
(d� 1)p

(1� �)
+ p

�
1 +

�

2(1� �)

�
:

Note that in high tra�c, that is in the limit as �! 1, this improves the bound by a factor of 1� 1

2d
.

We can also improve the bounds for buttery networks. The d-dimensional buttery has d+1 levels
and (d+ 1)2d nodes. Packets are generated at the �rst level for a destination in the (d+ 1)st level,
with each node in the �rst level generating packets as Poisson process of rate �. There are two
types of edges between levels: straight and vertical. The probability p represents the probability a
straight edge is taken by a packet crossing a level; otherwise the packet crosses the vertical edge.
When p = 1

2
, the destinations are uniformly distributed. The load is � = �maxfp; 1� pg.

Stamoulis and Tsitsiklis [20, Proposition 16] derive an upper bound of

T �
dp

1� �p
+

d(1� p)

1� �(1 � p)
:

Here edges crossing the �nal level are leaf edges (see Figure 3), and hence we can show

T �
(d� 1)p

1� �p
+ p

�
1 +

�p

2(1� �p)

�
+

(d� 1)(1� p)

1� �(1 � p)
+ p

�
�(1 � p)

2(1� �(1� p))

�
:

Again, in the limit as �! 1, this improves the bound by a factor of 1� 1

2d
.

Remark: Although we have suggested leaving just the crossing times for leaf edges constant to
�nd upper bounds, it is possible in some networks that tighter bounds could be achieved by leaving
more or other edges constant as well. For example, consider a chain of queue edges with constant
crossing times, such that arrivals enter at the �rst queue and proceed through the entire chain of
queues before exiting the system. (Note that packets may not leave the system before the �nishing
the �nal stage.) The expected time a packet spends in a chain can be determined if arrivals are
Poisson [3, 18], and hence if the network contains a chain of queue edges, one may achieve better
bounds by leaving the crossing times for the edges of the chain �xed.
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A

DC
B

Figure 4: A simple network with interference.

6 The Di�culty of Interactions

In networks more complicated than rooted trees, delay in one area may prove bene�cial by preventing
congestion and allowing packets from other areas to get through. The rooted tree networks prove
simple to compare because the interaction between packets is limited: if a packet is delayed, it can
only delay other packets.

A simple example with minimal interaction between streams of packets demonstrates how important
this lack of interaction is to the generality of our result. Consider a system with three edges, as
given in Figure 4, with packets a and b arriving at nodes A and B respectively at time 0, and both
exiting at node D. For convenience we consider only two possibilities: either it takes constant time
1 to cross edges AC and BC, or the time to cross is either 0 or 2, decided by a fair coin toss. The
time to cross edge CD is always 1. Packets arriving at the same time at node C are ordered by a
fair coin toss as well. A simple calculation shows that the expected time E[T ] before each packet
leaves is then:

E[T ] =

8<
:

2:5 if a and b both take time 1 on AC, BC
2 if one takes time 1 and the other does not
2:25 if a and b both take time 0 or 2 randomly.

Note that in this case the worst choice is to use constant time per edge, because the packets will
then interfere at C. The example can be extended to a dynamic variation by having packets arrive
at A and B, say, every three time units.

The example suggests thinking of such systems as a multi-player game, where each player is a packet
that can control the distribution of its service time while keeping the mean �xed. It is interesting
that in this natural two-player example an optimal solution requires the players to adopt di�erent
strategies. In a rooted tree network, the optimal game strategy is trivial, as the stochastic comparison
technique we have described has shown.

It is also important in our results that the route of a packet be independent of the state of the
system. Indeed, Ross provides a simple counter-example based on a system of two queues where
entering packets are served at one of the two queues and exit the system [16]. Suppose that packets
arrive in batches of three, batches are separated by a suitably long interval of time, and each packet
proceeds to the queue with fewer packets already waiting (ties decided arbitrarily). We compare
the following two systems: in the �rst system all services take constant time 1, while in the second
system all services take time 0 or 2, decided by a fair coin ip. Then the expected time of the third
packet in each batch is greater in the �rst system, although the service times are less variable. One
can easily generalize this counter-example to the case where service times are either constant or
exponentially distributed and arrivals form a renewal process. The counter-example does not apply,
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however, if the arrival process is Poisson; moreover, there is some evidence that in the case of Poisson
arrivals, in systems where packets go to the shortest queue, constant service times are better than
exponential service times [12, Chapter 4]. This special case is an interesting open question.

7 Conclusion

We have applied a stochastic ordering relation in order to understand how service time distribution
a�ects the expected time a packet spends in a packet routing network. Our method provides surpris-
ingly general results on rooted tree networks; for example, unlike previous comparison methods, it
does not depend on a Poisson arrival process. Insight gained from the case of tree networks also leads
to improved bounds on the hypercube and buttery using the analysis of Stamoulis and Tsitsiklis.

We remain hopeful that these or similar methods may be applicable to a wider class of networks.
This may require applying further alternative stochastic ordering relations less stringent than the
standard notion of stochastic domination and more complex comparison methods.
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