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Abstract
We provide a new approach for analyzing both static and

dynamic randomized load balancing strategies. We demon-
strate the approach by providing the first analysis of the
following model: customers arrive as a Poisson stream of
rate �n, � < 1, at a collection of n servers. Each customer
chooses some constant d servers independently and uni-
formly at random from the n servers, and waits for service
at the one with the fewest customers. Customers are served
according to the first-in first-out (FIFO) protocol, and the
service time for a customer is exponentially distributed with
mean 1. We call this problem the supermarket model. We
wish to know how the system behaves, and in particular we
are interested the expected time a customer spends in the sys-
tem in equilibrium. The model provides a good abstraction
of a simple, efficient load balancing scheme in the setting
where jobs arrive at a large system of parallel processors.
This model appears more realistic than similar models stud-
ied previously, in that it is both dynamic and open: that is,
customers arrive over time, and the number of customers is
not fixed.

Our approach consists of two distinct stages: we first
develop a limiting, deterministic model representing the be-
havior as n ! 1, and then show how to translate results
from this model to results for large, but finite, values of n.
The analysis of the deterministic model is interesting in its
own right. This methodology proves effective for studying
a number of similar problems, and simulations demonstrate
that the method accurately predicts system behavior even
for relatively small systems.

1 Introduction

Consider the following natural dynamic model: cus-
tomers arrive as a Poisson stream of rate �n, � < 1, at
a collection of n servers. Each customer chooses some con-
stant number d of servers independently and uniformly at
random with replacement from the n servers, and waits for
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service at the server currently containing the fewest cus-
tomers (ties being broken arbitrarily). Customers are served
according to the first-in first-out (FIFO) protocol, and the
service time for a customer is exponentially distributed with
mean 1.1 We call this problem the supermarket model, or
the supermarket system. We wish to know how the system
behaves in equilibrium, and in particular we are interested in
the expected time a customer spends in the system in equi-
librium. The supermarket model proves difficult to analyze
because of dependencies: knowing the length of one queue
affects the distribution of the length of all the other queues.

The supermarket model can be seen as a generalization
of the static model studied by Azar et al. [7], in which there
are a fixed number of customers to be distributed who never
leave the system. They also analyze a different closed dy-
namic model, where the number of customers remains fixed
over all time, and a customer who completes service is recir-
culated in the system. We note that an analysis of the more
realistic open dynamic model, the supermarket model, has
remained open. As described in [7], models of this kindhave
a number of applications to computing problems, including
resource allocation, hashing, and on-line load balancing.
Our results apply to dynamic variations of these applica-
tions. For example, the supermarket model provides a good
abstraction of a simple, efficient load balancing scheme in
the setting where jobs arrive and execute at a large system of
parallel processors, and variations of the model are suitable
for studying the behavior of dynamic hash tables.

In this paper, we introduce a new approach for analyzing
the supermarket model and other related static and dynamic
randomized load balancing strategies. Our strategy has two
main components:

� We define an idealized process, corresponding to a
system of infinite size. This process is cleaner and
easier to analyze because its behavior is completely
deterministic.

1Some might object to the requirement that the service time is expo-
nentially distributed. We note that by using our techniques one can also
develop approximations for other service distributions, including the case
where the service time is constant. The details appear in [27].



� We relate the idealized system to the finite system,
carrying over the analysis with bounded error.

For example, in the supermarket model, the intuition is
that if we look at the fraction of servers containing at least
k customers for every k, the system evolves in an almost
deterministic way as n ! 1. The analysis of this system
is interesting in its own right. Then we bound the deviation
between a system of finite size n and the infinite system.

Besides providing the first analysis of the supermarket
model, we note that this approach also provides a clean,
systematic approach to analyzing several other load balanc-
ing models. In particular, the method provides a means of
finding accurate numerical estimates of performance.

The following result is typical of our method:

Theorem: For any fixed T and d � 2, the expected time
a customer spends in the supermarket system when it is
initially empty over the first T units of time is bounded
above by

1X
i=1

�
di�d
d�1 + o(1);

where the o(1) term is understood as n ! 1 (and may
depend on T ).

The summation is derived from the infinite system, and
the o(1) term arises when we bound the error between the in-
finite system and the system for a fixed n. The combination
of the two analyses yields the theorem. This result should
be compared to the case of d = 1, where in equilibrium the
expected time is 1=(1� �). As we describe in Section 2.3,
for � close to 1 there is an exponential improvement in the
expected time a customer spends in the system.

1.1 Previous work

The power of using two hash functions for load balancing
was demonstrated by Karp, Luby, and Meyer auf der Heide
[16] in an application to PRAM simulation. They analyzed
a static case, where a number of customers are to be per-
manently distributed among a fixed number of servers. The
static problem was further developed and analyzed by Azar
et al. in [7], and results for other static settings are given
by MacKenzie et al. [24] and Adler et al. [3]. Related dy-
namic models, where one is concerned with the behavior of
a system over an arbitrary time interval, have proven more
difficult. A less realistic dynamic model was successfully
analyzed by Azar et al. [7], and a dynamic edge orientation
problem related to load balancing was analyzed by Ajtai et
al. in [5]. We note that our method can also be applied to
these dynamic models and to the static model of [7], provid-
ing new insight and results. Previously these problems have
all been attacked by applying complicated arguments based
on Chernoff-type bounds. Our approach has several advan-
tages: it is extremely general, it is simple to apply, and it

provides more detailed and accurate numerical information
about these systems.

Although the supermarket model can be described natu-
rally as a queueing problem, little appears known about it
in the queueing theory literature. When d = 1, the arrival
processes at the queues are independent, and the problem
becomes trivial. When d > 1, analysis proves difficult be-
cause the sizes of the various queues are dependent. A great
deal of work has been done to analyze the variant where
the customer selects the shortest queue (for example, see
[2, 10, 25] for references); for more than two queues, only
approximations or asymptotic expressions are known. The
supermarket model has been studied by Eager et al. [12] and
Zhou [31]. In fact, Eager et al. also use an approach based
on Markov chains for their analysis; however, the authors
make the crucial assumption that the state of each queue is
stochastically independent of the state of any other queue
[12, p. 665]. The authors also claim, without justification,
that this approach is exact in the asymptotic limit as the
number of queues grows to infinity. Our work substantially
improves upon their work by avoiding these assumptions,
as well as by introducing several new directions in the anal-
ysis of these systems. Zhou examines the load balancing
strategies proposed by Eager et al. as well as others using a
trace-driven simulation. Both Eager et al. and Zhou suggest
that simple randomized load balancing schemes, based on
choosing from a small subset of processors, appear quite
effective in practice.

To bound the error between the finite and infinite systems
we will use Kurtz’s work on density dependent jump Markov
processes [13, 20, 21, 22, 23], with some extensions specific
to our problems. Kurtz’s work has previously been applied
to matching problems on random graphs [14, 17, 18] as well
as some queueing models [28]; here, we apply it for the
first time to load balancing problems. Given the increasing
use of Markov chains in the analysis of algorithms, we
believe that this technique may be more widely applicable
than previously expected. Indeed, one goal of this paper is
to encourage further use of this type of analysis.

The rest of the paper is structured as follows: in Sec-
tion 2, we shall analyze the behavior of the infinite version
of the supermarket model. In Section 3, we shall briefly ex-
plain Kurtz’s work and how to adapt it to relate the finite and
infinite versions of the supermarket model; more technical
details are available in [27]. In Section 4, we shall describe
other dynamic problems to which our technique can be ap-
plied, as well as show how it can be used to study the static
model of Azar et al. [7].

2 The analysis of the supermarket model

Recall the definition of the supermarket model: cus-
tomers arrive as a Poisson stream of rate �n, � < 1, at



a collection of n FIFO servers. Each customer chooses
some constant d servers independently and uniformly at ran-
dom with replacement2 and queues at the server currently
containing the fewest customers, with ties being broken ar-
bitrarily. The service time for a customer is exponentially
distributed with mean 1. The following lemma, which we
state without proof, will be useful:

Lemma 1 The supermarket system is stable for every � <
1; that is, the expected number of customers in the system
remains finite for all time.

Remark: Lemma 1 can be proven by a simple comparison
argument against the system in which each customer queues
at a random server (that is, where d = 1); in this system,each
server acts like an M/M/1 server with arrival rate �, which is
known to be stable (see, for example, [19]). The comparison
argument is entirely similar to those in [29, 30], which show
that choosing the shortest queue is optimal subject to certain
assumptions on the service process; alternatively, an argu-
ment based on majorization, such as that in [6], is possible.
A similar argument also shows that the size of the longest
queue in a supermarket system of size n is stochastically
dominated by the size of the longest queue in a set of n
independent M/M/1 servers.

We now introduce a representation of the system that will
be convenient throughout our analysis. We define ni(t) to
be the number of queues with i customers at time t; mi(t)
to be the number of queues with at least i customers at
time t; pi(t) = ni(t)=n to be the fraction of queues of
size i; and si(t) =

P1
k=i pi(t) = mi(t)=n to be the tails

of the pi(t). We drop the reference to t in the notation
where the meaning is clear. As we shall see, the si prove
much more convenient to work with than the pi. In an
empty system, which corresponds to one with no customers,
s0 = 1 and si = 0 for i � 1. By comparing this system with
a system of M/M/1 queues as in the remark after Lemma 1,
we have that if si(0) = 0 for some i, then for all t � 0,
limi!1 si(t) = 0. Under the same conditions, the expected
number of customers per queue, or

P1
i=1 si(t), is finite even

as t!1.
We can represent the state of the system at any given

time by an infinite dimensional vector ~s = (s0; s1; s2; : : :).
Note that our state only includes information regarding the
number of queues of each size; this is all the information we
require. It is clear that for each value of n, the supermarket
model can be considered as a Markov chain on the above
state space.

We now introduce a deterministic infinite system related
to the finite supermarket system. The time evolution of the
infinite system is specified by the following set of differential

2We note that our results also hold with minor variations if the d queues
are chosen without replacement.

equations:(
dsi
dt

= �(sdi�1 � sdi )� (si � si+1) for i � 1 ;

s0 = 1:
(1)

Let us explain the reasoning behind the system (1). Con-
sider a supermarket system with n queues, and determine
the expected change in the number of servers with at least
i customers over a small period of time of length dt. The
probability a customer arrives during this period is �n dt,
and the probability an arriving customer joins a queue of
size i � 1 is sdi�1 � sdi . (This is the probability that all d
servers chosen by the new customer are of size at least i�1,
but not all are of size at least i.) Thus the expected change
inmi due to arrivals is exactly �n(sdi�1�sdi ). Similarly, the
probability a customer leaves a server of size i in this period
is ni dt = n(si � si+1)dt. Hence, if the system behaved
according to these expectations, we would have

dmi

dt
= �n(sdi�1 � sdi )� n(si � si+1):

Removing the factor of n permeating the equations yields
the system (1). That this infinite set of differential equations
has a unique solution given appropriate initial conditions is
not immediately obvious; however, it follows from standard
results in analysis (see [1, p.188, Theorem 4.1.5] or [11,
Theorem 3.2]). It should be intuitively clear that as n!1
the behavior of the supermarket system approaches that of
this deterministic system; this is justified by Kurtz’s theo-
rem, which is explained in Section 3. For now, we simply
take this set of differential equations to be the appropriate
limiting process.

2.1 Finding a fixed point

We will demonstrate that, given a reasonable condition
on the initial point ~s(0), the infinite process converges to a
fixed point. A fixed point (also called an equilibrium point
or a critical point) is a point ~p such that if ~s(t) = ~p then
~s(t0) = ~p for all t0 � t. It is clear that for the supermarket
model a necessary and sufficient condition for ~s to be a fixed
point is that for all i, dsi

dt
= 0.

Lemma 2 The system (1) with d � 2 has a unique fixed
point with

P1
i=1 si <1 given by

si = �
di�1
d�1 :

Proof: It is easy to check that the proposed fixed point
satisfies dsi

dt
= 0 for all i � 1. Conversely, from the as-

sumption dsi
dt = 0 for all i we can derive that s1 = � by

summing the equations (1) over all i � 1. (Note that we
use

P1
i=1 si < 1 here to ensure that the sum converges



absolutely. That s1 = � at the fixed point also follows intu-
itively from the fact that at the fixed point, the rate at which
customers enter and leave the system must be equal.) The
result then follows from (1) by induction.

The condition
P1

i=1 si < 1, which corresponds to the
average number of customers per queue being finite, is nec-
essary; (1; 1; : : :) is also a fixed point, which corresponds
the number of customers at each queue going to infinity.

Definition 3 A sequence (xi)1i=0 is said to decrease doubly
exponentially if and only if there exist positive constants
N;� < 1; � > 1, and  such that for i � N , xi � ��

i

.

It is worth comparing the result of Lemma 2 to the case
where d = 1 (i.e., all servers are M/M/1 queues), for which
the fixed point is given by si = �i. The key feature of the
supermarket system is that for d � 2 the tails si decrease
doubly exponentially, while for d = 1 the tails decrease only
geometrically (or singly exponentially).

2.2 Convergence to the fixed point

We now show that every trajectory of the supermarket
system converges to the fixed point of Lemma 2 in an ap-
propriate metric. Denote the above fixed point by ~� = (�i),

where �i = �
di�1
d�1 . We shall assume that d � 2 in what

follows unless otherwise specified.
We begin with a result that shows the system has an

invariant, which restricts in some sense how far any si can
be from the corresponding value �i.

Theorem 4 Suppose there exists some j such that sj(0) =
0. Then the sequence (si(t))1i=0 decreases doubly expo-
nentially for all t � 0, where the associated constants are
independent of t. In particular, if the system begins empty,
then si(t) � �i for all t � 0.

Note that the hypothesis of Theorem 4 holds for any
initial state ~s derived from the initial state of a finite system.

Proof: Let M (t) = supi[si(t)=�i]
1=di . We first show that

M (t) � M (0) for all t � 0. We will then use this fact to
show that the si decrease doubly exponentially.

A natural, intuitive proof proceeds as follows: in the
case where there are a finite number of queues, an inductive
coupling argument can be used to prove that if we increase
some si(0), thereby increasing the number of customers in
the system, the expected value of all sj after any time t
increases as well. Extending this to the limiting case as the
number of queues n!1 (so that the sj behave according
to their expectations), we have that increasing si(0) can only
increase all the sj(t) and hence M (t) for all t.

So, to begin, let us increase all si(0) (including s0(0)!)
so that si(0) = M (0)d

i

�i. But then it is easy to check that

the initial point is a fixed point (albeit possibly with s 0 > 1),
and hence M (t) = M (0) in the raised system. We conclude
that in the original system M (t) �M (0) for all t � 0.

A more formal proof that increasing si(0) only increases
all sj(t) relies on the fact that the dsi=dt are quasimonotone:
that is, dsi=dt is non-decreasing in sj for j 6= i. The result
then follows from [11, pp. 70-74].

We now show that the si decrease doubly exponentially
(in the infinite model). Let j be the smallest value such
that sj(0) = 0, which exists by the hypothesis of the the-
orem. Then M (0) � [1=�j�1]1=d

j�1
< 1=�1=(d�1). Since

M (t) �M (0), M (0)d
i � si(t)=�i for t � 0, or

si(t) � �iM (0)d
i

= ��1=(d�1)(�1=(d�1)M (0))d
i

:

Note that �1=(d�1)M (0), since M (0) < 1=�1=(d�1).
Hence the si decrease doubly exponentially, with � =
�1=(d�1)M (0) and � = d. In particular, if the system begins
empty, then si(t) � �i for all t and i.

To show convergence, we make use of a potential function
(also called a Lyapunov function in the dynamical systems
literature) Φ(t), which in some sense measures the distance
of the current location to the fixed point.

Definition 5 The potential function Φ is said to converge
exponentially to 0, or simply to converge exponentially, if
Φ(t) � c0e��t for some constant � > 0 and a constant c0

which may depend on the state at t = 0.

We find a potential function Φ that shows that the system
converges exponentially quickly to its fixed point. A natural
potential function to consider is Φ(t) =

P1
i=1 jsi(t) � �ij,

which measures the L1 distance between the two points.
Our potential function will actually be a weighted variant
of this, namely Φ(t) =

P1
i=1 wijsi(t) � �ij for suitably

chosen weights wi.

Theorem 6 Let Φ(t) =
P1

i=1 wijsi(t) � �ij, where for
i � 1, the wi are appropriately chosen constants to be de-
termined satisfyingwi � 1. If Φ(0) <1, then Φ converges
exponentially to 0. In particular, if there exists a j such that
sj(0) = 0, then Φ converges exponentially to 0.

Proof: Define �i(t) = si(t) � �i. As usual, we drop the
explicit dependence on t when the meaning is clear. For
convenience, we assume that d = 2; the proof is easily
modified for general d.

As d�i=dt = dsi=dt, we have from (1)

d�i
dt

= �[(�i�1+�i�1)
2�(�i+�i)

2)]�(�i+�i��i+1��i+1)

= �(2�i�1�i�1+�
2
i�1�2�i�i��2

i )�(�i��i+1);



where the last equality follows from the fact that ~� is a fixed
point.

As Φ(t) =
P1

i=1 wij�i(t)j, the derivative of Φ with re-
spect to t, dΦ=dt, is not well defined if �i(t) = 0. We
shall explain how to cope with this problem at the end of
the proof, and we suggest the reader proceed by temporarily
assuming �i(t) 6= 0.

Now

dΦ
dt

=
X
i:�i>0

wi[�(2�i�1�i�1+�
2
i�1�2�i�i��2

i )�(�i��i+1)]�
X
i:�i<0

wi[�(2�i�1�i�1+�
2
i�1�2�i�i��2

i )�(�i��i+1)]:

Let us look at the terms involving �i in this summation.
(Note: �1 terms are a special case, which can be included
in the following if we take w0 = 0.) There are several
cases, depending on whether �i�1; �i; and �i+1 are positive
or negative. Let us consider the case where they are all
negative (which, by Theorem 4, is always the case when the
system is initially empty). Then the term involving �i is

�wi�1�i+wi(2��i�i+��2
i+�i)�wi+1(2��i�i+��2

i ): (2)

We wish to choose wi�1; wi; and wi+1 so that this term is
at most �wi�i for some constant � > 0. It is sufficient to
choose them so that

(wi � wi�1) + (2��i + ��i)(wi �wi+1) � �wi ;

or, using the fact that j�ij � 1,

wi+1 � wi +
wi(1� �)� wi�1

�(2�i + 1)
:

We note that the same inequality would be sufficient in
the other cases as well: for example, if all of �i�1; �i; and
�i+1 are positive, the above term (2) involving �i is negated,
but now �i is positive. If �i�1; �i and �i+1 have mixed signs,
this can only decrease the value of the term (2).

It is simple to check inductively that one can choose an
increasing sequence of wi (starting with w0 = 0; w1 = 1)
and a � such that the wi satisfy the above restriction. For
example, we break the terms up into two subsequences. The
first subsequence consists of all wi such that �i satisfies
�(2�i + 1) � 1+�

2 . For these i we can choose wi+1 =

wi +
wi(1��)�wi�1

3 . Because this subsequence has only
finitely many terms, we can choose a suitably small � so
that this sequence is increasing. For sufficiently large i, we
must have �(2�i + 1) < 1+�

2 < 1, and for these i we may

set wi+1 = wi +
2wi(1��)�2wi�1

1+� . This subsequence of wi
will be increasing for suitably small �, and hence wi � 1
for all i � 1. Further, this sequence of wi is dominated by a
geometrically increasing sequence, and hence if sj(0) = 0
for some j, then Φ(0) <1.

Comparing terms involving �i in Φ and dΦ=dt yields
that dΦ=dt � ��Φ. Hence Φ(t) � Φ(0)e��t and thus Φ
converges exponentially whenever Φ(0) <1.

We now consider the technical problem of defining
dΦ=dt when �i(t) = 0 for some i. Since we are inter-
ested in the forward progress of the system, it is sufficient
to consider the upper right-hand derivatives of �i. (See, for
instance, [26, p. 16].) That is, we may define

dj�ij
dt

����
t=t0

� lim
t!t+0

j�i(t)j
t� t0

;

and similarly for dΦ=dt. Note that this choice has the fol-

lowing property: if �i(t0) = 0, then dj�ij
dt

���
t=t0

� 0, as it

intuitively should be. The above proof applies unchanged
with this definitionofdΦ=dt, with the understanding that the
case �i > 0 includes the case where �i = 0 and d�i=dt � 0,
and similarly for the case �i < 0.

Theorem 6 yields the following corollary:

Corollary 7 Under the conditions of Theorem 6, the L1

distance from the fixed point d(t) =
P1

i=1 jsi(t)� �ij con-
verges exponentially to 0.

Proof: As the wi of Theorem 6 are all at least 1 for i � 1,
Φ(t) � d(t) and the corollary is immediate.

Corollary 7 shows that the L1 distance to the fixed point
converges exponentially quickly to 0. Hence, from any
suitable starting point, the infinite system quickly becomes
extremely close to the fixed point. Although it seems some-
what unusual that we first had to prove exponential conver-
gence for a weighted variation of the L1 distance in order to
prove exponential convergence of theL1 distance, it appears
that this approach was necessary.

2.3 The expected time in the infinite system

Using Theorems 4 and 6, we now examine the expected
time a customer spends in the infinite system.

Corollary 8 The expected time a customer spends in the in-
finite supermarket system for d � 2, subject to the condition
of Theorem 4, converges as t!1 to

Td(�) �
1X
i=1

�
di�d
d�1 :

Furthermore, Td(�) is an upper bound on the expected time
in the infinite system for all t when the system is initially
empty.



Proof: An incoming customer that arrives at time t
becomes the ith customer in the queue with probability
si�1(t)

d � si(t)
d. Hence the expected time a customer that

arrives at time t spends in the system is
P1

i=1 i(si�1(t)
d �

si(t)
d) =

P1
i=0 si(t)

d. As t ! 1, by Corollary 7, the
infinite system converges to the fixed point in the L1 metric.
Hence the expected time a customer spends in the system can

be made arbitrarily close to
P1

i=0 �
d
i =

P1
i=1 �

di�d
d�1 for all

customers arriving at time t � t0 for some sufficiently large
t0, and the result follows. The second result follows since
we know that in an initiallyempty infinite system si(t) � �i
for all t by Theorem 4.

Recall that T1(�) = 1=(1 � �) from standard queueing
theory. Analysis of the summation in Corollary 8, which we
omit in this extended abstract, reveals the following:

Theorem 9 For � 2 [0; 1] and d � 2, Td(�) �
cd(logT1(�)) for some constant cd dependent only on d.
Furthermore,

lim
�!1�

Td(�)

logT1(�)
=

1
logd

:

Choosing from d > 1 queues hence yields an exponential
improvement in the expected time a customer spends in the
infinite system, and as � ! 1� the choice of d affects the
time only by the constant factor logd. These results are
remarkably similar to those for the static case studied in [7].

3 From infinite to finite: Kurtz’s theorem

3.1 An overview of Kurtz’s theorem

The supermarket model is an example of a density depen-
dent family of jump Markov processes, the formal definition
of which we shall give in shortly. Informally, such a family
is a one parameter family of Markov processes, where the
parameter n corresponds to the total population size (or, in
some cases, area or volume). The states can be normalized
and interpreted as measuring population densities, so that
the transition rates depend only on these densities. As we
have seen, in the supermarket model, the transition rates
between states depend only upon the densities si. Hence
the supermarket model fits our informal definition of a den-
sity dependent family. The infinite system corresponding
to a density dependent family is the limiting model as the
population size grows arbitrarily large.

Kurtz’s work provides a basis for relating the infinite
system for a density dependent family to the corresponding
finite systems. Essentially, Kurtz’s theorem provides a law
of large numbers and Chernoff-like bounds for density de-
pendent families. We provide some intuition for this result.
The primary differences between the infinite system and the
finite system are

� The infinite system is deterministic; the finite system
is random.

� The infinite system is continuous; the finite system
has jump sizes that are discrete values.

Imagine starting both systems from the same point for a
small period of time. Since the jump rates for both pro-
cesses are initially the same, they will have nearly the same
behavior. Now suppose that if two points are close in the
state space then their transition rates are also close: this is
called the Lipschitz condition, and it is a precondition for
Kurtz’s theorem. Then even after the two processes sepa-
rate, if they remain close, they will still have nearly the same
behavior. Continuing this process inductively over time, we
can bound how far the processes separate over any interval
[0; T ].

We can apply Kurtz’s results to the supermarket model
to obtain bounds on the expected time a customer spends in
the system and the maximum queue length.

Theorem 10 For any fixed T , the expected time a customer
spends in an initially empty supermarket system with d � 2
over the interval [0; T ] is bounded above by

1X
i=1

�
di�d
d�1 + o(1);

where the o(1) is understood as n!1 and depends on T
and �.

Theorem 10 says the expected time in a finite system is
the same as that for the infinite system (Corollary 8) plus an
o(1) term. Similarly, we can bound the maximum load:

Theorem 11 For any fixedT , the length of the longest queue
in an initially empty supermarket system with d � 2 over
the interval [0; T ] is log logn

logd + O(1) with high probability,3

where the O(1) term depends on T and �.

Hence in comparing the systems where customers have
one choice and customers have d � 2 choices, we see that
the second yields an exponential improvement in both the
expected time in the system and in the maximum observed
load for sufficiently large n. In practice, simulations reveal
that this behavior is apparent even for relatively small n over
long periods of time, as shown in Section 3.3.

3.2 Density dependent Markov chains

We now give a more technical presentation of the back-
ground for Kurtz’s theorem. We begin with the definition
of a density dependent family of Markov chains, as in Kurtz

3For this paper, with high probability will mean with probability 1 �
O(1=n) and all logarithms have base e.



[23, Chapter 7], although we extend the definition to count-
ably many dimensions. For convenience we drop the vector
notation where it can be understood by context. Let Z�

be either Zd for some dimension d, or ZN, as appropri-
ate. Given a set of transitions L � Z

� and a collection
of nonnegative functions �l for l 2 L defined on a subset
E � R�, a density dependent family of Markov chains Xn

is a sequence fXng of jump Markov processes such that the
state space of Xn is En = E \ fn�1k : k 2 Z�g and the
transition rates of Xn are

q(n)x;y = n�n(y�x)(x); x; y 2 En:

As an example of this definition, consider the supermar-
ket model for d = 2 with n queues. The state of the system
~s = k=n, where ~s represents the state by the fraction of
servers of size at least i, and k represents the state by the
number of servers of size at least i. Note that we may
think of the state of the system either as ~s or k, as they
are the same except for a scale factor. The possible tran-
sitions from k is given by the set L = f�ei : i � 1g,
where the ei are standard unit vectors; these transitions oc-
cur either when a customer enters or departs. The transition
rates are given by q

(n)
k;k+l = n�l(k=n) = n�l(~s), where

�ei(~s) = �(s2
i�1 � s2

i ), and ��ei(~s) = si � si+1. These
rates determined our infinite system (1).

It follows from [23, Chapter 7], that a Markov process
X̂n, with intensities q(n)k;k+l = n�l(k=n) satisfies

X̂n(t) = X̂n(0) +
X
l2L

lYl

 
n

Z t

0
�l

 
X̂n(u)

n

!
du

!
;

where theYl(x) are independent standard Poisson processes.
This equation has a natural interpretation: the process at
time t is determined by the starting point and the rate of
each transition integrated over the history of the process. In
the supermarket system, X̂n is the unscaled process with
state space ZN that records the number of servers with at
least i customers for all i, and X̂n(0) is the initial state,
which we usually take to be the empty system.

We set

F (x) =
X
l

�l(x); (3)

and by setting Xn = n�1X̂n to be the appropriate scaled
process, we have from the above:

Xn(t)=Xn(0)+
X
l2L

l

n
Ỹl

�
n

Z t

0
�l(Xn(u))du

�
+

Z t

0
F (Xn(u))du; (4)

where Ỹl(x) = Yl(x)� x is the Poisson process centered at
its expectation.

Kurtz’s theorem shows that the deterministic limiting pro-
cess is given by

X(t) = x0 +

Z t

0
F (X(u))du; t � 0 ; (5)

where x0 = limn!1X(0): An interpretation relating equa-
tions (4) and (5) is that as n ! 1, the value of the cen-
tered Poisson process Ỹl(x) will go to 0 by the law of large
numbers. In the supermarket model, the deterministic pro-
cess corresponds exactly to the differential equations we
have in system (1), as can be seen by taking the derivative
of equation (5). Also, in the supermarket model we have
x0 = Xn(0) = (1; 0; 0; : : :) in the case where we begin with
the empty system.

We now present Kurtz’s theorem (generalized to count-
ably infinite dimensions).

Theorem 12 [Kurtz] Suppose we have a density dependent
family (of possibly countably infinite dimension) satisfying
the Lipschitz condition

jF (x)� F (y)j �M jx� yj

for some constant M . Further suppose limn!1X(0) =
x0, and let X be the deterministic process:

X(t) = x0 +

Z t

0
F (X(u))du; t � 0:

Consider the path fX(u) : u � tg for some fixed t � 0,
and assume that there exists a neighborhoodK around this
path satisfying X

l2L

jlj sup
x2K

�l(x) <1: (6)

Then
lim
n!1

sup
u�t

jXn(u)�X(u)j = 0 a.s.

Kurtz’s theorem says that the limiting process is indeed
the deterministic process given by the appropriate differen-
tial equations. Although we do not show it here, one can use
the proof of Kurtz’s theorem to bound the deviation between
the finite and the infinite system as well. These bounds gen-
erally take the same form as Chernoff-type bounds, up to
constant factors.

3.3 Simulation results

We provide the results of some simulations based on the
supermarket model. The results of Table 1 are based on
a system of n = 100 queues at various arrival rates. The
results are based on the average of 10 runs, where each run
consists of a simulation of 100,000 time steps, and the first
10,000 steps are ignored in recording data in order to give the



Choices � Simulation Prediction Rel. Error (%)

2 0.50 1.2673 1.2657 0.1289
0.70 1.6202 1.6145 0.3571
0.80 1.9585 1.9475 0.5742
0.90 2.6454 2.6141 1.1981
0.95 3.4610 3.3830 2.3028
0.99 5.9275 5.4320 9.1227

3 0.50 1.1277 1.1252 0.2146
0.70 1.3634 1.3568 0.4858
0.80 1.5940 1.5809 0.8314
0.90 2.0614 2.0279 1.6533
0.95 2.6137 2.5351 3.1002
0.99 4.4080 3.8578 14.2607

5 0.50 1.0340 1.0312 0.2637
0.70 1.1766 1.1681 0.7250
0.80 1.3419 1.3289 0.9789
0.90 1.6714 1.6329 2.3564
0.95 2.0730 1.9888 4.2363
0.99 3.4728 2.9017 19.6825

Table 1. The supermarket model: 100 Queues

Choices � Simulation Prediction Rel. Error (%)

1 0.99 100.00
2 0.99 5.5413 5.4320 2.0121
3 0.99 3.9518 3.8578 2.4366
5 0.99 3.0012 2.9017 3.4305

Table 2. The supermarket model: 500 Queues

system time to approach equilibrium. For arrival rates of up
to 95% of the service rate (i.e. � = 0:95), the predictions are
within a few percent of the simulation results. Even at 99%
of capacity, the prediction is within 10% when two queues
are selected. It is not surprising that the error increases as the
arrival rate or the number of choices available to a customer
increases, as these parameters affect the error term in Kurtz’s
theorem. As one would expect, however, the approximation
does improve if the number of queues is increased, as can
be seen by the results for 500 queues give in Table 2.

The simulations clearly demonstrate the impact of hav-
ing two choices. As previously mentioned, expected time
a customer spends in the system in equilibrium given one
choice (d = 1) is 1=(1� �). Hence, as shown in Table 2,
when � = 0:99 the expected time in the system when d = 1
is 100:00; with two choices, this drops to under 6. Allowing
additional choices leads to much less significant improve-
ments. When the arrival rate is smaller the effect is less
dramatic, but still apparent. The qualitative behaviors that
we predicted with our analysis are thus readily observable in
our simulations even of relatively small systems. This lends
weight to the predictive power of our theoretical results in
practical settings.

4 Other load balancing problems

4.1 Dynamic problems

One aspect of our approach that is appealing is that it gen-
eralizes quite easily to many similar dynamic models: one
need only set up the right differential equations. Further-
more, even if one cannot prove convergence of the infinite
system to a fixed point, one can generally calculate the solu-
tion to the differential equations numerically, and then use
the numerical solution to bound or predict performance of
specific systems over a fixed interval of time. We list here
some other interesting models to which this method applies.
In each case we have found the fixed point and shown that
the fixed point is stable, in that the L1 distance to the fixed
point is nonincreasing in the infinite system. (Note the sta-
bility of the fixed point is different than the stability of the
system!) For many cases we have shown exponential con-
vergence to the fixed point. Here we simply briefly describe
the models: the details are deferred to the full version of the
paper, or can be found in [27].

1. Bounded buffers: Allow at most B customers in any
queue; customers that arrive and choose only full
queues are turned away.

2. Customer types: Customers proceed directly to one
queue with probability p, and the shortest of two
queues with probability 1�p. This system can be used
to model priorities, with higher priority customers get-
ting more choices.

3. Threshold systems: Customers choose one server ran-
domly, and stay there if the queue has at most T cus-
tomers; otherwise, they proceed to another randomly
selected queue.

4. Closed systems: Customers, after completing service,
are recirculated through the system.

5. Edge orientation problem [5]: This problem is set on
a complete graph of n vertices. The weight of a vertex
is the difference between its indegree and outdegree.
At each time step a random edge arrives and is directed
toward the adjacent vertex with smaller weight.

This list is not meant to be exhaustive; the method should
apply to many other similar load balancing systems.

4.2 The empty bins problem

We now demonstrate the applicability of the infinite
systems approach to static problems by considering the
GREEDY(d) strategy of [7]. In this setting, initially there
are n balls and n bins. Balls arrive sequentially. Upon
arrival, each ball chooses d bins independently and uni-
formly at random (with replacement), and is then placed
in the least loaded of these bins (ties being broken ar-
bitrarily). With high probability, the maximum load is



log logn= logd + O(1). (Similar results also appeared in
[16].)

We first consider the following simple question: how
many bins remain empty after the protocol GREEDY(d) ter-
minates? The question can also be seen as a matching
problem: given a bipartite graph with n vertices on each
side such that each vertex on the left has d edges to vertices
chosen independently and uniformly at random on the right,
what is the expected size of the greedy matching obtained
by sequentially matching vertices on the left to a random
unmatched neighbor? This question has been previously
solved in the limiting case as n!1 by Hajek using simi-
lar techniques [14]. We shall begin by briefly repeating his
argument with some additional insights. We then extend the
argument to the more general load balancing problem.

Theorem 13 Suppose cn balls are thrown into n bins ac-
cording to the GREEDY(d) protocol for some constant c. Let
Ycn be the number of non-empty bins when the process ter-
minates. Then limn!1E[Ycnn ] = yc, where yc < 1 satisfies

c =
1X
i=0

yid+1
c

(id + 1)
:

Proof: We set up the problem as a density dependent
Markov chain. We let t be the time at which exactly x(t) =
nt balls have been thrown, and we let y(t) be the fraction
of non-empty bins. At time t, the probability that a ball
finds at least one empty bin among its d choices is 1 � yd,
and hence we have dy

dt
= 1 � yd. Instead of solving this

equation for y in terms of t, we solve for t in terms of y:
dt
dy = 1

1�yd =
P1

i=0 y
id. We integrate, yielding

t0 =
1X
i=0

y(t0)id+1

(id+ 1)
: (7)

From equation (7), given d we can solve for y(t0) for any
value of t0 using for example binary search.4 In particular,
when t0 = c, all of the balls have been thrown, and the
process terminates. Plugging t0 = c into equation (7) and
applying Kurtz’s theorem yields the theorem, with yc =
y(c).

A marked difference between the static problem and the
supermarket model is that in the static case we are only
interested in the progress of the process over a fixed time
interval, while in the dynamic case we are interested in the
behavior of the model over an arbitrary period of time. In this
respect, the static problem is easier than the corresponding
dynamic problem.

4One could also attempt to solve the differential equation for y in terms
of t. Standard integral tables [9] give such equations when d = 2;3 and 4.

We may further conclude from the details of the proof of
Kurtz’s theorem that with high probability, jYcn=n� ycj is
O(
p

logn=n). Hence the number of empty bins is sharply
concentrated around its expected value. One can also show
that Ycn is close to its mean with high probability using
standard martingale arguments and the method of bounded
differences, which we do here. We assume familiarity with
basic martingale theory; see, for example, [4, Chapter 7].
We use the following form of the martingale tail inequality
due to Azuma [8]:

Lemma 14 [Azuma] Let X0; X1; : : :Xm be a martingale
sequence such that for each k, jXk �Xk�1j � 1. Then for
any � > 0,

Pr(jXm �X0j > �
p
m) < 2e��

2=2:

Theorem 15 Pr(jYcn � E[Ycn]j > �
p
cn) < 2e��

2=2 for
any � > 0.

Proof: We present an argument similar to that presented
in [15, Theorem 2]. For 0 � j � cn, let Fj be the �-field
of events corresponding to the possible states after j balls
have been placed, and Zj = E[YcnjFj] be the associated
conditional expectation of Ycn. Then the random variables
fZjgcnj=0 form a Doob martingale, and it is clear that jZj �
Zj�1j � 1. The theorem now follows from Lemma 14.

Theorem 15 implies that Ycn is within O(
p
n logn) of

its expected value with high probability. Unlike the infinite
system method, however, the martingale approach does not
immediately lead us to the value to which Ycn=n converges.
This appears to be an advantage of the infinite system ap-
proach.

4.3 Bins with fixed load

We can extend the previous analysis to find the fraction
of bins with load k for any constant k as n ! 1. We first
establish the appropriate density dependent Markov chain.
Let si(t) be the fraction of bins with load at least i at time t,
where again at time t exactlynt balls have been thrown; note
that s0(t) = 1 for all t. Then the corresponding differential
equations regarding the growth of the si (for i � 1) are
easily determined:

dsi
dt

= sdi�1 � sdi :

The differential equation (similar to the system (1) for the
supermarket model) has the following simple interpretation:
for there to be an increase in the number of bins with at least
i balls, the d choices must all be from bins with load at least
i� 1, but not all from bins of load at least i.



d = 2 1 million d = 3 1 million

s1 0.7616 0.7616 0.8231 0.8230
s2 0.2295 0.2295 0.1765 0.1765
s3 0.0089 0.0089 0.00051 0.00051
s4 0.000006 0.000007 < 10�11 0
s5 < 10�11 0 < 10�11 0

Table 3. Predictions vs. simulations for
GREEDY(d).

We are not aware of how to determine explicit formulae
for si(t) in general. However, this system of differential
equations can be solved numerically using standard meth-
ods; for up to any fixed k, we can accurately determine
sk(t).

Using Kurtz’s theorem or martingales one can show that
these results will be accurate with high probability. We
also demonstrate that our technique accurately predicts the
behavior of the GREEDY(d) algorithm by comparing with
simulation results. The first and third columns of Table 3
shows the predicted values of si for d = 2 and d = 3.
From these results, with d = 2, one would not expect to see
bins with load five until billions of balls have been thrown.
Similarly, choosing d = 3 one expects a maximum load of
three until billions of balls have been thrown. These results
match simulation results presented in [3] and [6]. We also
present the averages from one hundred simulations of one
million balls, which further demonstrate the accuracy of
this technique. This accuracy is a marked advantage of this
approach; previous techniques have not provided ways of
concretely predicting actual performance.

We also note that we can use Kurtz’s theorem to give an
alternative proof of of the log logn

logd + O(1) bounds for the
GREEDY(d) process. Details appear in [27].
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