
Analysis of Low Density Codes
and

Improved Designs Using Irregular Graphs

Michael G. Luby∗ Michael Mitzenmacher† M. Amin Shokrollahi‡ Daniel A. Spielman§

Abstract

In [6], Gallager introduces a family of codes based on sparse
bipartite graphs, which he calls low-density parity-check codes.
He suggests a natural decoding algorithm for these codes,
and proves a good bound on the fraction of errors that can be
corrected. As the codes that Gallager builds are derived from
regular graphs, we refer to them asregular codes.

Following the general approach introduced in [7] for the
design and analysis of erasure codes, we consider error-correcting
codes based on random irregular bipartite graphs, which we
call irregular codes. We introduce tools based on linear pro-
gramming for designing linear time irregular codes with bet-
ter error-correcting capabilities than possible with regular
codes. For example, the decoding algorithm for the rate 1/2
regular codes of Gallager can provably correct up to 5.17%
errors asymptotically, whereas we have found irregular codes
for which our decoding algorithm can provably correct up
to 6.27% errors asymptotically. We include the results of
simulations demonstrating the effectiveness of our codes on
systems of reasonable size.

1 Introduction

In [6], Gallager introduces a family of codes based on sparse
bipartite graphs, which he calls low-density parity-check codes.

∗International Computer Science Institute, Berkeley, CA. Parts of this
research were done while still at the Digital Equipment Corporation Sys-
tems Research Center, Palo Alto, CA. Research partially supported by NSF
operating grant NCR-9416101. E-mail:luby@icsi.berkeley.edu.

†Digital Equipment Corporation, Systems Research Center, Palo Alto,
CA. E-mail:michaelm@pa.dec.com.

‡International Computer Science Institute Berkeley, and Institut f¨ur In-
formatik der Universit¨at Bonn, Germany. Research supported by a Habilita-
tionsstipendium of the Deutsche Forschungsgemeinschaft, Grant Sh 57/1–1.
E-mail:amin@icsi.berkeley.edu.

§Department of Mathematics, M.I.T.
E-mail:spielman@math.mit.edu.

As the codes that Gallager builds are derived from regular
graphs, we refer to them asregular codes. He suggests a nat-
ural decoding algorithm for these codes, and proves a good
lower bound on the fraction of errors that can be corrected,
assuming that there are no short cycles in the underlying
graph. While much of his work concerns randomly chosen
graphs, his analysis does not directly apply to such graphs.
Instead, he constructs explicit graphs of large girth to which
his analysis does apply.

The main contribution of this paper is the design and
analysis of low-density parity-check codes based on irreg-
ular graphs. This work follows the general approach intro-
duced in [7] for the design and analysis of erasure codes.
There it is shown that using irregular graphs yields codes
with much better performance than regular graphs. In ac-
cordance with [7], we consider error-correcting codes based
on random irregular bipartite graphs, which we callirregu-
lar codes. We develop tools based on linear programming
for designing linear time encodable and decodable irregular
codes with better error-correcting capabilities than regular
codes. For example, the rate 1/2 regular codes of Gallager
can provably correct up to 5.17% errors, whereas we have
found irregular codes that can provably correct up to 6.27%.

The only method we currently have for constructing ir-
regular codes is by randomly choosing the irregular graph.
However, the analysis used by Gallager does not directly ap-
ply to randomly chosen graphs. Thus, to analyze the perfor-
mance of the irregular codes, we develop an analysis that ap-
plies to randomly chosen graphs. Using techniques from [8]
for studying random processes, we can calculate for a ran-
dom regular graph the fraction of erroneous bits for which
Gallager’s original algorithm can correct all but an arbitrar-
ily small constant fraction of the errors. Once the number of
erroneous bits is reduced to this level, we switch from Gal-
lager’s algorithm to one used by Spielman and Sipser in [15],
and prove that this new hybrid method successfully finishes
the decoding with high probability. This analysis easily ex-
tends to the irregular codes that we introduce. Additionally,
the bound on the probability of error we derive using this
methodology improves upon the bound derived by Gallager
for the regular graphs he explicitly constructed.

Gallager’s decoding algorithm is a simplification of “be-
lief propagation” [14]. Belief propagation has been exten-
sively tested with Gallager’s low-density parity-check codes
[2, 6, 11, 12, 17] and is strongly related to the highly success-
ful turbo codes [1, 3, 10, 5]. In a separate work, we describe
empirical tests on irregular codes using a full belief propa-
gation algorithm and demonstrate irregular codes with better
performance than regular codes [9]. We believe our analy-
sis here provides an important step towards analyzing codes
based on belief propagation techniques.

The paper proceeds as follows: in Section 2.1, we present
a description of regular codes and analyze Gallager’s decod-
ing scheme. We show in Section 2.2 how expander-based
arguments can be used in addition to the previous analysis
to demonstrate a decoding algorithm that works with high
probability for regular codes. We introduce irregular codes
in Section 3, where we demonstrate that our arguments gen-
eralize to irregular codes and describe how to find irregular
graphs that lead to good codes. In Section 4, we discuss some
simulation results that show the effectiveness of our analysis
for designing practical codes. We conclude with a discussion
of open problems.

2 Regular Codes

2.1 Analyzing Regular Codes

We first review the codes developed by Gallager and his anal-
ysis [6]. Later we explain how his analysis combined with
the argument from [8] shows that his suggested decoding al-
gorithm corrects all but an arbitrarily small constant fraction
of the nodes with high probability for random regular codes.
The decoding algorithm of Gallager’s that we analyze is an
example ofhard decision decoding, which signifies that at
each step the state is derived from local decisions of whether
each bit is 0 or 1, and this is all the information the state con-
tains (as opposed to more detailed probabilistic information).
We note that Gallager also proposes a belief propagation type
decoding algorithm, which uses a more complicated state;
for more details, see for example [4, 9, 11, 17].

In the following we refer to the nodes on the left and
right sides of a bipartite graph as itsmessage nodes andcheck
nodes respectively. A bipartite graph withn nodes on the left
andr nodes on the right gives rise to a linear code of dimen-
sion k ≥ n − r and block lengthn in the following way:
the bits of a codeword are indexed by the message nodes. A
binary vectorx = (x1, . . . , xn) is a codeword if and only
if Hx = 0, whereH is ther × n incidence matrix of the
graph whose rows are indexed by the check nodes and whose
columns are indexed by the message nodes. In other words,
(x1, . . . , xn) is a codeword if and only if for each check node
the exclusive-or of its incident message nodes is zero.

An alternative approach is to allow the nodes on the right
to represent bits rather than restrictions, and then use a cas-
cading series of bipartite graphs, as described for example
in [16] or [7]. In this situation, we know inductively the cor-

c

m

check node

messsage node

check nodes

message nodes

Figure 1: Representing the code as a tree.

rect value of the check nodes in each layer when we correct
the message nodes, and the check nodes are the exclusive-or
of their incident message nodes.

In the sequel we focus on one bipartite graph only, and
assume that only the nodes on the left are in error. The anal-
ysis that we provide in this case works for either of the two
approaches given above, as we may inductively focus on just
one layer in the context of cascading series of graphs [16, 7].
We call the linear codes that are obtained by either of the
above constructions regular codes.

Consider a regular random graph with the message nodes
having degree d� and the check nodes having degree dr.
With probability p a message node receives the wrong bit.
The decoding process proceeds in rounds, where in each
round first the message nodes send each incident check node
a single bit and then the check nodes send each incident
message node a single bit. To picture the decoding pro-
cess, consider an individual edge (m, c) between a message
node m and a check node c, and an associated tree describ-
ing a neighborhood of m. This tree is rooted at m, and the
tree branches out from the check nodes ofm excluding c, as
shown in Figure 1. For now let us assume that the neighbor-
hood of m is accurately described by a tree for some fixed
number of rounds.

Each message node m remembers the received bit rm
that is purported to be the correct message bit. (Thus, rm is
not the correct message bit with probability p.) Each edge
(m, c) remembers a bit gm,c that is a guess of the correct bit
ofm. This bit is continually updated each round based on all
information that is passed from c to m. During each round
a bit is passed in each direction across edge (m, c). Each
round consists of an execution of the following script:

• For all edges (m, c) do the following in parallel:

– If this is the zeroth round, then set gm,c to rm.
– If this is a subsequent round, then gm,c is

computed as follows:

∗ if all the check nodes ofm excluding c
sent the same value tom in the previous
round, then set gm,c to this value,

∗ else set gm,c to rm.

– In either case,m sends gm,c to c.

• For all edges (m, c) do the following in parallel:

– the check node c sends tom the exclusive-or
of the values it received in this round
from its adjacent message nodes excludingm.

Of course the parallel work can easily be simulated se-
quentially. Moreover, the work per round can easily be coded
so that it is linear in the number of edges.

Let pi be the probability thatm sends c an incorrect value
gm,c in round i. Initially p0 = p. Following the work of
Gallager, we determine a recursive equation describing the
evolution of pi over a constant number of rounds.

Consider the end of the ith round, and consider a check
node c′ of m other than c. The node c′ sends m its correct
value as long as there are an even number (including possibly
0) message nodes other thanm sending c′ the wrong bit. As
each bit was incorrectly sent to c′ with probability pi, it is
easy to check that the probability that c′ receives an even
number of errors is

1 + (1 − 2pi)dr−1

2
. (1)

Hence, the probability thatm was received in error and sent
correctly in round i+ 1 is

p0

[
1 + (1 − 2pi)dr−1

2

]d�−1

,

and similarly the probability that m was received correctly
but sent incorrectly in round i+ 1 is given by

(1 − p0)
[
1 − (1 − 2pi)dr−1

2

]d�−1

.

This yields an equation for pi+1 in terms of pi:

pi+1 = p0 − p0
[
1 + (1 − 2pi)dr−1

2

]d�−1

+ (1 − p0)
[
1 − (1 − 2pi)dr−1

2

]d�−1

. (2)

Gallager’s idea is then to find the supremum p∗ of all
values of p0 for which the sequence pi is monotonically de-
creasing and hence converges to 0. Note, however, that even

if pi converges to 0, this does not directly imply that the pro-
cess necessarily corrects all message nodes, even with high
probability. This is because our assumption that the neigh-
borhood of (m, c) is accurately represented by a tree for arbi-
trarily many rounds is not true. In fact, even for any constant
number of rounds it is true only with high probability.

Gallager proves that, as the block length of the code and
girth of the graph grow large, this decoding algorithm works
for all p0 < p∗. Since random graphs do not have large girth,
Gallager introduced explicit constructions of regular sparse
graphs that do have sufficiently large girth for his analysis
to hold. We will shortly provide an analysis that shows that
Gallager’s decoding algorithm successfully corrects a large
fraction of errors for a randomly chosen regular graph with
high probability. Then in Section 2.2 we show how to ensure
the decoding terminates successfully with high probability
using a slightly different decoding rule.

Gallager notes that the decoding rule can be relaxed in
the following manner: at each round, there is a universal
threshold value bi (to be determined below) that depends on
the round number. For each message nodem and neighbor-
ing check node c, if at least bi neighbors of m excluding c
sent the same bit to m in the previous round, then m sends
this bit to c in this round; otherwisem sends to c its initial bit
rm. The rest of the decoding algorithm is the same. Using
the same analysis as for equation (2), we may find a recursive
description of the pi. For convenience, we define

g(y, t, j) =
[
1 + y

2

]t [
1 − y

2

]j−1−t

. (3)

Also, for convenience we let zi = 1 − 2pi. Then,

pi+1 = p0 − p0
d�−1∑
t=bi

(
d� − 1
t

)
g(zidr−1, t, d�)

+ (1 − p0)
d�−1∑
t=bi

(
d� − 1
t

)
g(−zidr−1, t, d�) (4)

We choose bi so as to minimize pi+1. To do this we com-
pare the odds of being right initially to the odds of being right
using the check nodes and the threshold bi. As determined
by Gallager, the correct choice of bi is the smallest integer
that satisfies

1− p0
p0

≤
[
1 + (1 − 2pi)dr−1

1 − (1 − 2pi)dr−1

]2bi−d�+1

. (5)

Note that bi is an increasing function of pi; this is intu-
itive, since as pi decreases, smaller majorities are needed to
get an accurate assessment of m’s correct value. Also, note
that while the algorithm functions by passing values along
the edges, it can also keep a running guess for the value of
each message node based on the passed values. The algo-
rithm continues until the proposed values for the message

nodes satisfy all the check nodes, at which point the algo-
rithm terminates with the belief that it has successfully de-
coded the message, or it can fail after a preset number of
rounds.

It follows simply from a similar argument in [8] that the
recursive description given by equation (4) is correct with
high probability over any constant number of rounds.

Theorem 1 Let i > 0 be an integer constant and let Zi be
the random variable describing the fraction of edges set to
pass incorrect messages after i rounds of the above algo-
rithm. Further, let pi be as given in the recursion (4). Then
there is a constant c such that for any ε > 0 and sufficiently
large n we have

Pr(|Zi − pi| > ε) < exp(−cεn).

Proof : We sketch the proof. There are two considerations
requiring care. First, the neighborhood around a message bit
m may not take the form of a tree. We show that this does
not happen too often with an edge exposure martingale ar-
gument. Second, even assuming the number of non-trees is
small, we still need to prove tight concentration of pi around
the expectation given that message bits may be wrong ini-
tially with probability p0. This follows from a separate mar-
tingale argument, exposing the initial values at each node one
by one.

For the first consideration, it is easily seen that there is
a number γ depending on i and the maximum degree of
the graph such that the probability that the neighborhood of
depth 2i stemming from an edge is not a tree is γ/n. For
sufficiently large n the value γ/n is less than ε/4. Now by
exposing the edges one by one using an edge exposure mar-
tingale and applying Azuma’s inequality [13, Section 4.4] we
see that the fraction of edges with non-tree neighborhoods is
greater than ε/2 with probability at most exp(−cεn).

Now let Zi be the expected number of edges set to pass
incorrect messages after i rounds. Then |Zi−pi| < ε/2 with
high probability by the above. We can show that Zi and Zi

are close using a martingale argument, exposing the initial
values at the vertices one by one. Again using Azuma’s in-
equality we obtain Pr(|Zi − Zi| > ε/2) ≤ exp(−cεn) for
some constant c (depending on i). This now gives the asser-
tion. Q.E.D.

Corollary 1 Given a random regular code with pi as defined
by equation (4), if the sequence pi converges to 0, then for
any η > 0 there is a sufficiently large message size n such
that Gallager’s hard decision decoding correctly decodes all
but at most ηn bits in some constant number rη of rounds
with high probability.

2.2 Completing the Work: Expander-based
Arguments

In the previous section we have shown that the hard deci-
sion decoding corrects all but an arbitrarily small constant

fraction of the message nodes for regular codes with suffi-
ciently large block lengths. The analysis, however, is not
sufficient to show that the decoding process completes suc-
cessfully. In this section, we show how to finish the decod-
ing process with high probability once the number of errors
is sufficiently small using slightly different algorithms. Our
work utilizes the expander-based arguments in [15, 16].

We first define what we require in terms of the bipartite
graph represented by the code being a good expander.

Definition 1 A bipartite graph has expansion (α, β) if for
all subsets S of size at most αn of the vertices on the left,
the size of the neighborhoodN(S) of S on the right satisfies
N(S) ≥ β|δ(S)|, where δ(S) is the set of edges attached to
vertices in S.

Following the notation of [15], we call a message node
corrupt if it differs from its correct value, and we call a check
node satisfied (respectively unsatisfied) if its value is (is not)
the sum of the values of its adjacent message nodes. The
work of [15] shows that if the underlying bipartite graph of a
code has sufficient expansion for sets of size up to αn, then
both of the following algorithms can correct any set of αn/2
errors:

Sequential decoding: if there is a message node that
has more satisfied than unsatisfied neighbors, flip the
value of that message node. Repeat until no such mes-
sage node remains.

Parallel decoding: for each message node, count the
number of unsatisfied check nodes among its neigh-
bors. Flip in parallel each message node with a major-
ity of unsatisfied neighbors.

Note that the above algorithms are very similar to Gal-
lager’s hard decision decoding algorithm, except that here
we need not hold values for each (message node, check node)
pair. We call upon the results of [15] to show that once we
use hard decision decoding to correct all but some arbitrar-
ily small fraction of the message nodes, we can finish the
process. The next lemma follows from Theorems 10 and 11
of [15].

Lemma 1 Let α > 0 and β > 3/4 + ε for some fixed ε > 0.
Let B be an (α, β) expander. Then the sequential and par-
allel decoding algorithms correct up to αn/2 errors. The
sequential decoding algorithm does so in linear time and
the parallel decoding algorithm does so in O(log n) rounds,
with each round requiring a linear amount of work.

We use the following standard lemma to claim that the
graph we choose is an appropriate expander, and hence we
can finish off the analysis of the decoding process using the
previous lemma.

Lemma 2 LetB be a bipartite graph formed as follows with
n nodes on the left and αn nodes on the right, where α >

1

1

1
0

0

1
1

1

Figure 2: If the two left nodes are supposed to be 0, and all
other nodes are correct, then the majority tells the left nodes
not to change.

0 is a fixed constant. Suppose that a degree is assigned to
each node so that all left nodes have degree at least five, and
all right nodes have degree at most C for some constant C.
Suppose that a random permutation is chosen and used to
match each edge out of a left node with each edge into a
right node. Then, with 1 − O(1/n), for some fixed α > 0,
ε > 0, and β = 3/4 + ε, B is an (α, β) expander.

We note that the restriction in Lemma 2 that the left de-
grees are at least five appears necessary. For example, it is
entirely possible for random graphs with degree three on the
left to fail to complete using the proposed sequential and
parallel algorithms even after almost all nodes have been
corrected. A problem occurs when the graph has a small
even cycle. In this case, if all the nodes in the cycle are
received incorrectly, the algorithm may fail to terminate cor-
rectly. (See Figure 2.) Even cycles of any constant length
occur with constant probability, so errors remain with con-
stant probability.

To circumvent this problem Gallager designs regular graphs
with no small cycles [6]. To circumvent this problem in ran-
dom graphs, we make a small change in the structure of the
graph, similar to that in [7]. Suppose that we use the previous
analysis to correct all but at most ηn message bits with high
probability. We add an additional η′n check nodes, where η′

is a constant that depends on η, and construct a regular ran-
dom graph with degree 5 on the left between all the n mes-
sage nodes and the η′n check nodes. The decoding proceeds
as before on the original random graph, correcting all but at
most ηn message bits. We then use the η′n check nodes pre-
viously held in reserve to correct the remaining message bits
using the Sipser-Spielman algorithm. That this procedure
works follows directly from Lemmas 1 and 2. Moreover, as
both η and η′ can be made arbitrarily small by Corollary 1,
the change in the rate of the code due to this additional struc-
ture is negligible, and is ignored in the sequel.

It is worth noting that since explicit constructions are
known for regular expanders, using the previous analysis
(Theorem 1 and Lemma 1) we may construct regular codes
with the same asymptotic performance as Gallager’s regular
codes that are guaranteed to work with probability exponen-

tial in n. Gallager proved that his codes and decoding al-
gorithm worked correctly with probability exponential in a
root of n. Hence our proof yields slightly better bounds on
the error probability in this case.

2.3 Theoretically Achievable Error Correction

For every rate, and for every possible left degree and corre-
sponding right degree, the value of p∗ can be computed by
the above analysis. A natural question to ask is which regu-
lar code can achieve the largest value of p∗. Among rate 1/2
regular codes, it turns out that the largest p∗ is achieved when
all left nodes have degree 4 and all right nodes have degree
8, in which case p∗ ≈ 0.0517. Thus, combining Corollary 1,
Lemma 1, and Lemma 2, we have shown that when the cor-
responding bipartite graph is chosen randomly this code can
correct all errors with high probability when the initial frac-
tion of errors approaches 0.0517. All of these regular codes
run in linear time if we use the sequential decoding algorithm
in the final stage. This follows from the fact that we need to
run the hard decision decoding only for a constant number
of rounds (at linear time per round), and then the sequen-
tial decoding algorithm can fix the remaining errors in linear
time.

3 Irregular Codes

3.1 Intuition

Before we show how to derive irregular random graphs that
improve upon the performance of Gallager’s low-density parity-
check codes, we offer some intuition as to why irregular
graphs prove useful. It is convenient to think of the process
as a game, with the message nodes and the check nodes as
the players, and each player trying to choose the right num-
ber of edges. A constraint on the game is that the message
nodes and the check nodes must agree on the total number of
edges. From the point of view of a message node, it is best
to have high degree, since the more information it gets from
its check nodes the more accurately it can judge what its cor-
rect value should be. In contrast, from the point of view of
a check node, it is best to have low degree, since the higher
the degree of a check node, the more likely it is to transmit
incorrect guesses to the message node.

These two competing requirements must be appropriately
balanced. If one allows irregular graphs, there is more flex-
ibility in balancing these competing requirements. In fact,
for the decoding algorithm we describe below, the improved
performance arises from varying the degrees of the message
nodes. Message nodes with high degree tend to their correct
value quickly. These nodes then provide good information
to the check nodes, which subsequently provide better in-
formation to lower degree message nodes. Irregular graph
constructions thus lead to a wave effect, where high degree
message nodes tend to get corrected first, and then message
nodes with slightly smaller degree, and so on down the line.

3.2 Analyzing Irregular Codes

We now describe a decoding algorithm for codes based on
irregular graphs, or what we call irregular codes. Follow-
ing the notation used in [7], for an irregular bipartite graph
we say that an edge has degree i on the left (right) if its
left (right) hand neighbor has degree i. Let us suppose we
have an irregular bipartite graph with some maximum left
degree d� and some maximum right degree dr. We spec-
ify our irregular graph by sequences (λ1, λ2, . . . , λd�

) and
(ρ1, ρ2, . . . , ρdr), where λi (ρi) is the fraction of edges with
left (right) degree i. Further, we define ρ(x) :=

∑
i ρix

i−1.
Our decoding algorithm in the case of irregular graphs is

similar to Gallager’s hard decision decoding as described in
Section 2.1, but generalized to take into account the varying
degrees of the nodes. Again we look at the process from the
point of view of an edge (m, c). Consider the end of the
ith round, and consider a check node c′ of m other than c.
The node c′ sendsm its correct value as long as there are an
even number (including possibly 0) of other message nodes
sending c′ the wrong bit. As each bit was correctly sent to c′

with probability pi, it is simple to check that the probability
that c′ receives an even number of errors is

1 + ρ(1 − 2pi)
2

. (6)

Equation 6 is the generalization of equation 1, taking into
account the probability distribution on the degree of c′.

Also similarly to Section 2.1, after round i a message
node m of degree j passes its initial value along (m, c) to
check node c unless at least bi,j of the check nodes c′ adja-
cent tom other than c sendm the same value. Note that now
the threshold value for a node depends on its degree. Also,
the value of bi,j changes according to the round.

To analyze the decoding process, consider a random edge
(m, c). The left degree of (m, c) is j with probability λj . It
thus follows from the same argument as in Section 2.1 that
the recursive description for pi is (again using zi = 1 − 2pi

and g as defined in Equation (3))

pi+1 = p0 −
d�∑

j=1

λj


p0

j−1∑
t=bi,j

(
j − 1
t

)
g(ρ(zi), t, j)

+ (1 − p0)
j−1∑

t=bi,j

(
j − 1
t

)
g(−ρ(zi), t, j)


 .(7)

We need to determine bi,j so as to minimize the value of
pi+1. As in equation (5), the best value of bi,j is given by the
smallest integer that satisfies:

1 − p0
p0

≤
[
1 + ρ(1 − 2pi)
1 − ρ(1 − 2pi)

]2bi,j−j+1

. (8)

This equation has an interesting interpretation. Note that
2bi,j − j + 1 is a constant fixed by the above equation. The
value 2bi,j − j + 1 = bi,j−(j−1−bi,j) can be interpreted as

the difference between the number of check nodes that agree
in the majority and the number that agree in the minority. We
call this difference the discrepancy of a node. Equation (8)
tells us that we need only check that the discrepancy is above
a certain threshold to decide which value to send, regardless
of the degree of the node.

3.3 Designing Irregular Graphs

We now describe techniques for designing codes based on
irregular graphs that can handle larger probabilities of error
at potentially some expense in encoding and decoding time.
Given our analysis of irregular codes, our goal is to find se-
quences λ = (λ1, λ2, . . . , λd�

) and ρ = (ρ1, ρ2, . . . , ρdr)
that yield the largest possible value of p0 such that the se-
quence of pi decreases to 0 for a given rate. We frame this
problem in terms of linear programs. Our approach cannot
actually determine the best sequences λ and ρ. Instead, our
technique allows us to determine a good vector λ given a
vector ρ and the desired rate of the code. This proves suffi-
cient for finding codes that perform significantly better than
regular codes. (Similarly, we may also apply this technique
to determine a good vector ρ given a vector λ and the de-
sired rate; as we explain below, however, this does not prove
useful in this setting.)

Let p0 be fixed. For convenience, we use z = 1 − 2x
below. For a given degree sequence ρ = (ρ1, ρ2, . . . , ρdr)
let the real valued function f(x) be defined by

f(x) = p0 −
d�∑

j=1

λj


p0

j−1∑
t=bi,j

(
j − 1
t

)
g(ρ(z), t, j)

+(1 − p0)
j−1∑

t=bi,j

(
j − 1
t

)
g(−ρ(z), t, j)


 ,

where now

bi,j =
⌈(
j − 1 +

log((1 − p0)/p0)
log((1 + x)/(1 − x))

)
/2

⌉

and the λj are variables to be determined. Observe that con-
dition (7) now reads as pi+1 = f(pi). For a given p0 and
right hand degree sequence ρ, we are interested in finding
a degree sequence (λ1, . . . , λd�

) such that the corresponding
function f(x) satisfies f(x) < x on the open interval (0, p0).
We begin by choosing a set L of positive integers which con-
stitute the range of possible degrees on the left hand side. To
find appropriate λ�, & ∈ L, we use the condition f(x) < x
above to generate linear constraints that the λ� must satisfy
by considering different values of x. For example, by ex-
amining the condition at x = 0.01, we obtain the constraint
f(0.01) < 0.01, which is linear in the λ�.

We generate constraints by choosing for x multiples of
p0/N for some integer N . We also include the constraints
λ� ≥ 0 for all & ∈ L, as well as the constraint∑

�∈L

λ�/& = R
∑

i

ρi/i, (9)

where R is the rate of the code. This condition expresses the
fact that the number of edges incident to the left nodes equals
the number of edges incident to the right nodes. We then
use linear programming to determine if suitable λ� exist that
satisfy our derived constraints. The choice for the objective
function is arbitrary as we are only interested in the existence
of feasible solutions.

Given the solution from the linear programming prob-
lem, we can check whether the λ� computed satisfy the con-
dition f(x) < x on (0, p0). The best value for p0 is found
by binary search. Due to our discretization, there are usu-
ally some conflict intervals in which the solution does not
satisfy this inequality. Choosing large values for the tradeoff
parameterN results in smaller conflict intervals, although it
requires more time to solve the linear program. For this rea-
son we use small values ofN during the binary search phase.
Once a value for p0 is found, we use larger values of N for
that specific p0 to obtain small conflict intervals. In the last
step we get rid of the conflict intervals by slightly decreasing
the value of p0.

This linear programming tool allows for efficient search
for good codes. That is, given a vector ρ we can find a good
partner vector λ. In a similar fashion, we can similarly find
a good partner vector ρ from a given λ. However, our ex-
periments reveal that the best ρ vector for this decoding al-
gorithm is always the one where are the nodes on the right
have the same degree (or all nodes have as close to the same
degree as possible).

There is intuition explaining this phenomenon. From the
point of view of a message nodem, it appears best if the ex-
pected number of other neighbors a neighboring check node
c has is as small as possible. This can be seen as follows.
At the end of the ith round, the probability that c sends the
correct vote to m is 1+ρ(1−2pi)

2 . For small pi values, this is

approximately 1−pi

∑dr

i=1(i−1)ρi. To maximize this prob-
ability, we seek to minimize

∑dr

i=1(i−1)ρi, which is exactly
the expected number of other neighbors c has. This quantity
is minimized (subject to the constraints

∑dr

i=1 ρi = 1 and
equation (9)) when all check nodes have equal degree, or
as nearly equal as possible. In contrast, we note that using
varying degrees for the check nodes is advantageous when
using a more complicated decoding algorithm based on be-
lief propagation [9].

Using the linear programming technique, we have con-
sidered graphs where the nodes on the left side may have
varying degrees and the nodes on the right side all have the
same degree. In other words, we have found good codes by
considering ρ vectors with just one non-zero entry. As we
shall see in Section 4, this suffices to find codes with sig-
nificantly better performance than that given by codes deter-
mined by regular graphs.

It remains to show that the codes we derive in this man-
ner in fact function as we expect. That is, given a vector
(λ1, . . . , λd), the right degree dr, and the initial error prob-
ability p0, if the sequence pi given by equation (7) is mono-

tonically decreasing and hence converges to 0, then the code
obtained from the corresponding irregular random graph cor-
rects a p0-fraction of errors, with high probability. We first
note that the equivalent of Theorem 1 holds in this case as
well, by a similar proof (modified to take into account the
different degrees). That is, we can use the hard decision de-
coding algorithm to decrease the number of erroneous bits
down to any constant fraction.

To finish the decoding, we use the sequential algorithm
from Section 2.2. The overall decoding time is linear. To
prove the sequential decoding algorithm works, we need an
equivalent of Lemma 1 for irregular graphs.

Lemma 3 Let α > 0 and β > 3/4 + ε for some fixed ε > 0.
Suppose thatB is an irregular bipartite (α, β) expander, and
that d is the maximum degree on a left node of B. Then the
sequential decoding algorithm corrects up to αn/2d errors
in linear time.

Proof : We follow Theorem 10 of [15]. We show that the
number of unsatisfied check nodes decreases after each step
in the sequential algorithm. Let V be the set of corrupt mes-
sage nodes, with |V | = v and |δ(V)| = d̄v. Suppose there
are u unsatisfied check nodes and let s be the number of sat-
isfied neighbors of the corrupt variables. By the expansion
of B, we have

u+ s > (3/4)d̄v.

As each satisfied neighbor of V shares at least two edges
with V , and each unsatisfied neighbor shares at least one, we
have

d̄v ≥ u+ 2s.

It follows that

u > d̄v/2, (10)

and hence there is some message node with more than 1/2 of
its incident check nodes unsatisfied. Hence at each step the
sequential algorithm may flip a message node and decrease
the number of unsatisfied check nodes.

Therefore the only way the algorithm can fail is if the
number of corrupt message nodes increases so that v ≥ αn
during the algorithm. But if v ≥ αn then, by Equation (10),
u > d̄αn/2 ≥ αn/2. However, initially u is at most d
times the maximum number αn/2d of initial message bit er-
rors, i.e., initially u < αn/2. As u decreases throughout the
course of the algorithm, we can not have that v ≥ αn during
the algorithm, and hence it cannot fail. Q.E.D.

It follows that the irregular codes we derive function as
we expect as long as our random graphs have sufficient ex-
pansion. This expansion property holds with high proba-
bility if we choose the minimum degree to be at least five.
However, as stated previously, graphs with message nodes
of smaller degree may be handled with a small additional
structure in the graph.

Code Right Deg. Left Degree Parameters
Code 14 14 λ5 = 0.496041, λ6 = 0.173862,

λ21 = 0.077225, λ23 = 0.252871
Code 22 22 λ5 = 0.284961, λ6 = 0.124061,

λ27 = 0.068844, λ29 = 0.109202,
λ30 = 0.119796, λ100 = 0.293135

Code 10’ 10 λ3 = 0.123397, λ4 = 0.555093,
λ16 = 0.321510

Code 14’ 14 λ3 = 0.093368, λ4 = 0.346966,
λ21 = 0.159355, λ23 = 0.400312

Table 1: Parameters of our codes.

3.4 Theoretically Achievable Error Correction

We have designed some irregular degree sequences using
the linear programming methodology described in subsec-
tion 3.3. The codes we describe all have rate 1/2. These
codes perform well in practice as well as according to our
theoretical model. However, it is likely that one could find
codes that perform slightly better codes using our techniques.
It is worth noting that Shannon upper bound (or entropy bound)
for p∗ for codes of rate 1/2 is 11.1%. Although the irregular
codes we have designed to date are far from this limit, they
are still much better than regular codes.

Code 14 and Code 22, described fully in Table 1 are two
irregular codes that we designed. For Code 14 all nodes on
the right have degree 14, and for Code 22 all nodes on the
right have degree 22.1 In both these codes, the minimum de-
gree on the left hand side is five. This ensures that the graphs
have good expansion as needed in Lemma 2, and thus there is
no need for the additional structure discussed in Section 2.2.
Using the analysis of Section 3.2, we determine the appro-
priate value of p∗ is approximately 0.0505 for Code 14 and
0.0533 for Code 22.

We can achieve even better performance by considering
graphs with smaller degrees on the left. While such graphs
do not have sufficient expansion for Lemma 2 to hold, we
can use the additional structure discussed in Section 2.2 to
finish the decoding. For Code 10’ all nodes on the right have
degree 10, and for Code 14’ all nodes on the right have de-
gree 14. Using the analysis of Section 3.2, we determine the
appropriate value of p∗ is approximately 0.0578 for Code 10’
and 0.0627 for Code 14’ . Recall that 0.0517 is the best value
of p∗ that is possible using regular graphs for rate 1/2 codes.

4 Experimental Results

We include preliminary experimental results for new codes
we have found using the linear programming approach. Our
experimental design is similar to that of [15], whose results
can be compared with ours.

We describe a few important details of our experiments
and implementations. In our implementation, we simply run

1Actually, to balance the number of edges, we do allow one node on the
right to have a different degree.

Gallager’s decoding technique until it finishes, or until a pre-
specified number of rounds pass without success. In our ex-
periments it turns out that it is unnecessary to switch to the
modified decoding algorithm of Section 2.2 or use the ad-
ditional structure described in Section 2.2, as in our experi-
ence the hard decision decoding algorithm of Gallager fin-
ishes successfully once the number of errors becomes small.

We do not perform an actual encoding, but instead for
each trial use an initial message consisting entirely of zeroes.
To more accurately compare code quality, instead of intro-
ducing errors with probability p, we set the same number of
errors (corresponding to a fraction p of the block length) in
each trial. It is worthwhile to note that even when the decod-
ing algorithm fails to decode successfully because too many
rounds have passed, it can report that failure back. We have
yet to see the decoding algorithm produce a codeword that
satisfied all constraints but was not the original message, al-
though theoretically it is a possible event.

Our implementation takes as input a schedule that de-
termines the discrepancy value 2bi,j − j + 1 at each round.
This schedule can be calculated according to equation (8). In
practice, however, the schedule determined by equation (8)
must be modified somewhat. If the discrepancy threshold
is changed prematurely, before enough edges transfer the
correct value, the decoding algorithm is significantly more
likely to fail. Hence changing the threshold according to the
round as given by equation (8) often fails to work well when
the block size is small, since the variance in the number of
edges sending the correct value can be significant. In prac-
tice we find that stretching out the schedule somewhat, so
that the discrepancy threshold is changed after a few more
rounds than the equations suggest, prevents this problem, at
the expense of increasing the running time of the decoding
algorithm.

In our experiments, a random graph was constructed sep-
arately for each trial at a certain error rate. No effort was
made to test graphs or weed out potentially bad ones, and
hence we expect that our results would be slightly better if
several random graphs were tested and the best ones chosen.
Following the ideas of [15] and [11], when necessary we re-
move double edges from our graphs.

4.1 Some Experiments

We first describe experiments on codes of rate 1/2 with 16,000
message bits and 8,000 check bits. In Figure 3, we describe
the performance of Code 14 and Code 22 that we introduced
in subsection 3.4. Each data point represents the results from
2,000 trials. Recall that the appropriate value of p∗ is approx-
imately 0.0505 for Code 14 and 0.0533 for Code 22. Recall
that p∗ represents the error rate we would expect to be able
to handle for arbitrarily long block lengths, and that we only
expect to approach p∗ asymptotically in practice as the num-
ber of nodes grows.

Our results show that for block lengths of length 16,000
the codes appear to perform extremely well when a random

0

20

40

60

80

100

4.5 4.6 4.7 4.8 4.9 5

Percentage of Errors

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
es

Regular (4/8)
Code 14
Code 22

Figure 3: Percentage of successes based on 2000 trials.

fraction 0.045 (or 720) of the original message bits are in
error. For the 2,000 trials, Code 14 never failed, and Code
22 failed just once. (In fact in 10,000 trials with this num-
ber of errors, Code 14 proved successful every time.) The
probability that the code succeeds falls slowly as the error
probability approaches p∗. Further experiments with larger
block lengths demonstrate that performance improves with
the number of bits in the message, as one would expect.
These codes therefore perform better than the codes based
on regular graphs presented in [15], albeit at the expense of
a greater (but still linear) running time. They also perform
much better than regular codes. For instance, as mentioned
before, the best regular code of rate 1/2 is obtained from
random regular bipartite graphs with degree 4 on the left and
degree 8 on the right. The performance of this code is also
shown in Figure 3. Although the p∗ value for this regular
code is approximately 0.0517, in practice, with 16,000 mes-
sage bits this regular code failed 23 times in 2,000 trials with
a fraction of 0.045 errors.

We now consider Code 10’ and Code 14’ introduced in
subsection 3.4. The experiments were run on 16,000 mes-
sage bits and 8,000 check bits for 2,000 trials. In our exper-
iments, we remove both double edges and some small cy-
cles, as suggested in [11]. Recall that the appropriate value
of p∗ is approximately 0.0578 for Code 10’ and 0.0627 for
Code 14’ . These codes again perform near what our analysis
suggests, and they significantly outperform previous simi-
lar codes with similar decoding schemes, including regular
codes.

In summary, irregular codes Code 14 and Code 22 appear
superior to any regular code in practice, and irregular codes
Code 10’ and Code 14’ are far superior to any regular code.
We have similarly found irregular codes that perform well at
other rates.

5 Conclusion

We have proven that a class of linear time error-correcting
codes correct a large fraction of errors with high probabil-

0.00

20.00

40.00

60.00

80.00

100.00

5 5.25 5.5 5.75 6

Percentage of Errors

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
es

Code 10'

Code 14'

Figure 4: Percentage of successes based on 2000 trials.

ity. We have also determined new codes based on irregu-
lar graphs that perform better than codes based on regular
graphs on systems of practical size, as well as described a
general technique for producing such codes.

Our work leaves several interesting open questions. An
ambitious project is to fully analyze the behavior of either
regular or irregular codes when using a decoding algorithm
based on belief propagation. Such decoding algorithms are
similar to the decoding algorithm of Gallager described in
Section 2.1, except that more extensive information is passed
through messages along the edges each round. Analyzing
these algorithms would be a significant breakthrough in the
theory of codes based on low-density parity-check matrices.
Another interesting question is to tie together more strongly
the theory and practice of these codes. Our equations that
describe the asymptotic behavior of the codes do not tell us
which codes perform best for reasonably sized systems (say,
with thousands or tens of thousands of bits). A more system-
atic approach rather than trial and error would be useful.

References

[1] C. Berrou, A Glavieux, and P. Thitimajshima, “Near
Shannon Limit Error-Correcting Coding and Decod-
ing: Turbo-Codes” , Proceedings of IEEE International
Communications Conference, 1993.

[2] J.-F. Cheng and R. J. McEliece, “Some High-Rate
Near Capacity Codecs for the Gaussian Channel” , 34th
Allerton Conference on Communications, Control and
Computing.

[3] D. Divsalar and F. Pollara, “On the Design of Turbo
Codes” , JPL TDA Progress Report 42-123.

[4] G. D. Forney, Jr. “The Forward-Backward Algorithm” ,
Proceedings of the 34th Allerton Conference on Com-
munications, Control and Computing, 1996, pp. 432-
446.

[5] B. J. Frey and F. R. Kschischang, “Probability Propa-
gation and Iterative Decoding” , Proceedings of the 34th

Allerton Conference on Communications, Control and
Computing, 1996.

[6] R. G. Gallager, Low-Density Parity-Check Codes,
MIT Press, 1963.

[7] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A.
Spielman, and V. Stemann, “Practical Loss-Resilient
Codes” , Proc. 29th Symp. on Theory of Computing,
1997, pp. 150–159.

[8] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi,
“Analysis of Random Processes via And-Or Trees” ,
Proc. 9th Symp. on Discrete Algorithms, 1998.

[9] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and
D. A. Spielman, “ Improved Low Density Parity Check
Codes Using Irregular Graphs and Belief Propagation” ,
submitted to the 1998 International Symposium on In-
formation Theory.

[10] D. J. C. MacKay, R, J. McEliece, and J.-F. Cheng,
“Turbo Coding as an Instance of Pearl’s ’Belief Propa-
gation’ Algorithm” , to appear in IEEE Journal on Se-
lected Areas in Communication.

[11] D. J. C. MacKay and R. M. Neal, “Good Error Correct-
ing Codes Based on Very Sparse Matrices” , available
from http://wol.ra.phy.cam.ac.uk/mackay.

[12] D. J. C. MacKay and R. M. Neal, “Near Shannon Limit
Performance of Low Density Parity Check Codes” , to
appear in Electronic Letters.

[13] R. Motwani and P. Raghavan, Randomized Algo-
rithms, Cambridge University Press, 1995.

[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufmann
Publishers, 1988.

[15] M. Sipser, D. A. Spielman, “Expander Codes” , IEEE
Transactions on Information Theory, 42(6), November
1996, pp. 1710-1722.

[16] D. A. Spielman, “Linear Time Encodable and Decod-
able Error-Correcting Codes” , IEEE Transactions on
Information Theory, 42(6), November 1996, pp. 1723-
1731.

[17] N. Wiberg, “Codes and decoding on general graphs”
Ph.D. dissertation, Dept. Elec. Eng, U. Linköping,
Sweeden, April 1996.

