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Abstract

We prove that the First Fit bin packing algorithm is stable under the input distributionU {k − 2, k}
for all k ≥ 3, settling an open question from the recent survey by Coffman, Garey, and Johnson [3]. Our
proof generalizes the multi-dimensional Markov chain analysis used by Kenyon, Rabani, and Sinclair to
prove that Best Fit is also stable under these distributions [11]. Our proof is motivated by an analysis of
Random Fit, a new simple packing algorithm related to First Fit, that is interesting in its own right. We
show that Random Fit is stable under the input distributionsU {k − 2, k}, as well as present worst-case
bounds and some results on distributionsU {k − 1, k} andU {k, k} for Random Fit.

1 Introduction

In the one-dimensional bin packing problem, one is given a sequencea1, . . . , an ∈ (0, 1] of items to pack
into bins of unit capacity so as to minimize the number of bins used. A great deal of literature has focused
on this problem, perhaps because, as Coffman, Garey, and Johnson [3] observe in their recent survey on bin
packing, “The classical one-dimensional bin packing problem has long served as a proving ground for new
approaches to the analysis of approximation algorithms.” For example, recently the study of Best Fit bin
packing under discrete uniform distributions has led to a novel analysis technique, based on the theory of
multi-dimensional Markov chains. In this paper we extend this approach to analyze First Fit and a new bin
packing algorithm, called Random Fit, under discrete uniform distributions.

First Fit and Best Fit are two classical algorithms for online bin packing. With First Fit, the bins are indexed
in increasing order of their creation. Each item is sequentially placed into the lowest indexed bin into which
it will fit, or into a empty bin if no such bin is available. With the Best Fit algorithm, each incoming item
is placed into the non-empty bin with smallest residual capacity that can contain it; if no such bin exists,
the item is placed in an empty bin. The performance of First Fit and Best Fit in the worst case and uniform
average case has been settled for quite some time. In the worst case, the number of bins used by any of these
algorithms is at most17

10 times the optimum number of bins, as shown by Johnsonet al. [10]. When item
sizes are generated byU(0, 1), the continuous uniform distribution on(0, 1], then the performance measure
of interest is theexpected waste, which is the difference between the number of bins used and the total size of
the items packed so far. Shor [16] showed that the expected waste created by First Fit is�(n2/3). Shor [16]
and Leighton and Shor [13] proved that Best Fit does better, generating expected waste�(

√
n log3/4 n).

Because of these tight bounds, research on First Fit and Best Fit is now focused on analyzing expected waste
when item sizes are generated by discrete uniform distributions. A discrete uniform distribution, denoted
by U{ j, k}, 1 ≤ j ≤ k, is one where item sizes are chosen uniformly from the set{1/k, 2/k, . . . , j/k}. For
U{k, k}, k > 1, First Fit and Best Fit achieve expected waste�(

√
nk) andO(

√
n logk), respectively, (see

Coffmanet al. [2]). Similar bounds hold forU{k − 1, k}. Of particular interest are distributions for which
the algorithms arestable. We say that a algorithm is stable under a distribution if the expected waste remains
bounded (that is,O(1)), even as the number of itemsn goes to infinity. Coffmanet al. [2] proved that First
Fit is stable underU{ j, k}, whenk ≥ j 2, and Best Fit is stable underU{ j, k}, whenk ≥ j ( j + 3)/2.
Later, Coffmanet al. [4] introduced a novel method for proving the stability (and instability) of bin packing
algorithms based on multi-dimensional Markov chains. Their methodology allowed them to show that
U{ j, k} is stable under Best Fit for several specific pairs of values forj andk. Kenyonet al. [11] expanded
on this work by proving that Best Fit is stable under the entire family of distributionsU{k − 2, k}, using a
complex analysis of the underlying Markov chains.
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We briefly describe the Markov chain setting used in the results described above. Using the Best Fit al-
gorithm under a discrete uniform distribution, a packing can be represented by the number of bins of each
possible residual capacity. The order of the bins is irrelevant. This packing process can therefore be easily
represented by a Markov chain, where the state at any time is a vectors = (s1, . . . , sk−1), andsi is the
number of bins of residual capacityi/k.

The Best Fit algorithm is well suited to the Markov chain approach, because the order of the bins is irrelevant,
leading to a simple representation of the packing. In contrast, in the First Fit algorithm, the order of the bins
cannot be dismissed. Because of the difficulty of representing the state in the First Fit algorithm, until now
these Markov chain techniques have not been successfully applied to the First Fit algorithm.

In this paper, we remedy this problem by demonstrating a Markov chain argument that shows that First Fit
is in fact stable under the family of distributionsU{k − 2, k}. This result disproves a conjecture made by
Coffmanet al. [3], who state that limited experiments suggest that the expected waste may grow unbounded
onU{k − 2, k} for sufficiently largek. Moreover, it demonstrates that the Markov chain approach may be
more generally applicable than previously believed.

Our proof emerges from an analysis of a new bin packing algorithm, calledRandom Fit (RF). Random Fit
is a simple randomized variant of First Fit. With Random Fit, each time an item is to be placed in a bin the
bins are indexed in an order determined by a permutation chosen independently and uniformly at random.
Each item is sequentially placed into the lowest indexed bin into which it will fit, or into a empty bin if no
such bin is available.

In Section 2 we introduce Random Fit by analyzing its worst-case behavior. In the following sections we
then concentrate on average-case analysis. Random Fit has the advantage that, like Best Fit, a packing can
be represented by the number of bins of each possible residual capacity. Therefore, in Section 3, we first
generalize the analysis of Best Fit shown in [11] to Random Fit. We prove stability of Random Fit under
the input distributionU{k − 2, k} and derive some related results forU{k − 1, k} andU{k, k}. Using ideas
developed in Section 3, we proceed to prove stability of First Fit under input distributionU{k − 2, k} in
Section 4.

2 Worst-case analysis of Random Fit

We compare the behavior of Random Fit with an optimal offline algorithm. Recall that with Random Fit,
each time an item is to be placed in a bin the bins are indexed in an order determined by a permutation
chosen independently and uniformly at random. Each item is sequentially placed into the lowest indexed
bin into which it will fit, or into a empty bin if no such bin is available.

Given a sequenceS = (a1, a2, . . . , an) of items and a bin packing algorithmA, let A(S) denote the number
of bins used byA to packS. In particular, OPT(S) is the number of bins used by an optimal offline algorithm,
i.e., it is the minimum number of bins required to packS.

Theorem 1 a) For every sequence S, RF(S) ≤ 2 · O PT (S) − 1.

b) There exist sequences S, with arbitrarily large values of OPT(S), such that with high probability
RF(S) = 2 · O PT (S) − 1.
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Proof: Part a) At any time, the sequence of bins used by RF contains at most one bin with residual capacity
of at least12. Thus, for any sequenceS, the number of bins used by OPT is at least� 1

2 RF(S)� + 1.

Part b) For any integern ≥ 2, let Sn be a sequence that containsn large items of size1
2. In addition, in

between any two large items,n2 small items each of size1
2n3 must be inserted. Thus

Sn = (
1

2
,

1

2n3
, . . . ,

1

2n3
,

1

2
,

1

2n3
, . . . ,

1

2n3
,

1

2
,

1

2n3
, . . . ,

1

2n3
,

1

2
).

Note that the sum of all the small items is1
2n3 n2(n − 1) < 1

2.

Clearly, OPT(Sn) = �n
2� + 1. We show that with high probability Random Fit usesn bins on this sequence.

More precisely, immediately before an insertion of a large item, the probability that a bin holding a large
item does not contain a small item is bounded by(1 − 1

n )n2 ≤ e−n. Thus, the probability that at any of the
n insertions of large items, some open bin having a large item does not contain a small item is bounded by
n2e−n. We conclude that with probability at least 1− n2

en , RF needsn bins to packSn.

While RF has a guaranteed worst-case performance, it does not achieve the same bounds as First Fit and
Best Fit. In the worst case, RF is only as good as Next Fit and Worst Fit.

Motivated by recent work [1, 15], we also consider an extension of Random Fit, calledRandom-Fit(d), that
is defined for any integerd ≥ 2. Whenever a new item arrives, RF(d) examines bins in the same way as
RF untild bins are found that can hold the item. Among thesed bins, the item is inserted into the bin with
smallest residual capacity, i.e., the Best Fit rule is applied. If there are onlyi, i < d, open bins that can hold
the item, then the item is inserted into one of thesei bins, using again the Best Fit strategy. If none of the
open bins can hold the item, then the item is inserted into a new bin.

Interestingly, when making the transition from RF to RF(d), the worst-case performance improves.

For any algorithmA, let

R∞
A = {r ≥ 1| for someN > 0, A(S)/O PT (S) ≤ r for all S with O PT (S) ≥ N}.

Theorem 2 For every d ≥ 2, R∞
RF (d) ≤ 17

10.

Proof: Follows from a result by Johnson [7, 8] because RF(d) belongs to the class of Almost Any Fit
algorithms.

3 Average-case analysis of Random Fit

In this section we prove that Random Fit is stable under the input distributionU{k − 2, k} and derive some
related results forU{k − 1, k} andU{k, k}.

3.1 Preliminaries

We begin by reviewing some important definitions and lemmas from [11]. For considering the distribution
U{ j, k}, rather than have bins of size 1, we shall instead think of having bins of sizek and item sizes chosen
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uniformly from {1, . . . , j}. The two notions are clearly equivalent. We shall model the system usingk − 1
tokens that move on the non-negative integers. The value of tokeni at timet , denoted bys i(t) represents
the number of bins with residual capacityi after t items have been placed. Thestate of the system at time
t is given by a vectors(t) = (s1(t), ..., sk−1(t)). Initially, s(0) = (0, . . . , 0), as there are no open bins with
residual capacity. We shall often drop the explicit reference ont when the meaning is clear. Thewaste at
time t is given by

∑k−1
i=1 isi (t). We wish to show that the expected waste ast → ∞ remains bounded.

We shall divide the tokens into classes. The tokeni is calledsmall if 1 ≤ i ≤ � j
2� and is calledlarge if

� j
2 +2� ≤ i ≤ j . In the case wherej is even, there is also amiddle token, namely� j

2�+1. For convenience,
we shall temporarily restrict ourselves to the case wherej is odd, as the case wherej is even requires some
additional work to handle the middle token. We shall explain the modifications necessary for the case where
j is even after the proof of the case wherej is odd.

We begin with the following lemma:

Lemma 3 State s is reachable from the initial state s(0) = (0, . . . , 0) only if

1. For distinct indices i and i ′ with i + i ′ ≥ k, either si = 0 or si′ = 0.

2.
∑

i not small si ≤ 1

Proof: By induction; it follows from the fact that we will not open a new bin if an item can be packed in a
current bin.

It is also not hard to see that all states that satisfy the conditions of Lemma 3 are reachable, and hence we
assume hereafter that our state space consists exclusively of all states satisfying the conditions of Lemma 3.

From Lemma 3, ifs� j
2�(t) > 0, then all large tokens must be 0 at timet . Our proof of stability will rely on

this simple feature of the chain. In particular, this feature allows us to focus on the behavior of the small
tokens, which is considered in the following lemma:

Lemma 4 Using Random Fit, the motion of a small token i has the following properties:

1. For i > 1, the motion of si at all positions other than 0 is a random walk on Z +, such that a positive
step is taken with probability at least 1

j and a negative step is taken with probability at most 1
j + si

si−1+si
.

2. The time spent by si on each visit to 0 is stochastically dominated by a random variable D with
constant expectation and variance (that depend only on j ).

Proof: For the first part, note that, ifsi > 0, thensi increases whenever an element of sizek − i enters the
system, by Lemma 3. Hence we need only consider negative steps. If an item of sizei enters, thensi may
decrease; if an item of size less thani enters, then it is clear that the probability of it landing in a bin of
capacityi it at most si

si−1+si
. The result follows.

The second part is almost exactly the same as in Proposition 4 of [11], which we sketch here for complete-
ness. Ifsi = 0, andsi′ = 0 for all i ′ ≥ k − i, then clearlysi moves to 1 with probability at least 1/j . If
si′ = 1 for somei ′ ≥ k − i, however, this is not the case. It suffices to note that if two consecutive items have
sizek − i, thensi will go to 1 even in this case. One may check that this fact suffices to prove the lemma.
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3.2 Outline of the proof

We now sketch how we will prove that RF is stable, following the same approach as [11]. We first note that
by Lemma 3, the amount of waste from non-small tokens is bounded by a constant. Hence we need only
consider the waste due to small tokens, which we denote byf (t) = ∑� j/2�

i=1 isi(t).

The proof breaks down into three steps. For the first step, we show that ifs� j
2 �(t) > 0, then the expected

change inf (t), or E[ f (t + 1) − f (t)| f (t)], is negative. For the second step, we show that if we begin a
state wheref (t) is large, then for some suitably largeT , for almost all of the nextT stepss� j

2 � > 0 with
a suitably high probability. Combining these two steps, we find that, wheneverf (t) is sufficiently large,
the expected change inf (t) is negative over a suitably long intervalT . The third step is to this fact and
results from the general theory of Markov chains that to show that we may conclude that the expected waste
is bounded.

The challenging part of the proof is the second step, where we must show thats� j
2� > 0 for most of a suitably

large interval. The first step is actually a simple lemma, entirely similar to one given in [11]. However, since
the lemma is heavily based on the fact thatj = k − 2, we present a proof here.

Lemma 5 ([11], Proposition 5) Suppose that s� j
2 �(t) > 0. Then E[ f (t + 1) − f (t)| f (t)] = −1/j .

Proof: Consider the sizei of the item inserted at timet +1. If 1 ≤ i ≤ � j/2�, then the new item is assigned
to a bin with remaining capacityl, i ≤ l ≤ � j/2�, and f decreases byi. If � j

2� < i ≤ j , then, since
s� j/2� > 0, Proposition 3 implies that there is no bin with remaining capacityi. Thus, the incoming item is
put into a new bin, i.e.,sk−i increases by 1 andf increases byk − i. The expected change inf is therefore

1

j

(� j/2�∑
i=1

(−i) +
j∑

i=� j/2�+1

(k − i)

)
= 1

j

(� j/2�∑
i=1

(−i) +
� j/2�∑
i′=2

i ′
)

, (1)

becausek − j = k − (k − 2) = 2 and, sincej is odd,k − (� j/2� + 1) = � j/2�. It is easy to verify that
equation (1) evaluates to−1/j .

The third step relies on general conditions for a multi-dimensional Markov chain to be ergodic; we cite the
appropriate lemma from [11], which is derived from [5].

Lemma 6 ([11], Lemma 6, or [5], Corollary 7.1.3) LetM be an irreducible, aperiodic Markov chain with
state space S ⊆ Zk , and b a positive integer. Denote by pb

s s ′ the transition probability from s to s ′ inMb,
the b-step version ofM. Let 	 : S → R+ be a non-negative real-valued function on S which satisfies the
following conditions:

1. There are constants C1, µ > 0 such that 	(s) > C1||s||µ for all s ∈ S.

2. There is a constant C2 > 0 such that pb
s s ′ = 0 whenever |	(s) − 	(s ′)| > C2, for all s, s ′ ∈ S.

3. There is a finite set B ⊂ S and a constant ε > 0 such that
∑

s ′∈S pb
s s ′(	(s ′) − 	(s)) < −ε for all

s ∈ S\B.
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ThenM is ergodic with stationary distribution π satisfying π(s) < Ce−δ	(s) for all s ∈ S, where C and δ

are positive constants.

For the bin-packing problem, we shall use	(s) = ∑� j
2 �

i=1 isi + k − 1 = f + k − 1, where f is the waste
from small tokens. This is an upper bound on the total waste. One may check that the first two conditions
of Lemma 6 are satisfied for any choice ofb. It remains to find appropriateb, B, andε; this is equivalent to
the second step of our proof sketch, which we now focus on.

3.3 Random Fit over long intervals

We now show that, for all but a finite number of starting states,s� j
2 � > 0 for most of sufficiently large

intervals. We shall often compare the behavior of a token with arandom walk over an interval [0, R]. We
shall usep↑(i) to denote the probability that a walk ati moves toi + 1 in one step. Similarlyp ↓(i) is
the probability that a walk ati moves toi − 1 in one step, andp→ = 1 − p↑(i) − p↓(i) (the self-loop
probability) is the probability that the walk remains ati when ati. We shall drop thei in cases wherep ↑(i)
is independent ofi (except at 0 andR, asp↓(0) andp↑(R) are necessarily 0, and the self-loop probabilities
are increased accordingly); this is called thehomogeneous case. A random walk isdownward biased if
p↑(i) ≤ p↓(i) for all i in the range of the walk (except the boundaries).

In order to bound the behavior of the random walks we study, we shall require the following lemma, which
is a weak bound derived from Corollary 4.2 of [12]:

Lemma 7 Let λ1 < 1 denote the second largest eigenvalue of the transition matrix for a random walk W
on [0, R]. Let π(A) = ∑

a∈A πa be the stationary probability that the walk lies in A ⊂ R, and W l(A) be the
number of steps the walk spends in A during the first l time steps. If the walk starts at 0, then for any integer
l ≥ 1 and 2 ≤ β < 1/π(A),

Pr[Wl (A) ≥ βπ(A)l] ≤ β√
π0

exp
(
−π(A)2(1 − λ1)l

)
.

To use the above lemma we will require the following fact about the eigenvalues:

Lemma 8 For the random walk on [0, R] with p↑ = p↓ = α, λ1 ≤ 1 − 2α
R2 .

We start with a preliminary lemma that provides both the first step and the main idea of the proof. In this
lemma, and all that follows, we assume thatT is at least as large as some constant chosen so that the bounds
hold.

Lemma 9 For sufficiently large T , if si > T 4 over the time interval [0, T ], then si+1 ≥ T 1/16 for all but at
most T 15/16 steps with probability at least 1 − 2

T 2 .

Proof: By Lemma 4, the behavior of the tokensi+1 at any point on the interval [0, T ] can be related to
a random walk over the positive integers, wherep↑(i) ≥ 1/j and p↓(i) ≤ 1

j + si
si +si+1

(except ati = 0).
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Furthermore, the probability thatsi+1 ≥ T 1/16 for all but at mostT 15/16 steps, which we shall hereafter call
z, is clearly minimized if we startsi+1 at 0. This information is sufficient to prove thatz ≥ 2

T 2 directly;
however, we suggest an easier approach.

We first note that, since we are comparing the behavior ofsi+1 to a specific random walk,z can only increase
if we restrict the walk (or, equivalently, the tokensi+1) to the interval [0, T 1/4 − 1]. Bounding the walk in
this way will simplify the analysis. Also, for convenience, we also temporarily ignore the problem of the
waiting time whensi+1 = 0 as described in Lemma 6.

We now split each step, or item arrival, into two phases. In phase one, a random permutation order is chosen
for the open bins. In phase two, an item size is chosen from the distributionU{ j, k}, and this item is placed
according to the RF rule.

By breaking each step up in this manner, we see that whenever the permutation chosen in phase one has a
bin with remaining capacityi ahead of all bins of remaining capacityi + 1, then for phase two, the worst
possible case is thatsi+1 behaves like an unbiased random walk, withp↑ = p↓ = 1/j . (Note that it is
possible thatp↓ ≤ 1/j , but we maximize the time thatsi+1 ≥ T 1/16 by assuming thatp↓ = 1/j .) In the
alternate case where a bin with remaining capacityi + 1 lies ahead of all bins of capacityi in phase one, we
may again overestimatez by assuming thatp↑ = 0 andp↓ = 1 in phase two. As we now show, by splitting
each step into two phases in this way, we have essentially reduced the problem to an unbiased walk.

We note that, over the interval [0, T ] we have enforced the restrictionssi+1 ≤ T 1/4 andsi ≥ T 4. Hence,
with probability at least 1

T 2 , for no steps in this interval do we place a bin of capacityi + 1 ahead of all
bins of capacityi in phase one. We call this eventE . Conditioned onE , si+1 behaves like an unbiased
random walk on [0, T 1/4 − 1] over the entire interval. In particular, the stationary distribution is uniform, so
πi = T −1/4 for all i. Let Z be the number of steps for whichsi+1 ≤ T 1/16. From Lemmas 7 and 8, we find
that for sufficiently largeT ,

Pr[Z ≥ T 15/16 | E ] ≤ T 1/8 · T 1/8 exp
(−2T 1/8

j

)
(2)

≤ 1

T 2
. (3)

Using a union bound on probabilities now yields the lemma.

To handle the discrepancy when the walk is at 0, we note that we can explicitly bound the total number of
steps at 0 with sufficiently high probability using part 2 of Lemma 4. The bounds given by equations (2)
and (3) can also be tightened so that for sufficiently largeT , the lemma as stated holds.

We have shown that ifsi is extremely large over a sufficiently long interval, thensi+1 is also be large over
most of the interval with high probability. Our actual goal is to show that if anys i is extremely large (for
i ≤ � j

2�), thens� j
2 � > 0 over most of the interval. Hence we will require an inductive, but slightly weaker,

version of Lemma 9.

One problem in generalizing Lemma 9 is that ifsi is large only for most, and not all, of the steps, then
there are several steps where we cannot explicitly say howsi+1 behaves. Moreover, these steps may affect
the behavior ofsi+1 at any point. We avoid the problem by introducing an adversary model, generalizing a
similar argument from [11]. This adversary model allows us to consider the worst possible case for the steps
wheresi is smaller than we need.
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We consider how an adversary can affect a homogeneous downward biased random walk on [0, R]. The
goal of the adversary is to keep the random walk at or below some levell, l ≥ 2, for as many steps as
possible. The adversary may control a fixed number of steps. In a controlled step, the adversary may specify
any probability distribution on the legal moves from the current state; the step of the walk is then made
according to that distribution. In all the other steps, the process behaves like a homogeneous downward
biased random walk.

In the following, given an adversary strategyA, let p A(y, i, n, m, l) denote the probability that a homoge-
neous downward biased random walk ofn steps on the interval [0, R] starting ati with y controlled steps
used according toA, spends at leastm steps at or belowl.

Lemma 10 For all non-negative integers y, i, n, m and l, with l < R and i < R −1, the exists an adversary
strategy A0

(a) that never uses a controlled step when the walk is below l

(b) that always uses a controlled step as soon as possible when the walk is at or above l + 1 to push the
walk downwards

such that pA0(y, i, n, m, l) ≥ pA(y, i, n, m, l) for all adversaries A.

Proof: The case wherel = 0, the walk is unbiased, and the self-loop probability is 0 corresponds to what
is proven in [11, Lemma 7]; we extend the argument to this more general case. We use induction onn. We
first note that any adversary that uses a downward move when the walk is belowl can be replaced by one
that does not. This follows by a simple coupling argument. Compare the strategy where the adversary uses
a downward move belowl to one where the adversary waits until the walk is atl by coupling all random
moves; the second strategy will be at the same height or below the first after the downward move. (It will
end up below only if the walk reaches 0.) Thus we have shown that there is an optimal adversary strategy
that satisfies condition (a).

We now concentrate on adversary strategies that use their moves at or abovel + 1. Let D y R denote the
strategyA1 which uses they adversary-controlled steps as soon as possible when the walk is at or above
l + 1, and then follows the random walk. LetRD y denote the strategyA2 that begins with a random step,
and then uses the adversary-controlled steps as soon as possible when the walk is at or abovel + 1. Let
pA1(y, i, n, m, l) be the probability of the event that the walk is at or belowl for at leastm of the nextn
steps after starting ati when adversary strategyA1 = Dy R is used. Similarly, letpA2(y, i, n, m, l) be the
probability of the event that the walk is at or belowl for at leastm of the nextn steps after starting ati when
adversary strategyA2 = RDy. We claim

pA1(y, i, n, m, l) ≥ pA2(y, i, n, m, l), (4)

and by induction this suffices to prove that there is an optimal strategy satisfying condition (b).

We first present two useful propositions.

Proposition 11 pA1(y, l, n, m, l) ≥ pA1(y, l, n, m + 1, l)

Proposition 12 pA1(y, l − 1, n, m, l) ≥ pA1(y + 1, l, n + 1, m + 1, l)
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Proposition 11 is easy to verify. We prove Proposition 12. LetWl−1 be the walk that starts atl−1 and follows
strategyDy R; similarly let Wl be the walk that starts atl and follows strategyD y+1R. Let Tl−1 be the time
whenWl−1 first makes the transition(l − 1) → l and letTl be the time whenWl first makes the transition
l → (l + 1). Clearly,Tl−1 = Tl in distribution. We only have to consider the event thatTl−1 = Tl ≤ n + 1
andTl−1 = Tl ≥ m. Then, the remainder ofWl−1 is a walk starting atl that follows strategyD y R and must
be at or belowl for at leastm − Tl−1 of the nextn − Tl−1 steps. In the case ofWl , the adversary first pushes
the walk down tol and the remainder is also a walk that starts atl, follows strategyD y R and must be at or
belowl for at leastm+1−Tl = m+1−Tl−1 of the nextn+1−(Tl +1) = n−Tl steps. Using Proposition 11
and taking again into account thatTl−1 = Tl in distribution, we conclude the probability of the first walk is
not smaller than that of the second walk, i.e.,pA1(y, l − 1, n, m, l) ≥ pA1(y + 1, l, n + 1, m + 1, l).

We return to the proof of inequality (4). Ifi ≤ l, both strategiesA1 andA2 start the same and we are done
by induction. Ifi > y + l, both strategies give the same distribution aftery + 1 steps, so the two quantities
pA1(y, i, n, m, l) and pA2(y, i, n, m, l) are equal. The interesting case is whenl < i ≤ y + l. In this case,
strategyA1 forces the walk fromi down tol usingi − l controlled steps. Thus,

pA1(y, i, n, m, l) = pA1(y ′, l, n′, m − 1, l),

wheren′ = n − i + l andy ′ = y − i + l. Also

pA2(y, i, n, m, l) = p↑ · pA1(y ′ − 1, l, n′ − 2, m − 1, l) + p↓ · pA1(y ′ + 1, l, n′, m − 1, l)

+ p→ · pA1(y ′, l, n′ − 1, m − 1, l)

and

pA1(y ′, l, n′, m − 1, l) = p↑ · pA1(y ′ − 1, l, n′ − 2, m − 2, l) + p↓ · pA1(y ′, l − 1, n′ − 1, m − 2, l)

+ p→ · pA1(y ′, l, n′ − 1, m − 2, l).

Using Proposition 11, we havep A1(y ′ − 1, l, n′ − 2, m − 2, l) ≥ pA1(y ′ − 1, l, n′ − 2, m − 1, l) and
pA1(y ′, l, n′ − 1, m − 2, l) ≥ pA1(y ′, l, n′ − 1, m − 1, l). Thus,

pA1(y, i, n, m, l) − pA2(y, i, n, m, l) ≥ p↓(pA1(y ′, l − 1, n′ − 1, m − 2, l) − pA1(y ′ + 1, l, n′, m − 1, l)).

Proposition 12 implies that the last term in non-negative.

Lemma 13 Suppose, over a period of T steps, si−1 ≥ T α over all but T 1−α steps for some α ≤ 1/16. Then
si ≥ T α/16 for all but at most T 1−α/16 steps with probability at least 1 − 3T −α/4.

Proof: As in Lemma 9, we may, without loss of generality, restrictsi to the interval [0, T α/4 − 1]. Thensi

behaves like a slightly biased random walk on all but theT 1−α steps for whichsi−1 lies belowT α . Rather
than consider the biased walk, however, we use the same technique as in Lemma 9 to reduce the problem to
an unbiased random walk by splitting each step into two phases. We give the adversary control on all steps
in which a bin with remaining capacityi lies ahead of all bins with capacityi − 1 after the first phase. On
any step for whichsi−1 ≥ T α andsi ≤ T α/4, the probability that a bin with remaining capacityi lies ahead
of all bins with capacityi −1 after the first phase is at most1T 3α/4 . Hence, the expected number of such steps
is at mostT 1−3α/4, and by Markov’s inequality, the number of such steps is at mostT 1−α with probability
at leastT −α/4. LetE be the event that there are no more thanT 1−α such steps.

9



Conditioned onE , the adversary controls at most 2T 1−α steps:T 1−α from the above paragraph, andT 1−α

from the steps wheresi−1 < T α. On all other steps the walk behaves like an unbiased random walk with
p↑ = p↓ = 1/j . (Again, this is not quite true whensi = 0, but this small discrepancy can be easily handled
explicitly as described in Lemma 9; for convenience we dismiss the problem here.) We use this to bound
the probability thatsi lies belowT α/16 for more thanT 1−α/16 steps.

We first consider the moves controlled by the adversary. In the worst case,si begins at 0. By Lemma 10,
there exists an optimal adversary strategyA0 that uses a controlled step wheneversi reachesT α/16 − 1 or
T α/16. Hence, to overestimate the effect of the adversary, we assume the following: the adversary uses its
moves wheneversi reachesT α/16; the adversary’s move returns the walk tosi = 0; and all steps until the
adversary’s moves are used count as steps wheresi ∈ [0, T α/16 − 1]. These assumptions can only increase
the time until the adversary’s moves are used. The expected time forsi to reachT α/16 from 0 is cT α/8

for some constantc. Thus the expected number of steps untilA has used all of its moves it bounded by
cT 1−7α/8. Let Z1 be the number of steps until theA0 uses all of its moves. Then by Markov’s inequality

Pr
[

Z1 ≥ T 1−α/16

2
|E
]

≤ 2cT −13α/16 ≤ T −α/4

for sufficiently largeT .

After the adversary steps are used, the number of steps thatsi spends in the intervalI = [0, T α/16 − 1] is
stochastically dominated by that of an unbiased random walkU on [0, T α/4] that runs forT steps and begins
at 0. LetZ2 be the number of stepsU spends inI . As in the proof of Lemma 9, the equilibrium distribution
of U is uniform over [0, T α/4 − 1]. Thusπ(I) = T −3α/16. Using Lemmas 7 and 8 we obtain

Pr
[

Z2 ≥ T 1−α/16

2

]
≤ T α/8 · T α/8

2
exp

(−T −3α/8 · T −α/2 · T

j

)
≤ T −α/4

for sufficiently largeT .

Taking a union bound, we find that the probability thatZ 1 + Z2 ≥ T 1−α/16 is at least 1− 3T −α/4, which
proves the lemma.

We are now ready to prove the main theorem:

Theorem 14 Random Fit is stable under the distribution U{k − 2, k} for all k ≥ 3.

Proof: As in our previous calculations we first assume thatk is odd. As in Theorem 1 of [11], it suffices
to consider the drift off (s) over a suitably large intervalT , and show that it is negative for all but a finite
number of states. The excluded set of statesG will be

G = {s ∈ S : ∀i, si ≤ T 4},

whereT will be determined. Consider any starting state outside of this setG. Applying Lemma 9 and then
Lemma 13 inductively, we find that with probability at least 1− (c1/T ε1), s� j

2 � > 0 over all butT ε2 of the
steps, for some constantsc1 andε1, ε2 < 1 dependent only onj . LetA be the event thats� j

2 � > 0 over all

10



but T ε2 of the steps. As the expected value off decreases by 1/j whenevers� j
2� > 0 by Lemma 5, and it

increases by at mostj otherwise,

E[ f (T ) − f (0)| f (0)] ≤ E[ f (T ) − f (0)| f (0) ∧A] + (1 − Pr[A]) E[ f (T ) − f (0)| f (0) ∧ ¬A] (5)

≤
[
−1

j

(
T − T ε2

)+ j T ε2

]
+ c1T 1−ε1 j. (6)

By choosingT sufficiently large, we may make this expression smaller than−δ for some constantδ. This
suffices to prove the theorem, by Lemma 6.

If k is even, then there is middle tokens� j/2�+1. If s� j/2�+1 = 0, everything is exactly as in the case where
k is odd. If s� j/2�+1 > 0, then by Lemma 3s� j/2�+1 = 1 and no bins with larger capacity are open. We
consider the time steps whens� j/2�+1 = 1. In these stepsf might increase because a small item may be
inserted in the bin of capacity� j/2� + 1. Lemmas 9 and 13, which apply whenk is even, give that with
probability at least 1− (c1/T ε1), s� j

2 � > T 1−ε2 over all butT ε2 of the steps, for some constantsc1 and
ε1, ε2 < 1 dependent only onj . Hence it should be a very rare event for a small item to be placed into a bin
of capacity� j/2� + 1.

In fact, in exactly the same manner as shown in Lemma 5, one may show the following:

Proposition 15 Suppose that k is even and s� j/2� > Z . Then E[ f (t + 1) − f (t)| f (t)] ≤ −1/j + 2/Z .

We conclude that in this case

E[ f (T ) − f (0)| f (0)] ≤ E[ f (T ) − f (0)| f (0) ∧A] + (1 − Pr[A]) E[ f (T ) − f (0)| f (0) ∧ ¬A] (7)

≤
[(

−1

j
+ 2

T 1−ε2

)(
T − T ε2

)+ j T ε2

]
+ c1T 1−ε1 j. (8)

This expression can also be bounded by−δ if T is chosen large enough.

One may check that from the inductive use of Lemma 13, theε2 in Theorem 14 is exponential inj , and
hence our bounds on the expected waste is doubly exponential inj . It is an interesting question whether
better bounds are possible.

It is also worthwhile to note the following:

Theorem 16 Random Fit(d) for d ≥ 2 is stable under the distribution U{k − 2, k} for all k ≥ 3.

The proof is entirely similar to that for Random Fit. Simulations suggest that asd increases, the behavior of
Random Fit(d) rapidly approaches that of Best Fit, as one might expect.

Theorem 17 Random Fit and Random Fit(d), for d ≥ 2, have expected waste o(n) under the distributions
U{k − 1, k} and U{k, k}, for all k ≥ 3.

Proof: We only consider the distributionU{k − 1, k}, as the waste under the distributionU{k, k} is entirely
similar. Under this distribution, the statement corresponding to Lemma 5 is that ifs � j

2 �(t) > 0, thenE[ f (t +
1) − f (t)| f (t)] = 0. Using the same notation as in the proof of Theorem 14 we obtain

E[ f (T ) − f (0)| f (0)] ≤ j T ε2 + c1T 1−ε1 j

11



for some constantsc1 andε1, ε2 < 1 dependent only onj . Hence, once the expected waste reaches a certain
constant, its expected growth is sublinear, proving the theorem.

Whether tighter bounds, more like those known for Best Fit and First Fit, are possible for Random Fit under
these distributions remains an open question.

4 Analysis of First Fit under distribution U {k − 2, k}

We now consider how to modify the proof of RF on the distributionU{k − 2, k} to work for First Fit. Again
we focus on the case wherek is odd; the case wherek is even requires some minor additional work, as for
Random Fit, which we omit here.

One way of thinking about the difficulty in extending the results from RF to FF is to consider the dependence
among the steps. In RF, at each step we have an independent random ordering assigned to the bins, while
in FF, the orders of the bins at different steps are clearly dependent. In particular, the order of the bins at
each step depends on the initial state, over which we have negligible control. The work of this section will
focus on finding ways to circumvent effect of these dependencies so that we can apply the same ideas that
we used in Section 3.

Let us consider an initial state, given at timet = 0. In order to avoid problems caused by the order of bins
in the initial state, we focus on bins that are created after time 0. In fact, we are even more restrictive: let a
single i bin at timet be a bin created after time 0 that has remaining capacityi and contains only one item,
and denote the number of singlei bins byu i(t). Instead of the vectors we considered previously, we shall
primarily the vectoru = (u1, . . . , u� j

2�). The following important points aboutu make it useful:

• If u� j
2 � > 0, thens� j

2� > 0 also. Hence, provingu� j
2 � > 0 over most of the steps is sufficient.

• Regardless of the initial state,(u1, . . . , u� j
2 �) = (0, . . . , 0) at time 0.

To see how the consideringu makes things easier, let us prove a lemma similar to Lemma 9 for First Fit.

Lemma 18 Suppose si(0) ≥ T . Then when ui+1 > 0, ui+1 behaves like a random walk with probability
at least 1/j of increasing at each step and probability at most 1/j of decreasing at each step. Also, the
time spent by ui+1 on each visit to 0 is stochastically dominated by a random variable D with constant
expectation (that depends only on j ). In particular, u i+1 ≥ T 1/16 for all but at most T 15/16 steps with
probability at least 1 − 1

T 2 .

Proof: Sincesi(0) ≥ T , over the nextT steps there is always a bin with remaining capacityi ahead of all
single bins with remaining capacityi +1 created after time 0. This implies thatu i+1 can decrease only when
an item of sizei + 1 arrives, and hence decreases with probability at most 1/j at each step. Whenui+1 > 0,
thenui+1 increases whenever an item of sizek − i −1 arrives, and hence it increases with probability at least
1/j . The case whereui+1 = 0 is special, and is handled as in Lemma 4. The final result, thatui+1 ≥ T 1/16

most of the time, now follows using an argument similar to Lemma 9.
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As in the proof for RF, we now want to extend the above lemma inductively. Similar to the RF case, we
would like to say that a bin of sizei lies ahead of all singlei +1 bins most of the time, whenever the number
of singlei + 1 bins is sufficiently small. In Lemma 13, we accomplished this by splitting each step into two
substeps, with the first substep re-ordering the bins randomly. We do not have this luxury for the FF case.
However, it seems intuitive that the bins should be “almost” randomly distributed at each step. This point is
made explicit in the following lemma:

Lemma 19 Let E be the event that a single i bin at time t lies ahead of all single i + 1 bins. Let z b,c
t =

Pr{E |ui(t) = b, ui+1(t) = c}. Then zb,c
t ≤ b

b+c .

Proof: Consider any sequencea = a1, a2, . . . , at of t items that ends with a singlei + 1 bin ahead of all
singlei bins withu i (t) = b andui+1(t) = c. We center on the steps where the singlei andi + 1 bins were
created. We first claim that if a singlei bin was created at stepg and a singlei + 1 bin was created at step
h, then switching the entering items at stepsg andh switches the order of these two bins, but has no other
effect on the algorithm. This can easily be proven by induction for all bins behind the first singlei + 1 bin,
since there is no way a second item could have been placed in any of these bins. The only difficult case is
that of the first singlei + 1 bin, call it B. The reason thatB is a special case is that it is possible that since
B is the frontmost single bin, it may be that a second item could have been placed in it if we change its
capacity. However, since switching the appropriate stepsg andh would only lower the capacity ofB, it is
clear that ifB has not obtained a second item in the original sequence, it cannot in the modified sequence as
well.

We now divide the sequences into equivalence classes. For a sequencea, let Y i
t (a) be the set of times at

which the singlei bins at timet were created. Two sequencesa anda ′ are equivalent ifY i
t (a) ∪ Y i+1

t (a) =
Y i

t (a
′) ∪ Y i+1

t (a′) andui(t) = b, ui+1(t) = c for both sequences.

Take any sequencea with a singlei + 1 bin ahead of all singlei bins at timet . From the above paragraph,
permuting the times when a singlei + 1 bin and a singlei bin were created yields equivalent sequences.
Hence, by taking all ways of splittingY i

t (a) ∪ Y i+1
t (a) into two groups of sizeb andc, and using this

division to determine when singlei andi + 1 bins are created, we find that every sequencea has at least(b+c
b

)
sequences in its equivalence class. Since the probabilitya and any of these other

(b+c
b

)
sequences

occurring are equal, it is straightforward to show combinatorially that there are at leastb/c times as many
sequences with a singlei bin ahead of all singlei + 1 bins as there are with a singlei + 1 bin ahead of all
singlei bin. Hencezb,c

t ≤ b
b+c .

Lemma 19 suggests that the behavior of FF should not be worse than RF, with the understanding that the
ui now play the role of thesi . As in the case of RF, we would like to say the small tokensui behave like
a unbiased random walk over most of the steps. This leads us to the prove a variant of Lemma 13 in this
setting, which is phrased slightly differently in order to appropriately handle the conditioning.

Lemma 20 Suppose, over a period of T steps, ui−1 ≥ T α over all but at most T 1−α steps for some α ≤ 1/16
with probability at least 1/2. Then, conditioned on u i−1 ≥ T α over all but at most T 1−α steps, ui ≥ T α/16

for all but at most T 1−α/16 steps with probability at least 1 − 4T −α/4.

Proof: As in Lemma 13, we must bound the number of steps for which the behavior ofui is not that of
an unbiased random walk, and then apply an adversary argument. Also as in Lemma 13, we will restrict
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our consideration to the behavior ofui to the interval [0, T α/4 − 1]. (This can be interpreted as though
if ui ≥ T α/4, we may assume that a single bin of sizei + 1 lies ahead of all bins of sizei, which is a
conservative assumption.)

To bound the number of steps the adversary controls, then, we bound the number of stepsX that satisfy the
following conditions:

• ui−1 ≥ T α .

• ui ≤ T α/4 − 1.

• A singlei bin lies ahead of all singlei − 1 bins.

The value ofX , in addition to the number of steps for whichu i−1 < T α, bounds the number of steps where
the adversary controls the walk; on all other steps, we either have thatu i ≥ T α/4 or a singlei − 1 bin lies
in front of all singlei bins, and sou i behaves (at worst) as an unbiased random walk withp↑ = p↓ = 1/j .
(As usual, we ignore the discrepancy atui = 0.)

Let yt be the probability that on thet th step the above conditions hold. Then

E[X ] = E[
T −1∑
t=0

yt ] =
T −1∑
t=0

E[yt ]

≤
T −1∑
t=0

T α/4

T α + T α/4

< T 1−3α/4.

Although it would seem this is enough to bound the number of adversary steps, we must be careful. LetE

be the event thatui−1 ≥ T α over all butT 1−α steps. The expected number of additional adversary steps
from singlei − 1 bins being frontmost is notE[X ], but E[X |E ]. From the hypothesis of the lemma that
Pr(E) ≥ 1/2, however, we must haveE[X |E ] ≤ 2T 1−3α/4. Using Markov’s law, we have

Pr({X |E} ≥ T 1−α) ≤ 2T −α/4.

Hence, conditioned onE , the number of steps the adversary controls is at most 2T 1−α with a probability at
least 1− 2T −α/4. The rest of the proof now proceeds as in Lemma 13.

We are now ready to prove the main theorem:

Theorem 21 First Fit is stable under the distribution U{k − 2, k} for all k ≥ 3.

Proof: As in Theorem 14, it suffices to consider the drift off (s) over a suitably large intervalT , and show
that it is negative for all but a finite number of states. The excluded set of statesG will be

G = {s ∈ S : ∀i, si ≤ T },
for some suitably largeT . We now apply Lemma 18 and Lemma 20 to obtain a bound onE[ f (T ) −
f (0)| f (0)] similar to that in Theorem 14.
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We would then like to apply Lemma 6; however, technically we cannot do so, as the state space of the
underlying Markov chain is not embedded in a fixed dimensional space. Similar results, however, can be
applied in this setting, once we have shown that the expected change in the wastef is negative for a suitably
largeT . For example, [14, Theorem 13.0.1] can be used to show that the chain is ergodic, and [6, Theorem
3.1] implies that in the stationary distribution, the distribution of the waste has an exponentially decreasing
tail.

5 Conclusions

We have demonstrated that the First Fit bin packing algorithm is stable on the distributionU{k − 2, k}. We
believe that our result demonstrates that the Markov chain approach may be useful, even in situations where
the natural description of a problem does not have a convenient state space. Our analysis made use of insight
gained from a novel packing algorithm, Random Fit, which appears interesting in its own right.

An open question is to tighten the bounds developed in this paper. For both First Fit and Random Fit, our
bounds for the expected waste are doubly exponential inj . Simulations suggest that the expected waste for
First Fit may only be exponential inj [9]. Unfortunately, the simulations for Random Fit seem to suggest
that the expected waste for Random Fit may indeed be doubly exponential inj , in which case it seems that
another approach may be necessary to achieve better bounds for First Fit.
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