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ABSTRACT
We describe Fair Layered Increase/Decrease with Dynamic
Layering (FLID-DL), a new multi-rate congestion control al-
gorithm for layered multicast sessions. FLID-DL generalizes
the receiver-driven layered congestion (RLC) control proto-
col introduced by Vicisano, Rizzo, and Crowcroft, ameliorat-
ing the problems associated with large IGMP leave latencies
and abrupt rate increases. Like RLC, FLID-DL is a scalable,
receiver-driven congestion control mechanism in which re-
ceivers add layers at sender-initiated synchronization points
and leave layers when they experience congestion. FLID-DL
congestion control coexists with TCP ows as well as other
FLID-DL sessions and supports general rates on the di�erent
multicast layers. We demonstrate via simulations that our
congestion control scheme exhibits better fairness properties
and provides better throughput than previous methods.
A key contribution that enables FLID-DL and may be

useful elsewhere is Dynamic Layering (DL), which mitigates
the negative impact of long IGMP leave latencies and elim-
inates the need for probe intervals present in RLC. We use
DL to respond to congestion much faster than IGMP leave
operations, which have proven to be a bottleneck for prior
work.

1. INTRODUCTION
One of the signi�cant remaining hurdles to widespread

adoption of IP multicast is the development of suitable con-
gestion control algorithms. Ideally, one would hope for a
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multicast analogue of TCP congestion control. Such a pro-
tocol would be an end-to-end congestion control mechanism
that scales to large audience sizes, matches the functional re-
lationship between throughput and packet loss rate at each
receiver that TCP achieves, and provides responsiveness to
changing network conditions on the order of a round-trip
time, like TCP. Challenges include receiver heterogeneity,
accurate modeling of TCP performance, and providing com-
patibility with other transport-level services such as relia-
bility. In this paper, we provide a new multicast congestion
control scheme that makes substantial strides toward a de-
ployable solution.
De�ning appropriate multicast congestion control algo-

rithms which scale to large, heterogeneous audiences sizes
is essential for enabling multicast \killer apps" such as re-
liable content distribution to large audiences [3] and video
streaming [10]. Multi-rate congestion control, as opposed to
single-rate congestion control [15], is a de facto requirement
for scaling to large audience sizes, to avoid the problem of
establishing a single session rate which caters to the client
demanding the smallest rate.
Standard approaches to multi-rate congestion control em-

ploy layered multicast [10, 16, 3] from a single source. Lay-
ered multicast organizes multiple multicast groups into log-
ical layers. A host tunes its reception rate by subscribing
to and unsubscribing from layers, i.e., by joining and leav-
ing multicast groups. Di�erent receivers may subscribe at
di�erent end-to-end subscription rates. A cumulative lay-
ered scheme has the additional property that all receivers
must subscribe to and unsubscribe from layers in consecu-
tive order. Several congestion control schemes for layered
multicast sessions exist, but all have drawbacks.
Our congestion control scheme, which is based in part

on the RLC protocol developed by Vicisano, Rizzo, and
Crowcroft in [16], coexists with TCP, scales to large audi-
ence sizes, requires no changes to network routers or multi-
casting routing protocols, and faces no deployment hurdles
(beyond those of deploying multicast in general). We call
this scheme FLID-DL, which stands for \Fair Layered In-
crease/Decrease with Dynamic Layering". FLID provides
a generalization and simpli�cation of RLC's TCP-like con-
gestion control mechanisms for an arbitrary organization of
multicast layers; DL is a strategy which e�ectively avoids a
major response bottleneck caused by IGMP leave latency.
The Asynchronous Layered Coding (ALC) approach within

the Reliable Multicast Transport (RMT) working group of
the IETF provides a reliable layered multicast solution for
content distribution [8]. ALC currently lacks a congestion
control protocol backed by consensus that is suitable for
standardization within the IETF. We argue that FLID com-
bined with DL provides a signi�cant step towards a conges-
tion control protocol for ALC.



The remainder of the paper is organized as follows. In Sec-
tion 2 we discuss some of the basic issues associated with the
design of multi-rate congestion control schemes and describe
the RLC protocol in more detail. In Section 3, we de�ne DL
and demonstrate its capability to eliminate the performance
penalty of slow IGMP leave operations. In Section 4, we de-
�ne FLID and show how it provides improved TCP-friendly
congestion control. In Section 5, we provide experimental
evidence based on ns simulations to support our results, and
we conclude with directions for future work in Section 6.

2. PREVIOUS WORK
The technique of congestion-controlled cumulative layered

multicast was �rst proposed by McCanne, Jacobson and
Vetterli [10] in the context of packet video transmission to
large heterogeneous audiences. Their Receiver-Driven Lay-
ered Multicast (RLM) protocol achieves scalability by using
a receiver-driven methodology, in which the hosts tune their
subscription level by joining and leaving layers. They advo-
cate an approach in which receivers periodically perform join
experiments by subscribing to an additional layer and drop-
ping a layer when they experience packet loss. There are
several challenges that this approach introduces. First, one
host's join experiments can introduce packet loss at other
hosts behind the same bottleneck link, producing a poten-
tial source of unfairness or ineÆciency. Second, standard
approaches to cumulative layered multicast have exponen-
tially increasing rates over the layers, which implies that
the frequency of join experiments across the layers must be
carefully designed to be friendly to TCP traÆc and other
sessions. Addressing these challenges motivated Vicisano,
Rizzo, and Crowcroft to propose their Receiver-driven Lay-
ered Congestion Control (RLC) protocol [16].

2.1 RLC
RLC [16] was designed to provide a TCP-friendly multi-

rate congestion control scheme which scales to large audi-
ence sizes, requires no modi�cations to routers or routing
protocols, and does not require any coordination amongst
receivers. For full scalability, a receiver-driven approach is
required, as maintenance of per-receiver state at the source
is infeasible and unscalable. But, uncoordinated join ex-
periments by receivers pose substantial problems, as was
observed in [10]. The authors of RLC cleverly avoid this
problem by synchronizing join experiments. The source
places synchronization points or increase signals into pack-
ets, where receivers can now only add a given layer after
an appropriate increase signal for that layer. These increase
signals are also cumulative, i.e., an increase signal j indi-
cates that all receivers whose maximum subscription level is
at most j can join a single additional layer. The use of cu-
mulative increase signals solves the problem of synchronizing
receivers behind a shared bottleneck, since when one receiver
joins a layer that exceeds the bottleneck bandwidth, all other
receivers behind that bottleneck will have also joined a layer.
Then, since they will all experience packet loss, they will all
drop back to their original rate prior to the join experiment.
In practice, care must be taken whenever a join experi-

ment is performed, since by oversubscribing, a receiver can
push the network into a state of congestion. To alleviate
the congestion, the receiver must then unsubscribe from
the layer by performing an IGMP leave operation, which
can often incur substantial latency, leaving the network in

a congested state1. Since oversubscription incurs a substan-
tial cost, to minimize the likelihood of oversubscribing, the
RLC source periodically injects a brief burst of packets on
each layer prior to a synchronization point on that layer.
The burst on layer i is designed to simulate the rate of layer
i + 1, the idea being that those receivers which lose pack-
ets during the burst learn that adding layer i+ 1 is unsafe,
without incurring the cost of a join and leave operation. Un-
fortunately, if a receiver does not lose a packet in the burst,
it still has no guarantee that adding the layer is safe, since
the burst may be of insuÆcient length to induce packet loss
(bursts recommended in [16] can be as brief as 8 packets).
Thus a receiver is still prone to oversubscription. The com-
plexity and lingering uncertainty associated with avoiding
costly IGMP operations is one of the main problems with
RLC which we address.
Another challenge addressed by RLC is the problem of ap-

propriately orchestrating synchronization signals across the
layers. The primary goal for RLC is to be fair to other
instances of itself as well as to other congestion control
algorithms such as TCP. As with most proposed layered
multicast schemes, RLC requires that the rates on the lay-
ers must be exponentially spaced using a doubling scheme,
i.e., the rates on the layers follow the pattern 1; 1; 2; 4; 8; : : :.
While dropping a layer with this scheme performs a TCP-
like multiplicative decrease, adding a layer suddenly dou-
bles the rate. Therefore, RLC cannot be TCP-like at a �ne
granularity, since it cannot perform �ne-grained additive in-
crease. However, it performs TCP-like additive increase at
a coarser granularity by placing increase signals on layer i at
a frequency of 1

Ri
, where Ri is the cumulative rate through

layer i. When used in conjunction with a doubling scheme
on the layer rates, the trajectory induced by this distribu-
tion of increase signals corresponds to linear increase over
large time scales.
One issue which RLC does not adequately address is the

dramatic uctuations in network bandwidth consumption
and the potential for rapid queue buildup that a doubling
scheme can induce. We recommend the use of schemes which
exhibit slower exponential growth in the layer rate, provid-
ing gentler transitions during join experiments.

2.2 TCP fairness
An increasingly widely accepted measure of TCP friend-

liness is to compare the steady state throughput of a ow
along a path to the throughput that TCP would achieve
along that path. For TCP traÆc, a great deal of work has
been done to determine the equation expressing the through-
put as a function of the packet size, the packet loss rate, and
the round-trip time along that path [9, 6, 7, 12]. It has been
advocated that any new congestion control algorithm should
exhibit the same steady state ow rate as suggested by the
TCP equation [9, 1]; ensuring that the ows will then share
available bandwidth fairly across a bottleneck link, since
across the bottleneck link both streams experience the same
packet loss rate. In addition, there is an emerging body
of research that suggests designing congestion control algo-
rithms to explicitly use the TCP equation [7, 9, 13].
In order for a congestion control scheme to be fair in this

sense against TCP, the ow rate must have the same be-
havior as the TCP equation over large time scales. (Note

1We review the root causes of slow IGMP leave operations
in Section 3.1



that while this is a necessary condition, it may not be a suf-
�cient condition, as issues of variance and the mechanics of
rate changes come into play. We will address this issue only
through simulation.) The TCP throughput rate R, in units
of packets per second, can be approximated by the formula
in [12]:

R =
1

RTT
p
q(
p
2=3 + 6

p
3=2q(1 + 32q2))

(1)

where R is a function of the packet loss rate q, the TCP
round trip time RTT , and the round trip time out value
RTO, where we have set RTO = 4RTT according to [7]. In
both RLC and our work, since di�erent multicast hosts have
di�erent end-to-end latencies from the server, and since the
multicast analogue of RTT is not well de�ned, a target value
of RTT , which we call the aggressiveness factor, is �xed in
advance to generate a target rate R.

2.3 The use of a digital fountain for layered
multicast

Since receivers join and leave layers over time in layered
multicast, it is hard to control or predict precisely which
packets they will receive. While this is not particularly prob-
lematic for appropriately encoded streaming content [10]
that does not need to be transmitted reliably, scheduling
packets across the layers in reliable multicast applications
is a challenging problem. Recently there has been much
work on integrating forward error correcting (FEC) codes
into layered multicast as an end-to-end solution for scaling
reliable multicast to audiences with heterogeneous download
bandwidths. The bene�t of using an encoded data stream
is that it is no longer necessary to solve the diÆcult prob-
lem of delivering every single packet to every single host,
thus admitting some exibility into the scheduling of data
packets onto layers over time [16, 3]. In our implementa-
tion, we use a digital fountain encoding [3] to generate an
e�ectively unbounded number of di�erent forward error cor-
recting packets to be scheduled among the di�erent layers.
In this approach, as soon as the receiver receives enough dis-
tinct encoding packets, it can recover the original data, in-
dependent from the particulars of which layers it subscribed
to over time.

3. DYNAMIC LAYERING (DL)
A signi�cant limitation of current approaches to conges-

tion controlled layered multicast is the timeliness of joining
and leaving groups. With all existing schemes, rate increases
can only be accomplished by joining one or more multicast
groups; likewise rate reductions can only be accomplished
by leaving one or more groups. Large join latencies are not
especially problematic, but they introduce sluggish behav-
ior which may cause the throughput of multicast sessions to
underperform. Large leave latencies pose severe problems
however, as they limit responsiveness to congestion and can
create unfairness to sessions which react more quickly to
congestion. In practice, IGMP leave latencies can in fact be
very substantial, often on the order of several seconds.

3.1 IGMP leave latency
With the IGMP group membership protocol [4, 5], when a

host wants to stop receiving content from a multicast group
it sends a leave message to the last hop router. In general,

the last hop router does not track the number of hosts be-
yond the interface participating in a given multicast group,
thus it must poll the hosts to determine whether any are
still active before stopping the ow of packets. To provide
reliability, the router typically polls up to three times before
terminating ow to the group. In current implementations,
each polling attempt can take from 1 to 3 seconds, for an
aggregate leave latency of between 3 and 9 seconds. Dur-
ing this time, multicast traÆc continues to ow through the
last-hop router, even if no subscribers are present. There-
fore, deployable congestion control algorithms for layered
multicast must avoid relying on IGMP leaves to respond to
congestion e�ectively, at least until faster IGMP leaves [14]
are implemented.

3.2 DL overview
The key feature we use to achieve this goal is the use of

dynamic layers, or layers whose rates change over time. Dy-
namic layers are distinguished from static layers over which
the rate of packet transmission to the layer remains �xed for
the duration of the session. The use of static layers neces-
sitates explicit IGMP leaves to perform congestion control;
use of carefully designed dynamic layers does not.
Our approach employs the following paradigm: the sender

decreases the sending rate of each layer over time, and thus
a receiver can decrease its reception rate quickly, simply by
not joining any additional layers. In order for receivers to
maintain a given reception rate they must periodically join
layers at a moderate pace, as though they are on a treadmill.
In order to increase their reception rate they must join ad-
ditional layers beyond those needed to maintain a constant
rate. With this general approach, slow leave operations do
not a�ect the responsiveness to congestion.

3.3 Emulating cumulative layered schemes
We now demonstrate how to emulate any static cumula-

tive layer scheme with a dynamic layer scheme. Suppose
there are ` static layers with rates r0; : : : ; r`�1 where zero is
the index of the base layer, `� 1 is the index of the highest
layer, and a receiver always subscribes to a cumulative set
of layers starting from 0. Key parameters in designing the
dynamic layer scheme are upper bounds on join and leave
latencies.
We de�ne J to be the worst case join latency and L to be

the worst case leave latency. We assume that join latency is
generally small (tens or hundreds of milliseconds) with small
variance, while leave latencies can be much larger and much
more highly variable. Now let s be an integer and T a real
number satisfying J < T < L < (s�1)T . Our corresponding
dynamic layer scheme uses `+ s dynamic layers. Each layer
transmits at a �xed rate for a time slot of length T seconds.
Let d0; : : : ; d`+s�1 be the ` + s dynamic layers and for

convenience in describing the scheme, de�ne r` = r`+1 =
: : : = r`+s�1 = 0. In the dynamic scheme, the transmission
rate on layer dj has rate r(`+j�i) mod (`+s) during time slot i.
An equivalent interpretation is that during time slot i, the
layer dj carries the traÆc corresponding to the static layer
` + j � i mod ` + s. Hence, each layer dj has a period of
`+ s time slots, where it begins transmitting at the highest
rate r`�1, drops sequentially through rates r`�2 down to r0
at time slot boundaries, and then transmits no packets for s
time slots. The periodicity described above is necessary to
eÆciently utilize the multicast address space, as each new



layer corresponds to a separate multicast address.

Example 3.1 Consider a layering scheme where ` = 4 and
ri = i + 1, for i = 1; : : : ; `� 1. Let J = 10 ms and L = 1:5
seconds. If T is chosen to be 1 second, then s = 3. Figure
1 shows the rates on dynamic layers d0 and d1 for the �rst
seven time slots.
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Figure 1: The rates on dynamic layers d0 and d1 for the
�rst seven time slots.

In order to emulate the behavior of a static layer scheme,
there are three operations which a receiver could perform
and which must be emulated on the dynamic layers. For
clarity, we assume that we have a receiver currently sub-
scribing to dynamic layers dk; : : : ; dk+i, i.e. emulating sub-
scription to static layers 0; : : : i in time slot k. (In the discus-
sion of dynamic layering, all the indices are to be interpreted
mod `+ s.) The operations which a receiver can perform on
the next time slot boundary are:

1. Emulate leaving static layer i. To do so, the receiver
passively performs no action at the time slot boundary.
The resulting aggregate rate will drop from

Pi
j=0 rj toPi�1

j=0 rj .

2. Emulate retaining subscription to all current layers.
To do so, the receiver joins dynamic layer dk+i+1 at
the time slot boundary.

3. Emulate joining static layer i + 1: To do so, the re-
ceiver must join both dynamic layer dk+i+1 and dy-
namic layer dk+i+2 at the time slot boundary to move
up to a rate of

Pi+1
j=0 rj .

In all of the cases above, the receiver must also initiate
a leave of dynamic layer dk at the time slot boundary. We
emphasize that this leave need not complete quickly, as layer
dk will transmit at a rate of zero for a substantial number
of time slots. However, the leave must complete before the
time slot at which reuse of layer dk begins. Indeed, this
explains why we use `+s layers; we allow a layer to transmit
at a zero rate for s consecutive time slots so that any leave
message that occurred while the layer was transmitting has
time to complete before the layer begins transmitting again
at a non-zero rate. Note that when layer dk is reused, it will
start transmitting at the maximum possible rate.

The above also requires that the client know the current
time slot (especially to correctly subscribe and leave dy-
namic layers). This can be accomplished in various ways,
including using a separate multicast group for control in-
formation, or making the base layer static and embedding
time slot information for the dynamic layers within the base
layer.
To ensure that the reception rate of the receiver is smooth,

a join can be scheduled just far enough in advance of the be-
ginning of the time slot to ensure that packets start arriving
from the joined dynamic layer just after the beginning of the
next time slot. However, care must be taken that the join
is not early enough to cause reception of packets from the
joined dynamic group before the beginning of the time slot,
as this may cause unnecessary congestion.
For the DL scheme, reactions (that is, joins and passive

leaves) can occur at intervals of time T in a fast and pre-
dictable manner. The length of the time slot T is therefore
a measure of the reactivity to network changes. T should
be roughly the same as a small number of round trip times
for TCP in order to be able to have approximately the same
reaction times to changes in network conditions as TCP.
A receiver requires one leave and at most two joins to

change its rate each T seconds. Smaller values of T make
the system more responsive to loss; however, smaller values
of T mean more join and leave requests per second. The
overhead for these operations in terms of bandwidth and
router utilization should be considered when designing the
time slot and base layer bandwidth. Smaller values of T also
mean more dynamic layers may be required. Larger values
of T mean that on average there is a longer time interval
between the time at which packet loss occurs and the time
at which the receiver can respond to congestion.

3.4 Emulating non-cumulative layered schemes
Our results are not speci�c to cumulative layering ap-

proaches. An arbitrary static layering scheme consisting of `
layers can be emulated by a dynamic scheme with s` layers,
where s is as de�ned above. The idea is to use s dynamic
layers to emulate each static layer; we cycle through those
s dynamic layers so that only one is transmitting data dur-
ing any time slot, and the transmission rate on the dynamic
layer is the rate of the static layer (when it is not 0). Pos-
sible advantages of using non-cumulative layering schemes
are discussed in [2].

4. FAIR LAYERED INCREASE/DECREASE
Fair Layered Increase/Decrease (FLID) is a protocol that

is used to allow receivers to increase and decrease their re-
ception rates based on congestion conditions so that the av-
erage throughput is similar to a TCP ow with a �xed RTT
value, experiencing the same loss rate. FLID can either be
implemented on top of DL, or on top of a static layering
scheme (preferably in an environment where leave opera-
tions do not incur large latency).
FLID is akin to RLC [16] in many ways. The server places

signals into packets that completely dictate the behavior of
receivers with regards to joining and leaving layers. This
property helps to coordinate the behavior of receivers be-
hind bottleneck links. Like RLC, there is no feedback from
receivers to the server, and di�erent receivers may join dif-
ferent numbers of layers depending on the di�erent network
conditions on the paths between the server and the receivers.



These properties make FLID scalable to an unlimited num-
ber of receivers. In particular, receivers with slower band-
width connections to the server do not slow down receivers
with faster connections.
We introduce the FLID congestion control algorithm in

three parts. First, we discuss the methods we employ to set
the rates of the di�erent layers. Next we present the actual
rules for adding and dropping layers, and �nally, we discuss
how to set the increase signals at the server.

4.1 Rates on the different layers
FLID uses a cumulative layered scheme on ` layers. When

a receiver subscribes to a set of layers 0; 1; : : : ; i, where i �
`� 1, we call i the subscription level, or simply the level of
the receiver. Generally the �rst layer is called the base layer,
which in our case will be a static layer. To start receiving
traÆc for a multicast session, the host joins the base layer.
As before, ri is the rate, in packets per second, for layer

i and Ri =
Pi

j=0 ri is the cumulative rate, in packets per
second, for layers 0 through i, i.e., the reception rate for a
receiver with a subscription level i.
There are a variety of methods for choosing the di�erent

rates for the ` di�erent layers. Some examples of schemes
include:

� Equal scheme (E): The rates for all layers are equal,
e.g., 3 packets per second. For example, with ` = 20
layers and a 1 KB packet size, the subscription level
can range from 24 Kbps up to 480 Kbps.

� Doubling scheme (D) [16]: The e�ect of adding an-
other layer is to double the subscription level. The
relative increases in the rates for the layers are in the
sequence 1; 1; 2; 4; 8; 16; 32; 64; : : :, i.e., Ri+1 = 2Ri.
For example, with a base layer rate of R0 = 3 packets
per second, ` = 20 layers and a 1 KB packet size, the
subscription level can range from 24 Kbps up to 12
Gbps.

� Multiplicative scheme (M): This is a generalization of
the doubling scheme, where the rate for subscription
level i is proportional to ci for a �xed constant c > 1.
The relative increases in the rates for the layers are
in the sequence 1; c� 1; c2 � c; c3 � c2; c4 � c3; : : :, i.e.
Ri = ciR0. For example, with a base layer rate of
R0 = 3 packets per second, ` = 20 layers, a 1 KB
packet size and c = 1:3, the subscription level can
range from 24 Kbps up to 3.4 Mbps.

Other schemes are also possible. We focus on the multi-
plicative scheme for the remainder of the paper.
Two useful factors to consider in evaluating cumulative

layered multicast schemes are the number of layers ` needed
to span a given range of reception rates and the granularity
with which a receiver can tune its rate within that range.
In general, the tradeo� is that the larger the value of ` the
more �ne-grained rate changes can be and the smoother the
reactions of the congestion control algorithm, but the more
layers and hence multicast addresses that are needed for the
transmission to achieve the same range of cumulative rates.

4.2 Increase and Decrease Rules
In FLID, the server partitions time into slots of duration

T seconds each. All packets transmitted by the server in
each time slot include the current time slot index. From the

receiver point of view, a new time slot starts when the �rst
packet is received with a new time slot index.
Time slots are used to coordinate the activities of re-

ceivers. If during a time slot a receiver measures any packet
loss, the receiver must decrease its subscription level by one
at the end of the time slot. The receiver ignores all subse-
quent packet losses until the end of the time slot, i.e., the
receiver only considers a single congestion event per time
slot.
Time slots are also used to coordinate actions when re-

ceivers increase their subscription level. The server places
an increase signal into each packet. The increase signal iden-
ti�es a subscription level, which is �xed for all packets on
all layers within a time slot. Receivers use increase signals
to decide whether to increase their subscription level at the
beginning of a time slot according to the following rule: if
the current subscription level is i, the increase signal for the
current time slot is j where j � i, and there is no packet
loss during the current time slot, then increase the subscrip-
tion level by 1 at the beginning of the next time slot. An
increase signal of �1 is used to indicate that no receiver
should increase its rate.
We use cumulative increase signals for the following rea-

sons:

1. if a receiver behind a bottleneck link adds a new layer
and does not experience congestion, then receivers shar-
ing the same bottleneck link at lower subscription lev-
els should also add a layer to fully exploit the available
bandwidth;

2. if a receiver adds a new layer, causes congestion on
a bottleneck link and drops back to the original sub-
scription level, then receivers at lower subscription lev-
els should have also added a new layer so that if they
feel the same congestion, they also drop back to their
original subscription level.

Of course there should be more increase signals for re-
ceivers at lower subscription levels than for those at higher
subscription levels so that eventually all receivers behind the
same bottleneck link will be at the same subscription level.
The pattern of increase signals that the server uses is one of
the more important considerations in a good design of FLID.
This pattern is designed in conjunction with the rates of the
di�erent layers, and together they determine the fairness of
FLID against other protocols such as TCP.

4.3 Setting the increase signals for the layers
To gain insight into how to set the increase signal values

we consider a probabilistic pattern of increase signals. We
then describe a deterministic pattern. Let 1 = p�1 > p0 >
p1 > : : : > p`�1 = 0. In each time slot, the increase signal is
set to i with probability pi � pi+1 for �1 � i � `� 1. This
means that a receiver with subscription level i will increase
its level in each time slot with probability pi. The value
of pl�1 must be set to zero, to prevent a receiver joined to
all layers from ever attempting to join an additional layer
that does not exist. For simplicity, we de�ne p�1 = 1 which
corresponds to a phantom layer that carries no traÆc.
If we assume that each packet is lost independently with

probability q, which is in fact the model used to derive equa-
tion (1), then for a given q and a set of pi values we can

calculate the average throughput R̂ as follows:



De�ne Pj(kji) to be the probability of a receiver moving
from subscription level i to subscription level k at the begin-
ning of time slot j. Since we can only increase or decrease
the subscription level by a single layer at a time, Pj(kji) = 0
for jk � ij > 1. In a time slot of length T , a receiver with
subscription level i receives T �Ri packets, so we have

Pj(kji) =

8>><
>>:

1� (1� q)T �Ri k = i� 1
(1� pi)(1� q)T �Ri k = i
pi(1� q)T �Ri k = i+ 1
0 otherwise

The transition probability Pj(kji) is independent of the time
slot j so we write the transition probability as P (kji). (This
is under the assumption that q does not vary over time.)

R i , f i( )R i−1 , f i−1( ) R i+1 , f i+1( )

P (i−1 | i)

P (i | i)

P (i | i−1)

P (i−1 | i−1) P (i+1 | i+1)

P (i+1 | i)

P (i | i+1)

. . . . . .

Figure 2: The Markov process showing the transitions for
state (Ri; fi).

The receiver now behaves like an ` state Markov process
a part of which is shown in Figure 2. We denote by fi the
steady-state fraction of the time the receiver will have a sub-
scription level of i. At steady state, the average throughput
R̂ is then

R̂ =

`�1X
i=0

fiRi: (2)

By the structure of the state diagram, at steady state the
ow into each state on an edge has to be equal to the ow
out of that state on that edge, i.e.,

P (i+ 1ji) � fi = P (iji+ 1) � fi+1; (3)

or

fi+1 =
(1� pi) (1� q)T �Ri

1� (1� q)T �Ri+1
fi (4)

for i = 0; : : : ; l � 2. Therefore, given a set of pi and Ri

values, it is simple to calculate R̂ using the recursion in (4)
and equation (2).
To match the TCP equation, we have the following prob-

lem: given the target functional relationship between R̂ and
q, �nd a set of strictly decreasing pi values that approximate
this function. In the appendix, we present an intuitive argu-
ment for setting the pi values heuristically. We then develop
a more sophisticated technique based on a hill-climbing al-
gorithm.
Note the analysis above also immediately tells us the rate

of join operations. Recall that each time slot requires a
single leave operation and either 0, 1, or 2 join operations
depending on whether the subscription level decreases, stays
the same, or increases, respectively. From the above equa-
tions for P (kji), the expected number of joins per time slot
when at subscription level i is (1+pi)(1� q)T �Ri , and hence
the steady state rate of join operations is

P
i fi(1 + pi)(1�

q)T �Ri .

Example 4.1 Consider a base layer of R0 = 3 packets per
second, i.e., 24 Kbps for 1 KB packets, ` = 30 and a mul-
tiplicative layering scheme with c = 1:3. For a time slot of
T = 0:5 seconds and an aggressiveness factor of 0.1 seconds,
if we set the pi values according to the hill-climbing algo-
rithm in the appendix, then we have the expected number
of joins and leaves per second versus the packet loss rate q
shown in Figure 3.
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Figure 3: The expected number of joins and leaves per
second versus the packet loss rate q for FLID with static
layers and dynamic layers.

4.3.1 Use of a reverse binary counter
As mentioned previously, we use a deterministic scheme to

set the increase signal in each time slot. This is because if we
choose the increase signal in each time slot at random, then
we occasionally increase the receive rate too rapidly when a
receiver obtains several increase signals over a short time in-
terval. Our deterministic scheme still generates an increase
signal that allows a receiver to increase its subscription level
from i to i + 1 about every 1=pi time slots, but it has the
additional property that the variance in the number of time
slots between increase signals for each layer is minimal. We
note that under the assumption that losses are independent,
the steady-state probabilities of the Markov process will be
the same for this deterministic scheme as for the probabilis-
tic one, so we maintain throughput compatibility with TCP.
Our scheme uses a reverse binary counter. Let

b = b0b1 : : : bs�1

be a number written in binary notation, i.e., bi is a single
bit and b is a concatenation of s bits. Let

b̂ = 0:bs�1bs�2 : : : b1b0

indicate b written backwards interpreted as a real number
in the range [0; 1].
At the beginning of a session, set b to be an arbitrary

value, then, at each time slot, the algorithm for choosing
the increase signal is to increment b by 1 and then �nd the
largest layer i such that pi � b̂ � pi+1, and set the increase
signal to i. We increment b modulo 2s, so the counter is
reset every 2s time slots.

5. EXPERIMENTS
In order to show that FLID-DL is suitable for wide deploy-

ment on the Internet, we examine its behavior extensively



using ns [11]. We demonstrate two sets of experiments. In
the �rst set, we consider how to set the various parame-
ters of FLID-DL and show how FLID-DL addresses some
of the shortcomings of RLC. In the second set, we examine
how FLID-DL scales, measure its behavior to a set of het-
erogeneous clients, and demonstrate that it coexists fairly
with di�erent types of TCP traÆc. We only have space
for a summary of our �ndings here and refer the reader to
www.digitalfountain.com/technology/library/flid
for further details.

5.1 Setting the FLID-DL parameters
There are three parameters that we need to set for FLID-

DL:

1. the rates on the di�erent layers;

2. the aggressiveness factor; and

3. the duration of the time slots.

We implement FLID in our simulations with a multiplica-
tive layering scheme to set the rates on the di�erent layers.
We use a base layer of 24 Kbps and a packet size of 1 KB,
i.e., R0 = 3 packets per second. For each independent FLID
session we pick the number of layers ` large enough so that
the highest reception rate possible for each individual ses-
sion is greater than the capacity of the bottleneck link, up
to a maximum of 30 layers.

100 Mbps/10 ms100 Mbps/10 ms

10 Mbps/30 ms
H 1R 2R 1S 1

Figure 4: The network topology used to set the multiplica-
tive factor c on the di�erent layers. The node on the left
is the server, the node on the right is the host, and the
horizontal link in the middle is the bottleneck link.

To choose the rates on the di�erent layers, we vary the
value of the multiplicative factor c from 1.2 to 2.0. For
each c value, we simulate a single FLID-DL session for 100
seconds and measure the throughput and number of packets
lost over the �nal 50 seconds. Our topology consists of one
server and one host connected by two DropTail routers, with
a queue size of 128, and a 10 Mbps bottleneck between the
two routers as shown in Figure 4. The time slot duration
is 500 ms and the aggressiveness factor is chosen to be the
same as the 120 ms round trip time of the topology.
Figures 5a and 5b show the throughput and number of

packets lost in each 250 ms interval for c = 1:3 and c = 2:0
respectively. For c = 1:3, the bandwidth utilization is 85%,
and an average of 47 packets are dropped per packet loss
event. For c = 2:0, we had a bandwidth utilization of 59%,
and an average of 17 packets dropped per packet loss event.
However, over the 50 second interval, the latter experiment
lost 2.5 times as many packets, as the large jumps in trans-
mission rates cause more frequent packet loss.
Based on extensive simulations, of which this experiment

is one representative, we chose c = 1:3 as our ideal multi-
plicative factor, since it is large enough to allow us to use
few layers, but small enough to give us a suÆciently small
granularity in the subscription level to avoid abrupt rate
increases. It also gives a reasonably small packet loss rate
when we exceed the bottleneck bandwidth.
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Figure 5: The throughput (solid line) and number of lost
packets (circles) for a single FLID-DL session with (a) c =
1:3 and (b) c = 2:0.

For the rest of our experiments, we choose our aggressive-
ness factor to be 100 ms, so that FLID-DL competes fairly
with TCP with an RTT of 100 ms. To set the ratio of the
time slot duration to the aggressiveness factor, we use the
same topology, except we now have random independent
packet loss of 4% on the bottleneck link, i.e., we have no
loss due to the queues overowing. For a �xed aggressive-
ness factor, we vary the time slot duration and look at the
throughput. For a given packet loss rate, doubling the time
slot duration requires that we halve the reception rate in
order to achieve the same probability of a packet being lost
in each time slot. In order to achieve a reasonable reception
rate; avoid large packet burst loss; and avoid a large num-
ber of join/leave operations per second, we choose the time
slot duration to be 500 ms, i.e., 5 times the aggressiveness
factor.
When simulating multiple TCP connections over a sin-

gle bottleneck link in an event-driven simulator, synchro-
nization problems can arise. To prevent this we start our
connections at slightly di�erent times and we add a small
random delay to simulate processing overhead before each
packet is sent out.

5.2 Static vs. dynamic layered schemes
Our next experiment compares the behavior of four in-

dependent FLID-DL sessions to four independent FLID-SL
(static layer) sessions, when we have a random leave latency
uniformly distributed between 2 and 4 seconds. Our topol-
ogy consists of a simple double star network as shown in
Figure 6. Both routers are DropTail with a queue size of 50
packets.
Figures 7a and 7b show the behavior of four FLID-DL

sessions and four FLID-SL sessions with a leave latency of
between 2 and 4 seconds respectively. The FLID-DL ses-
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Figure 6: The network topology used to compare the static
vs. dynamic layered schemes.

sions have a total bandwidth utilization of 90%, while for
FLID-SL the bandwidth utilization is only 78%. In fact
these results overstate the performance of FLID-SL, in that
FLID-SL has reasonable bandwidth utilization only because
in this simulation, hosts continue to accept packets received
on groups which they have left but for which the router is
still forwarding packets. The FLID-SL sessions combine to
lose three times as many packets as their FLID-DL counter-
parts.
We have run the experiment with FLID-SL with various

other leave latencies. When the leave latency is zero, we �nd
that the behavior of FLID-SL and FLID-DL are very similar.
The results are similar for RED routers with a queue size of
100 packets, a maxthresh of 50, a minthresh of 5 and gentle
set to true.

50 60 70 80 90 100
0

450

900

1350

1800

time (sec)

th
ro

ug
hp

ut
 (

K
bp

s)

50 60 70 80 90 100
0

50

100

150

200

pa
ck

et
 lo

ss
 (

0.
25

 s
ec

)

(a)

50 60 70 80 90 100
0

450

900

1350

1800

time (sec)

th
ro

ug
hp

ut
 (

K
bp

s)

50 60 70 80 90 100
0

50

100

150

200

pa
ck

et
 lo

ss
 (

0.
25

 s
ec

)

(b)

Figure 7: The throughput (solid line) and number of lost
packets (circles) for (a) 4 FLID-DL sessions and (b) 4 FLID-
SL sessions with a 2 to 4 second leave latency.

5.3 Coordination behind a bottleneck link
To demonstrate how hosts coordinate behind a common

bottleneck link, we have 100 hosts subscribe to the same
FLID-DL session at random times chosen uniformly between
0 to 5 seconds. We use the same topology as in Figure 6

except now with 100 hosts. Figure 8 shows that all 100 hosts
converge to the same subscription level after 28 seconds.
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Figure 8: The coordination of 100 hosts behind a bottle-
neck link.

5.4 Random loss and heterogeneous delays
We test the scalability of FLID-DL in the presence of loss,

where we have a number of hosts subscribed to a single
FLID-DL session. We generate random loss at various points
on each topology and measure the throughput downstream
at the hosts. We �nd that the throughput for each FLID-
DL host depends only on the loss rate experienced by that
particular host. Experimental evidence indicates that FLID-
DL scales well in the presence of random loss.
When we vary the delays for each host behind a common

bottleneck, we �nd that the throughput at each host is pro-
portional to both the aggressiveness factor and the random
loss rate and is reasonably independent of the delay expe-
rienced by each host (except for the fact that the join at
the highest layer takes longer to arrive). When the delay
is greater than the time slot duration, FLID-DL has a sub-
scription level that is higher than the actual reception rate.
Since FLID-DL reacts to increase signals for its subscription
level, as opposed to its actual reception rate, FLID-DL be-
haves less aggressively as the delay increases on the order of
a time slot.

5.5 TCP fairness
For our �nal experiment, we compare how FLID-DL com-

petes with TCP Reno and TCP SACK. We have n TCP
and n FLID-DL streams share a common bottleneck of 0:5n
Mbps. We vary n and calculate the throughput for the �nal
50 seconds of a 100 second simulation.
Figure 9a shows the relative throughput of FLID-DL and

TCP for a DropTail queue of size 7n packets. Each point
in the graphs represents the throughput of an individual
stream. We also show the mean throughput for each type
of stream. In this �gure, which is representative of a large
number of additional simulations, FLID-DL and TCP share
the available bandwidth equitably.
Figure 9b shows the relative throughput of FLID-DL and

TCP when we increase the DropTail queue size to 25n pack-
ets. In this scenario, FLID-DL is unfair to TCP and the
average FLID-DL ow achieves a throughput 4 to 8 times
larger than the average TCP ow. FLID-DL is slightly more
fair in conjunction with TCP SACK.
FLID-DL is less fair to TCP as the queue size increases,

since it does not adjust its reception rate in response to
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Figure 9: The fairness of FLID-DL and TCP Reno for a
queue size of (a) 7n and (b) 25n.

changes in the network round trip time. On the other hand,
when the queue �lls up, the delay increases and a TCP ses-
sion slows down its transmission rate. Because of this, in
an environment where varying queueing delays can account
for a signi�cant portion of the end-to-end latency, FLID-DL
will not be fair to TCP.

6. CONCLUSION
We have demonstrated that the use of dynamic layering

admits a simple solution to large IGMP leave latencies, with-
out requiring changes to IGMP, routers, or other multicast
routing protocols. We have also outlined the FLID scheme,
which generalizes the RLC protocol but eliminates some of
its complexity, such as probing. DL combined with FLID
provides a signi�cant step towards a complete and scalable
receiver-driven congestion control algorithm for layered mul-
ticast. We hope that the introduction of FLID-DL will en-
courage additional work in multicast congestion control, and
lead to quick standardization of the ALC approach in the
RMT working group within the IETF [8].
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A. APPENDIX

A.1 Heuristic for setting the pi values
We now provide a rough analysis of how to set the FLID

parameters so that it behaves according to the TCP equa-
tion in the face of a �xed packet loss rate q. We model
packet loss by a process where each packet is lost indepen-



dently with probability q, which is in fact the model used to
derive the TCP equation (1).
Suppose the current subscription level is i, so that the ag-

gregate rate is Ri. Since the probability that each packet is
lost is q, on average there are roughly td = 1=(q Ri) seconds
between packet loss events. On the other hand, the increase
signal when the subscription level is i occurs on average each
tu = T=pi seconds. If td = tu, then the rate is as likely to
go up as down for subscription level i. This occurs when
1=(q Ri) = T=pi, i.e., when

pi = TqRi: (5)

We use this to set the values for the pi's since this approxi-
mately equates the probability of increasing and decreasing
the rate in FLID, according to our Markov chain descrip-
tion in Section 4.3. We would roughly expect that if the
steady state rate is Ri, then the rate is as likely to go up
as it is to go down. While this is not precisely true since it
depends on the relative values of the Ri's, it is a good �rst
approximation.
We now set the pi values as follows:

1. Choose the aggressiveness factor for which we would
like the FLID traÆc to be fair.

2. For each subscription level Ri, we solve the TCP equa-
tion (1) for q = qi by setting R to Ri and RTT accord-
ing to step 1.

3. We set pi = minfT qiRi; 1g for i = 0; : : : `� 1.

When solving the TCP equation, the values of pi may not be
monotonically decreasing due to the inuence of the RTO
value on the TCP equation for large loss rates. To ensure
that the FLID rules are followed, the pi values for the small
layers can be set to the maximum pi value.

Example A.1 Consider a base layer of 24 Kbps, a packet
size of 1 KB, i.e., R0 = 3 packets per second, and a mul-
tiplicative layering scheme with c = 1:3 and ` = 30. We
set T = 0:5 seconds and the aggressiveness factor to be 0.1
seconds.
The graphs of the functions plotting average throughput

(as derived from the TCP equation (1) and the FLID equa-
tion (2) ) versus loss rate for TCP and FLID with these
settings is given in Figure 10. As can be seen, the curves
are quite close. We had similar results for other values of c
as long as the ratio of the time slot duration to the aggres-
siveness factor was not too large.

A.2 Hill-Climbing Algorithm
The previous heuristic yields a set of pi values that closely

approximate the behavior of the TCP equation. However,
because the analysis is clearly only approximate, we now
describe an alternative approach that allows us to �nd a set
of pi values that provide a closer match, if this is desired,
by applying a simple hill-climbing algorithm. Our approach
here is more general in that it applies to any set of points
describing the throughput for a given set of packet loss event
rates.
A hill-climbing algorithm requires that we apply some

metric to the pi values as a measure of improvement. For
this, we consider a speci�c range of loss rate probabilities
[qa; qb]. We choose h linearly or logarithmically spaced points
qa = q1; q2; : : : ; qh = qb, and evaluate the TCP equation
(1) to determine the steady state transmission rate at these
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Figure 10: Comparison of the estimated average through-
put as a function of the packet loss rate for FLID and TCP
where the pi values are obtained using the heuristic in Ap-
pendix A.1.

points for a given RTT . In fact we can evaluate any through-
put equation for these loss rates. We denote the throughput
versus packet loss rate curve as R(q).
Given a set of pi values we proceed as follows. For each qj ,

j = 1; 2; : : : ; h, we compute the average throughput R̂(qj) at
steady state by solving the Markov chain using the recursion
in (4) and equation (2) in Section 4.3. We denote the result-

ing throughput versus packet loss rate curve as R̂(q). We
then calculate the normalized mean square error (NMSE)

between R̂(q) and R(q) as follows,

NMSE(R̂(q); R(q)) =

hX
j=1

(R̂(qj)�R(qj))
2

R(qj)2
:

Of course we could also use the mean square error or another
similar metric, such as the absolute di�erence, to measure
the distance between the curve given by the cumulative lay-
ering scheme R̂(q) and the curve given by the TCP rate
equation R(q).
Our hill climbing algorithm is now as follows:

Hill Climbing Algorithm:
Choose [qa; qb] and RTT
Calculate R(q)
Initialize the pi's (1 = p�1 > p0 > : : : > p`�1 = 0)
do

for i = 0 to l� 2
Find the value of pi (pi�1 > pi > pi+1)

s.t. R̂(q) minimizes NMSE(R̂(q); R(q))
while (the pi's have not converged)

If we de�ne p0i to be the value of pi before the execution
of the for loop, then we say the pi's have converged if when
the for loop completes we have

l�2X
i=0

(pi � p0i)
2 < �;

where � is a positive constant. In calculating the pi's, we
chose � = 0:00002.
We note that in performing the hill-climbing algorithm,

we maintain the restriction that the pi values are decreasing.



Similarly, it may be desirable to ensure that the pi values
are somewhat separated, i.e. to ensure that pi�1�� > pi >
pi+1 + � for every pi, where � is the minimum distance be-
tween consecutive pi values. This ensures that it is possible
for a layer to receive an increase signal without the layer
above also receiving an increase signal. This prevents the
unusual situation where subscribers up to layer i �nd they
cannot increase their receive rate because every time they
increase their receive rate, so do subscribers to the layer
above, and the combination of increases causes signi�cant
loss. In calculating the pi's, we chose � = 0:001.
A priori it is not clear how close we may come to the TCP

curve. Experiments over a wide range of values have shown
that the hill-climbing algorithm can very closely approxi-
mate the TCP curve with a cumulative layering scheme.

Example A.2 Consider a base layer of 24 Kbps, a packet
size of 1 KB, i.e., R0 = 3 packets per second, and a mul-
tiplicative layering scheme with c = 1:3 and ` = 30. We
set T = 0:5 seconds and the aggressiveness factor to be 0.1
seconds.
We use the hill climbing algorithm, where h = 500 and the

q values linearly spaced in the range [qa; qb] = [0:001; 0:1].
The graphs of the functions plotting average throughput ver-
sus packet loss rate for TCP and FLID with these settings
is given in Figure 11. As can be seen, the curves are very
close.

0 0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

q

R
 (

pa
ck

et
s/

se
co

nd
)

TCP equation throughput   
calculated FLID throughput

Figure 11: Comparison of the estimated average through-
put as a function of the packet loss rate for FLID and TCP
where the pi values are obtained using the hill climbing
algorithm in Appendix A.2.

More research is required to determine what pi setting
are appropriate in practice, and whether the NMSE dis-
tance metric can be �ne-tuned to take into account other
considerations that may arise in the network setting.


