
Improved Classi�cation via Connectivity Information

Andrei Z. Broder� Robert Krauthgamery Michael Mitzenmacherz

Abstract

The motivation for our work is the observation that Web
pages on a particular topic are often linked to other
pages on the same topic. We model and analyze the
problem of how to improve the classi�cation of Web
pages (that is, determining the topic of the page) by
using link information. In our setting, an initial clas-
si�er examines the text of a Web page and assigns to
it some classi�cation, possibly mistaken. We investi-
gate how to reduce the error probability using the ob-
servation above, thus building an improved classi�er.
We present a theoretical framework for this problem
based on a random graph model and suggest two linear
time algorithms, based on similar methods that have
been proven e�ective in the setting of error-correcting
codes. We provide simulation results to verify our anal-
ysis and to compare the performance of our suggested
algorithms.

1 Introduction

Imagine a Web page classi�er that examines the con-
tents of each page and infers some classi�cation for
it. Such a classi�cation could be a topical category
(e.g. sport, society, etc.), a language (e.g. French, En-
glish, etc.), or a discourse style (e.g. scienti�c paper,
news, etc.). A natural way to improve the page content
classi�er is to use link information, in so far as pages
sharing a common classi�cation are more likely to be
linked than pages with di�erent classi�cations. Here
\linked" is taken in a broad sense: it can mean that
there is a hyper-link from one page to another, or the
fact that there is a third page that hyper-links to both
pages (co-citation), or the fact that many users tend to
view these pages in close sequence.

The question is: How can we use the link informa-

�Compaq Systems Research Center, 130 Lytton Avenue, Palo

Alto, CA 94301, USA. E-mail: broder@pa.dec.com.
yWeizmann Institute of Science, Rehovot 76100, Israel. Parts

of this work were done while visiting Compaq Systems Research

Center. E-mail: robi@wisdom.weizmann.ac.il
zHarvard University, 33 Oxford St., Cambridge, MA 02138.

Parts of this work were done while at Compaq Systems Research

Center. E-mail: michaelm@eecs.harvard.edu.

tion along with the initial classi�er to obtain an im-
proved classi�er? Other natural questions arise from
this one: what are the limits on the improvement we
can obtain? Can we trade o� speed and accuracy in a
useful way? For the Web context, Chakrabarti, Dom,
and Indyk [5] showed experimentally that this approach
is very successful. Their improved classi�er uses a �rst
order Markov Random Field as a model for the prob-
lem based on experimentally determined probabilities
for the various types of links.

Clearly if the initial classi�cation is correct the
links are irrelevant. On the other hand if all links
are guaranteed to go only between members of the
same class and there are enough of them, then it
su�ces that the initial classi�cation is slightly correlated
with reality, since in this case each su�ciently large
connected component can be identi�ed by plurality
vote. What about the more common case, where the
initial classi�cation can be wrong and links may span
classes?

In this paper, we attempt to provide a theoretical
framework for this problem. In our theoretical frame-
work, we suggest some simple models and study the
performance of various algorithms in these models. In
particular, we focus on describing the case where there
are just two possible classi�cations, a case which already
provides a rich space to explore. We then describe how
to extend our analysis to the case of multiple colors.

Our framework is motivated in part by recent devel-
opments in error-correcting codes. An error-correcting
code can naturally be thought of as a classi�cation prob-
lem: each bit should either be a 0 or a 1. A decoder
has an initial classi�cation of a bit, based on the value
it received. The bits are \linked" via constraints that
de�ne the code; indeed, often these constraints can be
represented naturally in a graph. The goal is to cor-
rectly classify all the bits, within some reasonable time
constraint. In the realm of classifying Web pages, our
goals will be much more modest. We merely hope that
an improved classi�er using link information will have
substantially higher accuracy than a classi�er that does
not use link information.

The fact that links provide useful information on

the Web has most clearly been demonstrated by the
HITS technique of Kleinberg (and various extensions
thereof) for �nding \hub" and \authority" web sites
[2, 8, 4], and the PageRank algorithm used by Google
for ranking web sites [3]. The speci�c idea of using link
information to improve a classi�er was suggested and
tested through experiments by Chakrabarti, Dom, and
Indyk in [5]. They showed that an approach based on
iteratively relabeling pages using link information was
successful using data from both Web pages and the U.S.
Patent database.

The idea of iterative relabeling is also behind recent
advances in decoding low density parity check codes
[7, 12, 11, 13, 14, 16, 17] and the similarly motivated
Turbo codes introduced by Berrou, Glavieux, and Thiti-
majshima [1, 15]. Hence it is natural to ask whether
the approaches to analysis that have proven successful
in this area can be applied to gain insight into the clas-
si�cation problem.

In this paper, we refer to the possible classi�cations
as colors. We assume that an input graph G = (V;E)
with n nodes is drawn from a certain probability dis-
tribution known to the algorithm. In this distribution,
each node v 2 V has a color �(v), and the existence of
an edge between a pair of nodes is somehow correlated
with their colors. An initial classi�er proceeds indepen-
dently for every node and assigns it a classi�cation �(v).
The probability distribution that the initial classi�er is
correct is also known. (In general, this probability is
conditional on the real color of the node.) We begin
with only the coloring information given by the classi-
�er, as the input graph is given without its real coloring.

We want to build an improved classi�er �0 so that
�0(v) takes into account the link information. How
much of the original coloring can we hope to restore
under various assumptions on the distribution of G?
In the interests of keeping the notation manageable
and emphasizing the ideas we focus on a dramatic
simpli�cation of the problem, where there are only two
possible classi�cations. We also describe a model with
more than two colors.

A goal of introducing these models is to explore the
accuracy of simple, e�cient (linear time) algorithms,
both through analysis and simulations. The algorithms
we focus on have a simple form: each node holds some
sort of state, representing its \belief" in its most likely
color. Messages are passed between neighbors, causing
the nodes to update their state for the next round; and
after some number of rounds, the process stops, and
nodes determine their �nal classi�cation. Using our
models, we demonstrate that dramatic improvements
in classi�cation by using link information is possible,
corroborating the results of [5]. We also initiate an

exploration of the tradeo�s between speed and accuracy,
using the idea that algorithms may maintain, pass, and
act on di�erent state information.

We note that just before submitting the �nal ver-
sion of this paper we became aware of recent work by
Kleinberg and Tardos, who study a variation of this
problem [9]. In their work, they consider the cost of
a coloring. There is a cost associated with assigning
a node a color, and a cost associated with each edge
where the nodes for that edge are assigned di�erent col-
ors. These costs would correspond naturally to proba-
bilities in our model, in a manner Kleinberg and Tardos
describe. They use linear programming and random-
ized rounding to obtain approximation algorithms for
the problem of �nding the coloring with minimum cost.

Our work clearly di�ers from the above, in that we
study a speci�c random graph model and the behavior
of simpler algorithms in that model. In particular, our
probabilistic approach does not yield (as far as we know)
an approximation guarantee, and it must be suitably
generalized to handle other graph models. Because
we focus on very fast, simple algorithms, however, we
believe the algorithms we consider may prove more
useful for dealing with large data sets such as the Web.

2 The two color model

2.1 Informal description Initially we consider the
case where all nodes take on only one of two colors, red
or green, denoted r and g. In general, the input graph is
directed (such as in the case where the edges represent
links between Web pages). However, for the purposes
of our algorithm, the direction of an edge is material
only to the extent that it in
uences the conditional
probability distribution of the color of its endpoints.
Hence we will say that x and y are neighbors if there is
an edge from x to y, or vice versa.

Let �(v) be the color of node v, and let �(v) be
its classi�cation from the initial classi�er. Abusing
notation, we let �(G) represent the coloring of the entire
graph, and �(G) represent the results from the classi�er.

An optimal classi�er can be constructed for a graph
with n vertices by computing for each of the 2n possible
colorings �(G)

Pr (�(G) j G; �(G)):

Once these terms are computed one can determine the
probability that a particular node is, say, red, simply
via

Pr(�(v) = r) =
X

�(G) s.t. �(v)=r

Pr (�(G) j G; �(G)) :

Of course this is impractical for almost all graphs.

Hence we will attempt to �nd ways to achieve good
accuracy with much less computation.

2.2 The tree model We describe an intermediary
model, the tree model, where the computation can be
carried much faster. The tree model forms the basis
for our more general random graph model. The tree
model is based on a random graph built recursively
as follows. We shall call a tree \red" (resp. green) if
its root is colored red (resp. green). The tree T0(v)
consists of just one node, v. A red tree Ti(v) consists
of a red root node v that has X(v) children, each one
being a random Ti�1 tree. The number of children X(v)
is an independent random variable Poisson distributed
with parameter �. The color of each child is chosen
independently at random: a child is red with probability
�rr and green with probability �rg = 1 � �rr. A green
Ti(v) is built in an identical manner, with corresponding
parameters (namely �gr and �gg).

The input to our algorithm is a random Ti tree,
which is red with probability �r and green with prob-
ability �g = 1 � �r. Every node v in the tree receives
an initial classi�cation, �(v). Let �(v) be the color of
node v, and let
ab = Pr(�(v) = b j �(v) = a). Here
ab
describe the accuracy of the classi�er.

Consider a node x that has d children y1; : : : ; yd.
Let �(T (x)) be the entire set of initial classi�cations
made at all descendants of x including x. Our next
goal is to compute the probability of a particular initial
classi�cation �(T (x)) conditional on the color of x.
Decomposing according to all possible colorings for
y1; : : : ; yd we obtain that

Pr
�
�(T (x)) j �(x)

�

=
X

�(y1);:::;�(yd)

dY
j=1

Pr
�
�(T (yj)) j �(yj)

�
��(x);�(yj)

=

dY
j=1

�
Pr
�
�(T (yj)) j �(yj) = r

�
��(x);r

+Pr
�
�(T (yj)) j �(yj) = g

�
��(x);g

�

Furthermore, if x is a leaf, then

Pr
�
�(x) j �(x)

�
=
�(x)�(x):

Hence, for the root x0 we can recursively compute
Pr
�
�(T (x0)) j �(x0)

�
, in time

O

�X
v2V

d(v)

�
= O(m);(2.1)

where d(v) is the number of children of v, and m is the
number of edges in the tree. This is of course much
smaller than 2n.

Finally,

Pr
�
�(x0) = r j �(T (x0))

�
= Pr

�
�(T (x0)) j �(x0) = r

�
�r� �

Pr
�
�(T (x0)) j �(x0) = r

�
�r

+Pr
�
�(T (x0)) j �(x0) = g

�
�g

�

and therefore we set

�0(x0) r

i�

Pr
�
�(T (x0)) j �(x0) = r

�
�r >

Pr
�
�(T (x0)) j �(x0) = g

�
�g :

This is the optimum classi�er for the root.

2.3 The tree model and belief propagation

We now discuss belief propagation, which generally
refers to an algorithm whereby messages concerning
conditional probabilities are passed around a graph,
in the speci�c context of the classi�cation problem.
Consider a random graph on n nodes, where each node is
independently colored red with probability �r and green
with probability �g . We assume that each edge slot
between a pair of red nodes is �lled independently with
probability �rr, and similarly there exist parameters �gg
and �rg . We also assume that these values are chosen
so that the average degree of a node is constant. For
convenience, we consider here the symmetric case where
�r = �g , �gg = �rr and �rg = �gr. This implies that the
degree distribution for every node is the same.

The belief propagation algorithm proceeds over a
number of rounds. For expository purposes, it is useful
to assume that in each round each node makes an
independent computation and sends a message to every
one of its neighbors. The message passed from x to
y re
ects the current belief of node x regarding its
color (the conditional probability that x has a particular
color), based on its initial classi�cation and all the
information obtained so far from neighbors other than

y. More precisely, consider a node x with neighbors
y; z1; : : : ; zd. (See Figure 1.) Initially (in round 0),
with no information from its neighbors, x sends to y
the probability that it is, say, red, conditional on its
initial classi�cation. Once x receives information from
z1; : : : ; zd, it calculates its new conditional probability
of being red based on all the information received so
far, and sends that on to y. (Notice that information
obtained from y is ignored when calculating information

x

y

z1 z2 z3 z4 z5 z6 z7

Figure 1: The message from x to y is based on infor-
mation passed \up the tree" from children z1; : : : ; zd in
the previous round.

to send to y; the intuitive explanation for this is to
prevent positive feedback.) This process continues for as
many rounds as desired, where at each round, each node
x performs such a computation for each of its neighbors,
and sends them the (possibly di�erent) results. Upon
termination, each node computes its probability of being
red given all the information received so far.

Note that the belief propagation algorithm essen-
tially implements the tree model in parallel for all nodes
in the graph, using only local message passing between
neighboring nodes in the original graph. For su�ciently
large graphs, the approximation of our random graph
model with the assumption of a Poisson number of chil-
dren is su�ciently accurate; the values �gg ,�rg,�rr, and
�gr yield corresponding values �rr, and so on. The mes-
sage passed from x to y in round k is obtained by com-
puting �(T (x)), where in the tree T (x) the children of
x excludes the neighbor y, and the tree T (x) has depth
k. Assuming that the neighborhood around a node x is
cycle-free for a diameter k, after k rounds the node x
will be able to compute the correct conditional proba-
bility of being red based on its neighborhood.

Hence, if a su�ciently large neighborhood of every
node is cycle free, we can e�ciently have each node
make an optimal decision about its own color based
on the information from a limited neighborhood of the
node. Of course, having each node separately making
its own optimal decision does not necessarily yield the
globally optimal solution { the equivalent coloring might
have probability 0. However, having each node choose
its most likely color maximizes the expected number
of correctly classi�ed nodes, which is the important
practical issue. Note also that it is usually the case that
the most valuable information is located in the close

neighborhood of a node, and so computations based on a
limited neighborhood should give a good approximation
to those based on the full graph information.

Of course cycles in the graph G bring into question
whether belief propagation will be e�ective, since the
assumption that the graph looks like a tree around the
node will no longer be true. For a su�ciently large
random graph, we expect few small cycles, and hence
the problem may be limited to a small number of nodes.
In practice we may also run the algorithm even if there
are cycles. The nodes perform local computation at
each round, simply pretending that the information
they have obtained is based on a tree neighborhood.
There is hope that the skew caused by cycles will be a
lower order e�ect even over a large number of rounds.
This technique has proven useful in other areas, such as
coding theory [7, 12, 11, 13, 14, 16, 17].

Note that this model can be generalized to the cases
where the parameters are not symmetric, or the degree
at a node is not Poisson; these variations may simply
make the conditional probability calculations at each
step more complex. Assuming that we perform the
belief propagation for a constant number of rounds, the
total time taken by the algorithm will be proportional
to the number of edges in the graph. Indeed, it is easy
to see that all the computations of a node in a single
round can be done in a number of operations which is
proportional to its degree.

2.4 A simpler message passing algorithm As
a �rst step towards analyzing the e�ectiveness of be-
lief propagation, we consider a simpler algorithm that
passes less information. The price we pay for the sim-
plicity is less accuracy. In the case of two colors we can
easily analyze the performance of this algorithm in the
tree model. Another reason for studying this algorithm
is that it is faster than belief propagation, since the
messages passed and the computations made through-
out are simpler. Even though both belief propagation
and this simpli�cation require only linear time, because
we are considering extremely large graphs, this faster
approach may be worthwhile.

Again, we think of each node x passing messages
to each of its neighbors in each round, but here the
message will simply be colors instead of conditional
probabilities. Again we assume the random graph
model described above, and think of the node x passing
a message to a node y as being the root of a tree
with d children z1; : : : ; zd. In each round, the node
x computes and sends to y a believed classi�cation
�0(x; y), such that �0(x; y) is only a function of the
values �0(z1; x); : : : ; �

0(zd; x) from the previous round
and �(x).

The algorithm is based on the following idea:
�0(x; y) �(x), unless su�ciently many of children of
x suggest that �(x) is wrong, i.e. �(x) 6= �(x). The
proper threshold for how many children must suggest
this (by having �0(zi; x) 6= �(x)) can be determined by
a probability calculation, that we now embark on. To
simplify exposition we shall say that a child zi \sends"
its classi�cation �0(zi; x) to its parent x or \votes" on
�0(x; y).

As before, for convenience we shall focus on the
symmetric case, where each node is equally likely to
be colored red or green, the probability of the initial
classi�cation being wrong is the same for both red and
green nodes, and monochromatic edges of each color
are equally likely (i.e., �R = �G = 1=2, �rr = �gg = �,
and
rg =
gr =
). We describe later the necessary
modi�cations when there is no such symmetry. As we
shall see, in the symmetric case, a proper threshold can
be easily precomputed and has an interesting form.

De�ne pi to be the probability that �
0(x; y) is wrong

in the ith round. Observe that due to the symmetry of
our model, this probability is the same for all edges
(x; y). Clearly in the symmetric case p0 is just the
probability that the initial classi�er is incorrect, or p0 =

. Now we compute pi+1. Assume that x has d children
y1; : : : ; yd. As explained above, x will set �0(x; y)
�(x) unless at least a certain threshold, b(i; d), of its
children have sent it �(x) as their classi�cation.

First, observe that the probability that a child of x
sends �(x) as its classi�cation �0(x; y) is exactly

qi = �pi + (1� �)(1� pi):

(With probability �pi the child has the same color as x
but sends a mistaken classi�cation, and with probability
(1��)(1�pi) the child has the opposite color and sends
it correctly to x.) Note for future reference that, since
� > 1=2 and
 < 1=2, we have qi < 1=2.

Second, observe that x will send �(x) i� either
�(x) = �(x) but at least b(i; d) of its children sent it
�(x), or �(x) = �(x) but less than b(i; d) of its children
sent it �(x).

Let �d be the probability that x has d children. The

two observations above lead to the conclusion that

pi+1

=

1X
d=0

�d �

�
(1�
)

dX
j=bi;d

�
d

j

�
qji (1� qi)

d�j

+

bi;d�1X
j=0

�
d

j

�
(1� qi)

jqd�ji

�

=
1X
d=0

�d �

�
(1�
)

dX
j=bi;d

�
d

j

�
qji (1� qi)

d�j

+

�
1�

dX
j=bi;d

�
d

j

�
(1� qi)

jqd�ji

��

=

1X
d=0

�d �

�

 �

dX
j=bi;d

�
d

j

��

(1� qi)

jqd�ji

� (1�
)qji (1� qi)
d�j
��

Hence the optimum value for bi;d should be such that

dX
j=bi;d

�
d

j

��

(1� qi)

jqd�ji � (1�
)qji (1� qi)
d�j
�

is maximized. Notice that the term corresponding to
summing index j is positive i�

�
1� qi
qi

�2j�d

>
1�

:(2.2)

Since, as we observed previously, qi < 1=2, the left side
of (2.2) is strictly increasing as j increases and therefore
the optimum bi;d should be the smallest j for which (2.2)
holds, that is, we set bi;d such that

2bi;d � d > ln

�
1�

� �
ln

�
1� qi
qi

�
;(2.3)

which ensures that pi+1 � pi. In particular, our
classi�er is at least as good as the original classi�er at
each node.

Note that the right side of the inequality (2.3) does
not depend on d. Denote it by �i. It is interesting to
note that the left hand side 2bi;d�d equals bi;d�(d�bi;d).
Hence, equation (2.3) states that the x should pass the
initial classi�cation unless the majority vote disagrees
with it and the majority vote beats the minority vote
by more than �i votes. Our algorithm can therefore be
stated as

Set �0(x; y) �(x) unless �(x) wins the children
vote by more than �i votes.

That our recursion for pi is asymptotically correct
as the size of the random graph G grows can be proven
using a martingale argument, entirely similar to the
proofs given in [14, 16] for the similar coding scenario.
Consider the process up to some �xed constant number
of rounds, j. There are two problems to be handled.
First, some nodes might not have appropriate tree
neighborhoods; it can be shown that the number of
such nodes is small (though dependent on j). Second,
it is not clear that the number of edges passing correct
messages must be concentrated around its expectation.
However, over j rounds the message passed along an
edge is correlated with only a constant number of
other edges, and so a martingale argument yields a
concentration result.

The same method of analysis can be applied to the
asymmetric case, although the equations are necessarily
more complex. In particular, the recursive calculations
require keeping track of the distinct probabilities that
a green node and a red node pass the wrong color
along an edge in round i. Similarly, the number of
neighbors necessary to change the color a node x passes
will depend on the initial classi�cation �(x).

2.5 Extending the simple scheme Using the
techniques described by Richardson and Urbanke to
study belief propagation for error-correcting codes in
[16], it appears that we can analyze belief propagation
in the tree model in a similar manner to how we have
analyzed the simple message-passing scheme. Instead
of calculating the probability that the color red or
green is passed in a message each round, we recursively
calculate for each round the distribution of the value of
the conditional probability passed in the appropriate
message, based on the distribution of the messages
obtained from the previous round. Of course computing
the recursive behavior of distributions on [0; 1] is much
more complex than binary 0/1 random variables.

An interesting question is to come up with suitable
intermediary schemes, that pass more detailed informa-
tion than just the color but less information than the
conditional probability. For example, we may consider
sending a value from the set f�3;�2;�1; 0; 1; 2; 3g, with
the interpretation that larger positive values suggest a
stronger certainty of being green, and larger negative
values suggest a stronger certainty of being red. As the
number of possible values grows towards in�nity, this
method can increasingly approximate the behavior of
belief propagation. The work of Richardson and Ur-
banke [16] suggests that an appropriate intermediary
scheme may allow signi�cant constant-factor speedups
over belief propagation with minimal impact on perfor-
mance.

3 Simulations

In this section, we compare the accuracy of belief prop-
agation and the simpler, one-bit message passing algo-
rithms using simulations of the symmetric case. We use
simulations because of the di�culty of analyzing belief
propagation and so that we may see the behavior of
our algorithms on graphs of reasonable size. We focus
on accuracy and not on speed, since the speed depends
strongly on system details such as the size of the cache
and the relative speed of integer and
oating point com-
putations. Recall that the simpler algorithm involves no

oating point arithmetic, except for the precomputation
of the thresholds �i. In our experience, however, for
small graphs (10,000 nodes), belief propagation takes
almost twice as long. We expect that for larger graphs
the smaller memory requirements of the simpler algo-
rithm would yield even greater speedups.

Surprisingly, we �nd that the di�erence in accuracy
between the two algorithms is usually small. Hence, in
this case, we generally do not lose much information by
collapsing each belief into a single bit.

We also compare the simulation results with our
analysis of the simple message passing algorithm from
Section 2.4. Our goal here is to check that the analysis,
which holds only asymptotically, is accurate for graphs
of a reasonable size. Moreover, we would hope to gain
some understanding in situations where the analysis
fails. We scrutinize the few places where there is a
notable di�erence between the analysis and simulations,
and give evidence these di�erences appears to be caused
by small cycles in the graphs. We conclude that the
analysis can indeed provide an excellent prediction for
our model, if this pitfall is kept in mind.

3.1 Comparison between simulations of the two

algorithms We measure the �nal error of each of the
algorithms in terms of the fraction of edges passing the
wrong value. For belief propagation, where probabilities
(and not colors) are being passed in each round, during
a round we associate with each edge (in each direction)
the color with the larger probability. For the simpler
message passing algorithm, during a round each edge
(in each direction) is naturally associated with the color
being passed.

It is worth noting that in our simulations, in some
cases accuracy improves over a number of rounds,
but then begins to deteriorate. This deterioration
appears to be traceable to the cycles in the graph;
if we run to the point where cycles start to impact
results, performance can actually degrade. The �nal
error results therefore represent the best performance
obtained during the course of the algorithm. Note that
the algorithm itself cannot tell what the best point to

 Belief Propagation vs. Simple Message Passing
(Simulation)

0%

10%

20%

30%

40%

50%

0.5 0.6 0.7 0.8 0.9

Mono. Edge Prob.

(E
d

g
e)

 E
rr

o
r

BP 0.1

BP 0.2

BP 0.3

BP 0.4

SMP 0.1

SMP 0.2

SMP 0.3

SMP 0.4

Initial Error Prob.

Figure 2: Simulation results of simple message passing
and belief propagation.

stop is, as this requires knowledge of the initial coloring.
In practice, however, we believe the best stopping
point can be determined accurately via simulation and
knowledge of the graph structure; hence this comparison
appears the most fair possible.

Also, we emphasize that our measurements present
the �nal error in terms of the number of edges passing
the wrong color, which is almost (but not exactly) the
probability that a node takes on the wrong color using
an improved classi�er. We adopt this measure in order
to be consistent with the analysis o�ered previously.
In the interest of space, we leave data regarding the
fraction of node errors for the �nal version.

The �nal error is a function of two parameters
describing the quality of the input. The monochromatic

edge probability is the probability that an edge in the
graph is monochromatic. In our symmetric case, this
is simply �. This, along with the average degree of a
node, completely speci�es the parameters de�ning the
edges of the graph. For brevity, we consider here only
the case where the average degree is 20. The initial

error is the error rate incurred by the inaccuracy of
the initial classi�cation. In our symmetric case, this is
simply
. Our simulations are from graphs with 10,000
nodes. Each data point represents the average of 25
random inputs. Generally, unless otherwise speci�ed,
the deviations from the average are small, so we do not
address them further.

The results of simulations comparing simple mes-
sage passing and belief propagation are presented in
Figure 2. Observe that, in many cases, the accuracy of
the simple message passing algorithm is almost as good
as that of belief propagation. In particular, when belief
propagation does very well, reducing the �nal error to

Analysis vs. Simulation
(Simple Message Passing)

0%

10%

20%

30%

40%

50%

0.5 0.6 0.7 0.8 0.9

Mono. Edge Prob.

(E
d

g
e)

 E
rr

o
r

An 0.1

An 0.2

An 0.3

An 0.4

SMP 0.1

SMP 0.2

SMP 0.3

SMP 0.4

Initial Error Prob.

Figure 3: Analysis vs. simulation results for simple
message passing

a very small number, then often the simpler algorithm
su�ces. In these cases, the information from the edges is
so valuable that even modest use of it vastly improves
performance. Not surprisingly, when this information
is less valuable, belief propagation exploits the link in-
formation better. It is worth noting that the �nal er-
ror behaves monotonically in the two input parameters,
exactly as one would expect. These results are gener-
ally representative of our more extensive simulations,
in which we varied the average degree, the number of
nodes, etc.

3.2 Simulations versus analysis The asymptotic
analysis of the simple message passing algorithm from
Section 2.4 can be used to predict the �nal error
for small graphs by plugging the input parameters
(average degree, initial error, etc.), into the formulas
of Section 2.4. The analysis prediction for the �nal
error is found by computing successive values of pi until
the values converge. The sequence of values pi tends
to converge numerically after at most ten rounds, and
often it converges much more quickly.

The simulation results of the simple message pass-
ing algorithm are compared to the analysis prediction
in Figure 3. In most cases the two yield similar results.
However, in some cases, such as when the monochro-
matic edge probability is around 0:7 and the initial error
is relatively high, there is a notable di�erence between
analysis and simulation. We explain this discrepancy.

Consider the case where the monochromatic edge
probability � is 0:7 and the initial error rate
 is 45%.
Recall that pi is the probability that an edge sends an
erroneous message in the ith round according to the
analysis. We show in Figure 4 how pi changes with i for
several values of � around 0.7, and also mark between

Error by Round

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8

Round

(E
d

g
es

)
E

rr
o

r

An 0.65

An 0.7

An 0.75

An 0.8

Sim 0.65

Sim 0.7

Sim 0.75

Sim 0.8

Figure 4: Analysis by round vs. simulation results for
message passing.

rounds four and �ve the result from simulations. At
� = 0:7, there is a sharp drop in pi between rounds 4
and 6, from 27% to 14%. However, with 10,000 nodes
and average degree 20, there are typically many cycles
of length �ve and six. Since the analysis assumes that
small cycles do not exist (or at least do not skew results
signi�cantly), it appears clear that the failure of the
analysis is due to the failure of this assumption.

This idea is corroborated by the fact that when
probability falls quickly within a few rounds, or falls
very slowly after a few rounds, the analysis provides
much more accurate predictions, as can be seen in
Figure 4. Indeed, in all cases the results from the
simulations are near the results given from the analysis
from the �fth round. Further, we have found that
by performing simulations on graphs with more nodes
but the same parameter settings (e.g. average degree),
the prediction from the analysis becomes better as the
number of nodes increases. The improvement appears
to correspond to an increase in the size of a typical small
cycle in the graph. We note that also belief propagation
does not elude this problem, as its �nal error (when
� = 0:7,
 = 0:45) is only slightly better, and is much
worse than the analysis would suggest. We conclude
that in order to use the analysis to predict the behavior
of the simple message passing algorithm, one must take
into account the typical length of short cycles in the
graph, and use the analysis prediction within a limited
number of rounds.

4 Multiple Colors

For a richer model that more accurately represents the
problem of classifying Web pages, it is necessary to
consider cases with more than two colors. In this case,
the number of possibilities for modeling the correlations

between di�erent types of pages is quite large. Indeed,
in the work by Chakrabarti, Dom, and Indyk, the model
for how pages of di�erent categories tend to link was
developed by using a subset of the data as a training
set [5]. Rather than focus on developing an accurate
model (a subject well worth further study), we examine
a simple model that captures high level behavior we
expect from objects such as Web pages.

4.1 A coloring model In developing a classi�er
for Web pages, we would expect certain errors to be
more likely than others. For example, an article about
a soccer match might understandably be classi�ed under
entertainment rather than sports, but it is unlikely
that such an article would be mistakenly labeled as
politics. We therefore adopt a color model that re
ects
the property that certain categories are more likely to
be confused than others.

In a natural random graph model with colors
c1; c2; : : : ; ck, each node would be colored ci with some
probability �ci . The edge slots between colors ci and
cj (where here i could equal j) would each contain an
edge independently with probability �cicj . The initial
classi�er would mistakenly give a node of color ci the
color cj with probability
cicj .

We suggest a simple, symmetric model of this type
as a �rst subject for analysis. Let there be k = 2t

possible colors, where t should be thought of as a small
integer (say 3). The distance d(i; j) between colors ci
and cj (i 6= j) is t � d, where d is the number of digits
from the left that the binary representations of i and j
agree on. For example, the distance between color 000
and 001 is 1, while the distance between 111 and 011
is 3. It is clear that this distance measure is symmetric
(satisfying d(i; j) = d(j; i)), and moreover each color has
2h�1 colors at distance h � 1 from it.

We assume that pairs of colors at the same distance
behave similarly. That is, the probability the classi�er
mistakenly labels a node of one color with another
depends only on the distance between the colors, and
similarly for the probability of an edge existing between
two nodes. So, for example,
cicj is the same for
all pairs (i; j) of distance h. A further simpli�cation
is to make the �cicj and
cicj be simple functions of
the distance. For example, we experimented with the
case where these values decrease geometrically with the
distance. Here �cicj � �d(i;j) for some � > 0, and

similarly
cicj �
d(i;j) for some
 > 0.
Intuitively, this model captures the idea that when

classifying pages, certain categories are more likely to be
confused than others, and pages from certain categories
are more likely to be linked than others.

4.2 Multiple colors: belief propagation The
belief propagation technique is generalized in a straight-
forward manner to the case of multiple colors. Indeed,
this is similar to extensions of the belief propagation
technique in coding to symbols other than bits, such as
�eld elements over GF(q) [7, 6]. In the classi�cation
setting, each node begins with a vector of probabilities.
Each entry in this vector corresponds to a color, and
the values represent the initial belief that the node is
the corresponding color, based upon the color assigned
by the initial classi�er. The messages passed each round
are now vectors of probabilities, instead of single prob-
abilities.

As a conditional probability must be determined for
each color, the processing time for each node in each
round is proportional to the product of the number
of neighbors and the square of the number of colors.
Hence, the processing time per round is O(mk2) for k
colors when the graph has m edges. Note also that
the memory requirements of belief propagation grow
linearly with the number of colors. Hence, introducing
multiple colors severely slows down belief propagation.

In the case of many colors and large graphs, which
is the situation faced when computing on the Web,
belief propagation may prove too slow or require too
much memory to be e�ective. We therefore propose
a simpli�cation similar to that for the case of two
colors. It is worth noting, however, that theoretically
the performance of belief propagation in the random
graph model can be analyzed, in a manner similar to
the case for two colors.

4.3 A simpler algorithm In the two color case
we suggested an algorithm that sends messages of a
single bit across each edge. Similarly, in the multi-
color case, we suggest an algorithm that sends a single
color, rather than a vector of colors. Let mfc(x) be the
most frequently appearing color in messages from the
neighbors other than �(x). The natural generalization
is then:

Set �0(x; y) �(x) unless mfc(x) wins the chil-
dren vote by more than �i votes; in this case,
�0(x) mfc(x) .

If there are n nodes, m edges, and k colors in this
graph, this simpler algorithm requires time O(m + nk)
per round, which can be a substantial savings over the
O(mk2) time per round of belief propagation.

Analyzing this simple scheme becomes complex in
the case of multiple colors. Suppose that we seek to
mimic the case of two colors, by calculating a value
pi+1 representing the probability that �0(x; y) takes
on the wrong value. Now we must consider all the

possible colors it could send. Moreover, besides taking
into account all other possibilities for the most frequent
colors, we must consider the remaining distribution of
the colors of all other votes.

We may attempt to approximate the performance
by attempting to reduce it to the two color case,
e�ectively throwing away lower order terms in the
analysis. In the color model we have described, each
color has exactly one nearest neighbor. Hence, solely

as a means of making the equations computationally

tractable we make the following simpli�cations: we
assume that if a node x is correctly classi�ed initially,
then �0(x; y) will either be �(x), or it will take on the
value of the color nearest to �(x) in our model. That
is, we assume that when a node is classi�ed correctly
initially, it is quite unlikely that some color other than
its nearest neighbor will appear frequently enough in
the children votes to change �0(x; y). Intuitively this
still captures the high order behavior of the algorithm.
Similarly, we assume that if x is incorrect initially, then
�0(x; y) will take on either the initially assigned color or
the correct color of x.

In full generality, we may let pi(ca; cb) be the prob-
ability that in the ith round �0(x; y) is cb conditioned
on the fact that the color of x is ca. There are then
three di�erent cases, depending on whether cb = ca, cb
and ca are nearest neighbors, or cb and ca are neither
equal nor nearest neighbors. Each case yields a separate
equation.

In the interests of space, we leave a fuller discus-
sion of this approximate analysis as well as simulation
results for the multiple color model we have described
for the full version of the paper. We summarize our
basic �ndings here. As in the two-color case, our sim-
pli�ed algorithm often performs nearly as well as belief
propagation. Moreover, in the multiple color setting,
the speedup is substantial, as one would expect. Our
analysis, although only approximate, predicts perfor-
mance well in most situations. In some cases, however,
the simplifying assumptions are too optimistic, leading
to deviations between the analysis and observed perfor-
mance.

5 Conclusions

Amain thrust of this work is that the classi�cation prob-
lem is inherently similar to the decoding problem for
certain types of codes. Based on this connection, we
have considered both belief propagation and message
passing approximations of belief propagation for clas-
sifying pages on the Web, using random graphs mod-
els. By studying these models through both simulation
and analysis, we have found that using link information,
even in simple ways, can lead to dramatically improved

accuracy.
There are many further directions to take this work.

One important liability in the current analysis is that
the random graph model we focus on is perhaps too
simplistic. Recently, other random graph models for
the Web have been suggested [10], although �nding a
random graph model that suitably approximates the
Web is still an open question. It would be worthwhile to
study the performance of these improved classi�cation
schemes in a more suitable random graph model, either
analytically or through simulations.

Another important direction is to gain a greater un-
derstanding of the situation where there are many col-
ors. Analyzing the case of many colors fully appears to
be an inherently complex problem, although the work of
Kleinberg and Tardos demonstrates that approximation
algorithms are possible [9]. It would also be interesting
to experimentally determine a reasonable model for how
categories behave on the Web, in order to guide subse-
quent analysis.

References

[1] C. Berrou, A Glavieux, and P. Thitimajshima. Near
Shannon limit error-correcting coding and decoding:
Turbo-codes. In Proceedings of IEEE International

Communications Conference, 1993.
[2] K. Bharat and M. Henzinger. Improved algorithms

for topic distillation in a hyperlinked environment. In
Proceedings of the 21st International ACM SIGIR

Conference on Research and Development in

Information Retrieval, pages 104-111, 1998.
[3] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. In Proceedings of the

7th International World Wide Web Conference,
Brisbane, Australia, pages 107-117. Elsevier Science,
April 1998.

[4] S. Chakrabarti, B. Dom, D. Gibson, S.R. Kumar, S.
Rajagopalan, and P. Raghavan. Experiments in topic
distillation. In ACM SIGIR Workshop on Hypertext

Information Retrieval on the Web, 1998.
[5] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced

hypertext categorization using hyperlinks. In
Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 307{318,
1998.

[6] M. Davey and D. MacKay. Low density parity check
codes over GF(q). IEEE Communications Letters, vol.
2, no. 6, June 1998.

[7] R. G. Gallager. Low density parity check codes. MIT
Press, Cambridge, MA, 1963.

[8] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proceedings of the 9th Annual

ACM-SIAM Symposium on Discrete Algorithms,
pages 668{677, 1998. Also available as IBM Research
Report RJ 10076, May 1997.

[9] J. Kleinberg and E. Tardos. Approximation
algorithms for classi�cation problems with pairwise
relationships: metric labeling and Markov random
�elds. In Proceedings of the 40th Annual Symposium

on Foundations of Computer Science, pages
14{23,October 1999.

[10] R. Kumar, P. Raghavan, S. Rajagopalan, and A.
Tomkins. Extracting large-scale knowledge bases from
the Web. In Proceedings of the 25th VLDB

Conference, 1999.
[11] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A.

Spielman, and V. Stemann. Practical loss-resilient
codes. In Proceedings of the 29th Annual Symposium

on Theory of Computing, pages 150{159, 1997.
[12] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi.

Analysis of random processes via And-Or trees. In
Proceedings of the 9th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 364{373, 1998.
[13] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and

D. Spielman. Improved low-density parity-check
codes using irregular graphs and belief propagation.
In Proceedings of the 1998 International Symposium

on Information Theory.
[14] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and

D. Spielman. Analysis of low density codes and
improved designs using irregular graphs. In
Proceedings of the 30th Annual Symposium on Theory

of Computing, pages 249{258, 1998.
[15] R.J. McEliece, D. MacKay, and J. Feng. Turbo

decoding as an instance of Pearl's \Belief
Propagation" algorithm. IEEE Journal on Selected

Areas in Communication, vol. 16, no. 2, pages
140-152, February, 1998.

[16] T. Richardson and R. Urbanke. The capacity of
low-density parity check codes under message-passing
decoding. Preprint, available at
http://cm.bell-labs.com/who/tjr/pub.html.

[17] T. Richardson, A. Shokrollahi, and R. Urbanke.
Design of provably good low-density parity check
codes. Preprint, available at
http://cm.bell-labs.com/who/tjr/pub.html.

