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Abstract

In this paper we study randomized algorithms for circuit switching
on multistage networks related to the butterfly. We devise algo-
rithms that route messages by constructing circuits (or paths) for
the messages with small congestion, dilation, and setup time. Our
algorithms are based on the idea of having each message choose a
route from two possibilities, a technique that has previously proven
successful in simpler load balancing settings. As an application of
our techniques, we propose a novel design for a data server.

1 Introduction

In this paper, we devise algorithms for routing messages in circuit-
switching networks where each message chooses from two possible
routes, an idea that has been applied with great success in other load
balancing situations [12, 17, 26, 27].

Underlying every parallel computer is a network that delivers
messages between processors or between processors and memory
modules. Similar networks are found in the switches that route
telephone calls and internet traffic. Typically, a message is sent
from its input node (source) to its output node (destination) via a
path in the network. Methods for routing messages include circuit-
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switching, store-and-forward routing, and wormhole routing. With
circuit switching, each message must first lock down (i.e., reserve)
a path (i.e., circuit) in the network from its input node to its output
node. The path is then used to transmit the message through the
network. In contrast, with store-and-forward routing and worm-
hole routing paths are not reserved before transmission.

Circuit-switching has enjoyed widespread popularity since its
early use in telephony and subsequently in the design of parallel
computers. Recent trends in network design emphasize the need
for providing quality of service (QoS) guarantees for communica-
tion. To provide guarantees as opposed to just best-effort service,
network resources must be reserved before communication begins.
Consequently, several modern high-speed multimedia switches and
ATMs reserve a (virtual) circuit through the network for each com-
munication request [37, 38].

1.1 Circuit routing algorithms and their performance

In a circuit-switched network, a message arrives requesting a path
from its source to its destination. Arouting algorithm determines
which of many possible paths is locked down for each message. We
measure the performance of a routing algorithm in terms of three
parameters: congestion, dilation, and setup time.

Congestion and dilation are properties of the paths locked down
for the messages by the routing algorithm. Thecongestion of a set
of paths is defined to be the maximum number of paths that pass
through any link in the network. Congestion is a measure of the
maximum number of paths that must be simultaneously supported
by a link of the network, and hence determines the bandwidth that
a link should possess. Thedilation of a set of paths is defined to
be the maximum length of a path in the set. Dilation is a measure
of maximum distance (in links) that a message must travel to reach
its destination. Finally, thesetup time is the time taken by the rout-
ing algorithm to allocate paths through the network. This is the
time overhead involved in path selection before the actual message
transmissions begin.

The goal of this paper is to devise routing algorithms with small
congestion, dilation, and setup time.

1.2 Network and problem definitions

The results in this paper apply to variants of a popular type of multi-
stage interconnection network called thebutterfly network. Butter-
fly networks and its variants have been widely used for packet rout-
ing in a number of commercial and experimental networks [7, 15,
28, 29]. More recently, several proposed designs for the switching
fabric of scalable high-speed ATM networks use the butterfly and
its variants for routing virtual circuits [37, 38].

We define ann-input butterfly network Bn as follows. Ann-
input butterfly hasn(log n+ 1) nodes arranged inlog n+ 1 levels
of n nodes each.1 An example of ann-input butterfly (n = 8)
with depthlog n (log n = 3) is show in Figure 1. Each node has a
distinct label〈w, i〉 wherei is the level of the node (0 ≤ i ≤ log n)

1Throughout this paper we uselog n to denotelog2 n.
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Figure 1: An 8-input butterfly network.

and w = w1w2 . . . wlog n is a log n-bit binary number that denotes
the row of the node. All nodes of the form 〈w, i〉, 0 ≤ i ≤ log n,
are said to belong to row w. Two nodes 〈w, i〉 and 〈w′, i′〉 are
linked by an edge if i′ = i+ 1 and either w and w′ are identical or
w and w′ differ only in the bit in position i′. (The bit positions are
numbered 1 through log n.) We call the first type of edge a straight
edge and the second a cross edge. The nodes on level 0 are called
the inputs of the network, and the nodes on level log n are called
the outputs. Sometimes the level 0 node in each row is identified
with the level log n node in the same row. In this case, the butterfly
Bn is said to wrap around.

We define a randomly-wired butterfly RBn as follows. Net-
work RBn has the same set of nodes and edges as Bn, except
that the cross edges incident on the input nodes of RBn are per-
muted randomly according to the following rule. Let d = log n
Each node 〈w1 . . . wd, 0〉 of RBn is connected by a cross edge to
node 〈w′

1 . . . w
′
d, 1〉 if and only if w1 �= w′

1 and σw1(w2 . . . wd) =
w′

2 . . . w
′
d, where σ0 and σ1 are random permutations of the set of

(log n− 1)-bit numbers.
We define a two-fold butterfly BBn as follows. Network BBn

consists of two copies of Bn placed one after the other such that
each output node in the first copy is identified with the correspond-
ing input node of the second copy with the same row number. Note
that BBn is a multistage network with n rows and 2 log n+ 1 lev-
els. The nodes in level 0 are called the inputs ofBBn and the nodes
in level 2 log n are called the outputs of BBn. Also, observe that a
routing algorithm on BBn can be simulated by making two passes
through a butterfly Bn that wraps around.

It is important to contrast the BBn network with another com-
mon variant of the butterfly, the Beneš network. An n-node Beneš
network consists of two copies of Bn placed “back-to-back” such
that each output node of the first copy is identified with the corre-
sponding output node of the second copy.

In this paper, we study a canonical circuit routing problem that
is known as the permutation routing problem. In a permutation
routing problem at most one message originates at each input of
the network and at most one message is destined for each output of
the network.

We distinguish two kinds of permutation routing problems: static
and dynamic. In a static problem, all the messages that constitute
a permutation routing problem are present at time 0, before the
routing begins. The routing algorithm constructs paths for all the
messages in a “batch” mode. All the messages are delivered to
their respective destinations before the routing of the next batch of
messages begins. In contrast, in a dynamic problem, messages are
injected or deleted one by one. The routing algorithm routes a path
for each injected message in an on-line fashion with no knowledge

of future message arrivals. We assume that at any time, the mes-
sages being routed form a partial permutation; that is, each input
and output node correspond to at most one routed message.

1.3 Previous work

There are several different sub-areas of research that relate to our
work. We provide a summary of the most relevant.
Routing in Butterfly Networks. There is a vast literature on rout-
ing in butterfly networks [20, 21]. Much of the early work focuses
on store-and-forward routing [1, 23, 24, 31, 35, 39, 41, 42]. More
recently, there has been progress in analyzing wormhole routing
algorithms [10, 11, 13, 36]. Since we present no new results in
these two routing methods, we focus only on the butterfly circuit-
switching literature.

In two early papers, Beizer [8] and Beneš [9] showed that any
static permutation routing problem can be routed with congestion
1 and dilation 2 log n on an n-input Beneš network. Subsequently,
Waksman [43] provided an elegant algorithm that takesO(n log n)
time to determine all the paths, but requires global knowledge of
the source and destination of all the messages. Later, Nassimi and
Sahni [30] showed how to implement Waksman’s algorithm in par-
allel on the Beneš and related networks in time O(log4 n). How-
ever, their algorithm is complex and requires the Beneš network to
emulate a complete network by executing a series of sorting rou-
tines.

Although the Beneš network and the BBn are closely related
in structure, whether or not it is possible to route an arbitrary per-
mutation routing problem in an offline fashion with congestion 1
on the BBn is a long-standing open problem.

In this paper, we devise routing algorithms that minimize con-
gestion. A complementary approach aims to maximize throughput.
Previous work has studied the model where each link can support at
most q paths, and the goal is to maximize the number of messages
that lock down paths. Kruskal and Snir [19] showed that if each in-
put in a butterfly networkBn sends a message to a randomly chosen
output, and at most one message can use any edge of the network
(i.e., q = 1), then the expected number of messages that succeed in
locking down paths to their destinations is Θ(n/ log n). Koch [18]
generalized the result of Kruskal and Snir by showing that if each
edge can support q messages, q ≥ 1, then the expected fraction
of messages that succeed in locking down paths is Θ(n/ log1/q n).
Maggs and Sitaraman [24] generalized the previous two results by
showing that, by making two passes through a butterfly, it is possi-
ble to route an Ω(n/ log1/q n) fraction of any permutation (rather
than only a random permutation), with high probability.
Use of Randomness. An early example of the use of random-
ization for circuit-switching in butterfly networks is the work of
Valiant [41, 42]. Valiant showed that any permutation routing prob-
lem can be transformed into two random problems by first routing
a path for each message to a random intermediate destination, and
then on to its true destination. This implies that we can route paths
for a (static or dynamic) permutation routing problem on a two-
fold butterfly BBn with congestion Θ(log n/ log log n), and dila-
tion 2 log n. Note that the paths for each message can be set up
independently without complete knowledge of the permutation in
O(log n) time. We show how to use randomization to route permu-
tations with substantially smaller congestion and the same dilation.

Ranade [34] observed that a smaller amount of randomness is
sufficient to implement Valiant’s algorithm. Note that each switch
has two input links and two output links. Ranade noted that it is
sufficient that each switch in the first log n levels of BBn shunts a
message from each input link to a random (and distinct) outgoing
link. Thus, messages are sent to random but not independent des-
tinations using one random bit per switch. The first log n levels of
such a BBn constitute a flip network. A flip network was subse-



quently used in [24] in the context of circuit routing. We use flip
networks in our routing algorithms in Section 2.

Randomness can be used in constructing the network itself.
The use of randomness to design multistage networks dates back
to Ikeno[16], and Bassalygo and Pinsker [5]. Networks such as
the randomly-wired multibutterfly are known to have good routing
and fault tolerance properties [40, 22]. Recent results provide al-
gorithms for routing circuits for any permutation routing problem
with congestion 1 in multibutterfly and multi-Beneš networks with
set-up time O(log n) [2, 32]. Unlike these networks, our results in
Section 2 apply to commonly-used networks likeBn andBBn that
require neither random wiring nor expanders.
Balls-and-bins problem. Our approach to circuit routing is influ-
enced by recent advances in the classical balls-and-bins problem.
It is well known that if n balls are tossed randomly into n bins, the
maximum number of balls in any bin will be Θ(logn/ log log n)
with high probability. Azar et al [4] consider the following dy-
namic protocol for throwing n balls into n bins: for each ball pick
two bins independently and uniformly at random, and place the ball
in the bin with the smaller load at the time of placement. They show
that after all balls are placed in bins, the maximum load of any bin
is Θ(log log n), with high probability.

Static protocols for the balls-and-bins problem were developed
in [17], [12], and [27] and applied to PRAM simulations. They con-
sider variants of the following process. Initially, each ball chooses
two random bins. In a round, each ball not yet allocated accesses
its two bins. Each bin with at most c accessing balls accepts all
of them. The other balls try again in the next round. This proto-
col guarantees maximum load c. Even for constant c, the protocol
allocates all balls, with high probability, using only O(log log n)
rounds.

We apply similar “ two-choice” algorithms to circuit routing.
Note that this is a more complex situation. Thinking of each mes-
sage as a ball and each network edge as a bin, we see that finding
a path for each message corresponds to placing each ball in sev-
eral dependent bins. These dependencies substantially increase the
difficulty of the analysis.
Circuit routing in general topology networks. Dynamic circuit-
switching has been extensively studied in an on-line competitive
framework for arbitrary network topologies. (See [33] for a sur-
vey). Results are known for minimizing congestion [3] and for the
maximizing throughput [14]. This framework can incorporate more
general parameters such as the circuit bandwidth and circuit hold-
ing time. However, these results do not yield routing algorithms
with congestion smaller than Θ(logn) for the regularly-structured
muti-stage networks that are the focus of this paper.

1.4 Our results

We introduce two new protocols for circuit-routing: the collision
protocol and the minimum protocol. In contrast to Valiant’s algo-
rithm, which picks one random path for each message, these pro-
tocols choose two random (but not independent) paths p and p′ for
each message M . The collision protocol uses a suitably chosen
threshold c, and allocates either p or p′ to message M , provided
the congestion of the allocated path is at most c. In contrast, the
minimum protocol allocates toM the path with the smaller conges-
tion. As mentioned previously, protocols of this flavor have been
utilized and analyzed in simpler settings. We extend these tech-
niques to circuit-routing.
Static Permutation Routing. In Section 2.1, we show the collision
algorithm routes any permutation on the two-fold butterfly BBn

with congestion O(log log n/ log log log n), with high probability,
and dilation 2 log n. The setup time isO(log n log log n/ log log log n).
Our routing algorithm achieves a substantially smaller congestion
bound than Valiant’s algorithm. Comparing our result with Waks-

man’s algorithm, which achieves congestion 1 on a Beneš network,
we require substantially smaller setup time. Furthermore, we do not
require complete knowledge about the permutation being routed
and our routing algorithm can be implemented on the network it-
self. Comparing our result to the algorithm of Nassimi and Sahni
[30], our algorithm is much simpler and faster, although their algo-
rithm achieves smaller congestion.
Dynamic Permutation Routing. In Section 2.2, we analyze the
minimum algorithm for routing any dynamic permutation routing
problem on network BBn. The congestion is O(log log n) with
high probability, the dilation is 2 log n, and the setup time for each
new message is O(log n). Prior to this work, every known algo-
rithm for the dynamic permutation routing problem on the butterfly
and related networks required Ω(log n/ log log n) congestion. Our
algorithm is optimal in that any routing algorithm on BBn that
considers only a constant number of alternate paths per message
must incur Ω(log log n) congestion [4].
Data Server Architecture. As an application of our techniques,
in Section 3, we present a proposal for the architecture of a data
server. The data server utilizes network RBn to connect n users
to n disks. Each user is associated with a distinct input node and
each disk is associated with a distinct output node ofRBn. Objects
(typically large, e.g. movies) are distributed among the disks.

A canonical task performed by the data server is the following.
Given n requests to objects, one per user, these requests must be
satisfied by providing a path from each user to a disk that contains
their requested object. The congestion of the paths must be min-
imized. Besides congestion, another important performance met-
ric is disk contention, which is often a bottleneck. We define disk
contention to be the maximum number of simultaneous requests
that any disk must satisfy. In Section 3, we devise algorithms that
achieve both small congestion and small disk contention.

The standard technique of storing the objects by independently
and randomly distributing them to the n disks yields congestion
and disk contention Θ(log n/ log log n), with high probability. To
achieve lower congestion and disk contention, we store two copies
of the same object on two disks.

2 Routing in the two-fold butterfly

2.1 Static routing in BBn

We describe a simple, efficient algorithm for routing permutations
on the two-fold butterfly BBn. Recall that the two-fold butter-
fly BBn has n inputs at level 0 and n outputs at level 2d, where
d = log n. Given a permutation π, our routing algorithm connects
each input node i to the corresponding output node π(i); each pair
(i, π(i)) of input and output nodes is called a request. Our random-
ized algorithm routes paths such that the maximum congestion on
an edge is Θ(log log n/ log log log n), with high probability. Fur-
thermore, the time required by the algorithm to set up all the paths
is at most Θ(log n log log n/ log log log n), with high probability.
The c-collision algorithm. We use the collision protocol described
below to perform the routing. The c-collision protocol initially
chooses at random two possible paths for each request. Eventually
one of these paths will serve as the required connection.

The two random paths for each request are chosen as follows.
The nodes on levels 0, . . . , d/2 − 1 and d + d/2 + 1, . . . , 2d are
flipped randomly. In particular, each input and output node maps
the first path p of a request to its straight edge and its second path
p′ to its cross edge with probability 1

2 ,and with probability 1
2 the

order is reversed. Similarly, each node on levels 1, . . . , d/2 − 1
and d+ d/2 + 1, . . . , 2d− 1 with probability 1

2 connects its input
straight edge with its output straight edge and its input cross edge
with its output cross edge, and with probability 1

2 the connections
are reversed. Note that these random choices completely determine



the two paths p and p′ of each request, because there is exactly
one path connecting a node on level d/2 with a node on level d +
d/2 in a BBn network. For a path p, the other path p′ connecting
the same input and output nodes is called the buddy of p. The
random switching ensures that any edge on the levels 1, . . . , d/2
and d+d/2+1, . . . , 2d is traversed by at most one of the randomly-
generated paths. However, each edge on the interior levels, i.e.,
one with “ top” node on one of the levels d/2 + 1, . . . , d + d/2,
is potentially traversed by several of these paths. We call these
edges collision edges, and we say that two paths that cross the same
collision edge collide.

The c-collision algorithm proceeds in rounds to select a path
for each request as follows. Initially all paths are active and not
selected. A path p is eligible to be selected if for each edge e ∈
p the number of active paths traversing e is at most c. If p and
its buddy p′ are both eligible to be selected, only one is selected
arbitrarily. A path p ceases to be active in a round if p is selected or
the buddy of p is selected in that round. The algorithm terminates
when there are no more active paths.

Each round of the c-collision algorithm can be implemented
using a store-and-forward algorithm as a subroutine: in a first pass,
for each active path, a packet is sent along the path from level 0 to
level 2d. During this pass, for each edge, the number of packets
traversing the edge is counted. Then, in a second pass, all packets
are routed backward along their respective paths from level 2d to
level 0. During this pass the congestion for each active path is
computed. Note that, in this model, when computing the setup time
the packets and edges of the network can act in parallel, and hence
a round may complete in o(n) time.

The c-collision algorithm selects a path p in a round only if
p collides with no more than c − 1 other active paths on any of
the edges in p. This implies that any edge that is included in at
least one selected path is included in at most c − 1 other selected
or active paths. As a consequence, the congestion of all selected
paths is at most c. Note that the algorithm as described is not guar-
anteed to terminate. However, in Theorem 2.1, we show that if c
is sufficiently large, the algorithm will terminate with maximum
congestion at most c, after a small number of rounds, with high
probability. In practice, we may terminate the algorithm after some
fixed number of rounds; all requests that still have two active paths
at the termination point may choose one arbitrarily, and in this case
we fail to guarantee congestion c.

Theorem 2.1 For any constant ε > 0 and c such that c! = (1 +
ε) · log n, the probability that the c-collision algorithm on BBn

takes more than t = Θ(log log n/ log log log n) rounds to select a
path for every request is at most n−c/4+1+o(1). Furthermore, each
round can be computed in time O(log n), with high probability.

Proof. First, we show that if the algorithm does not terminate after
t rounds, we can construct a “witness tree” . Next, we show how
the witness tree can be pruned to avoid stochastic dependencies.
Finally, we show by enumeration that the probability of occurrence
of a pruned witness tree is at most n−c/4+1+o(1).
Constructing a witness tree. Fix a permutation π to be routed, and
the settings of the randomly-flipped switches on the levels 0, . . . , d/2−
1 and d + d/2 + 1, . . . , 2d. This determines the two paths chosen
for each request. Assume that there is a request with paths p and
p′, and neither path has been selected by round t, where the proper
value of t is to be determined later. Then p collides with at least c
paths of other requests in round t at some edge e. Let p1, . . . , pc

denote the c paths that collide with p in round t at e. The root of
the witness tree is the request corresponding to p and the requests
corresponding to p1, . . . , pc are its children. The paths p1, . . . , pc

and their buddies p′1, . . . , p
′
c were not selected at round t− 1. Ap-

plying the argument recursively to p′1, . . . , p
′
c we can construct a

complete c-ary tree of height t. This tree is called the witness tree.

Each node v in the witness tree corresponds to a request with
two associated paths, one of which collides with one of the paths
associated with each sibling and the parent of v (unless v is the
root), and the other of which collides with one of the paths associ-
ated with each of the children of v (unless v is a leaf). We call the
first path the up path of v and the other path the down path of v.
The up path of the root and the down paths of the leaves are defined
to be empty paths. Note that by the term “collision represented by
node v” we mean the collision of the down path of v with the up
paths of the children of v in the witness tree. Finally, to give each
tree a unique representation, we assume that children of a node are
listed in increasing order from left to right based on the input node
number of the corresponding request.

The requests corresponding to the nodes of a witness tree are
not necessarily pairwise distinct. Furthermore, the up and down
paths of distinct requests may overlap in the randomly-flipped lev-
els, so that a randomly-flipped switch can be included in more than
one of these paths. Hence, the collision events represented by a
witness tree are not necessarily stochastically independent. Note
that, if they were stochastically independent, it would be relatively
straightforward to argue the theorem.
Pruning the witness tree. The intuitive reason why the dependen-
cies do not affect the final conclusion is that there are onlyO(log n)
nodes in the witness tree, hence the dependencies are “ rare” . In or-
der to handle dependencies, we prune nodes from the witness tree
as necessary. This pruning is done by a traversal through the tree
visiting the internal nodes in breadth-first-search order starting at
the root. When a node v is visited during this traversal, the depen-
dencies between the collision represented by v and the collisions
represented by nodes visited before v are checked. If the depen-
dencies significantly affect our calculations, the nodes below v are
pruned, and these pruned nodes are excluded from the subsequent
traversal.

The detailed pruning rules follow. For a node v visited during
the traversal, letB(v) denote the set of nodes visited before v. Fur-
thermore, let Γ(v) denote the set of nodes that are children of the
nodes in B(v), that are not pruned before v is visited, and that are
not in B(v) themselves. For the root r of the witness tree, B(r)
and Γ(r) are empty since our traversal starts at r. We distinguish
two pruning rules:

1. If a path associated with one of v’s non-pruned children tra-
verses a randomly-flipped switch that is also traversed by a
path associated with a node u from Γ(v) then the c subtrees
rooted at the children of v are removed from the tree, and the
c subtrees rooted at the children of u are also removed from
the tree. The node v is called a pruning node. The node u
that caused the pruning is called the conflicting node of v.

2. If a path associated with one of v’s non-pruned children tra-
verses a randomly-flipped switch that is also traversed by a
path associated with a node u from B(v) then the c subtrees
rooted at the children of v are removed from the tree. The
nodes v and u are again called pruning and conflicting nodes
respectively.

When there is more than one choice for a conflicting node for a
certain pruning node we make the choice arbitrarily, so that each
pruning node can be associated with exactly one conflicting node.
Furthermore, the second pruning rule is considered only if the con-
ditions for the first pruning rule are not met.

Note that the pruning rules ensure that, for every node v visited
after the root r, the subgraph induced byB(v)∪Γ(v) is connected;
that is, B(v) ∪ Γ(v) induces a subtree of the full witness tree with
root r. Also, when a node v is visited, up to 2c subtrees of max-
imum height t − 2 could be pruned from the tree. These subtrees
do not include any node from B(v) ∪ Γ(v). Hence, the subtree
induced by this set only grows during the traversal.



We continue the pruning process till either there are no more
nodes to visit or there are κ = 
c/2� pruning nodes. In the latter
case, we apply a final pruning. If v is the κth pruning node, we
remove from the tree all nodes not included in B(v) ∪ Γ(v). This
effectively stops the pruning process at the κth pruning node.

The witness tree pruned in this fashion is called the pruned wit-
ness tree. Let m denote the number of internal nodes in this tree,
and m′ ≤ κ denote the number of pruning nodes. Let v1, . . . , vm

denote the internal nodes andw1, . . . , wm′ the pruning nodes in or-
der of visitation, respectively. Furthermore, let ui denote the con-
flicting node of wi, for 1 ≤ i ≤ m′. The pruned tree possesses the
following properties.

1) Any internal node v represents a collision of the down path
of v and the c up paths of the children of v.

2) For any internal node v, the pruning ensures that the up paths
of the children of v do not share a randomly-flipped switch
with a path associated with a node inB(v)∪Γ(v) except for
the down path of v. (As a consequence, all nodes of the tree
correspond to distinct requests.)

3) The down path of a pruning node v either collides with a path
p that is associated with the conflicting node u, or it collides
with a path p such that p or its buddy shares a random switch
with a path associated with u. This path p is denoted the
conflicting path of v.

4) The down path of a pruning node wi is not the conflicting
path of a pruning node wk with k < i. (This can be proved
as follows. For contradiction, assume the opposite. Then
wi = uk and wi ∈ Γ(wk). Hence, the subtree below wi is
removed when wk is visited. This means that wi has no non-
pruned children when wi is visited and consequently, wi is
not a pruning node.)

5) For each pruning node wi, the down path p of wi shares at
most 5c randomly flipped switches with up and down paths
associated with any other node and conflicting paths associ-
ated with the pruning nodes w1, . . . , wi. (This is because,
according to Properties 2 and 4, the down path of wi is not
equivalent to any such up, down, or conflicting path. Further-
more, according to Property 2, the down path of wi does not
share a random switch with any other up or down path, ex-
cept for the up and down paths of the siblings of wi, and the
up path ofwi. With each of these 2c−1 paths, the down paths
overlaps at most twice in the randomization levels, once in
each of the butterflies inBBn. The same holds for the i con-
flicting paths associated with w1, . . . , wi. Thus, there are at
most 4c− 2 + 2κ ≤ 5c overlappings with these paths in the
randomization levels.)

Bounding the probability of occurrence of a pruned witness
tree. We bound the probability of occurrence of a pruned witness
tree via enumeration. Define the tree shape to be a description of
the topology of the tree including the pruning and the conflicting
nodes. Define an admissible witness tree configuration to be a tree
shape with associated requests, up and down paths, and conflicting
paths which eventually, i.e., for some setting of the random switch-
ing, matches to a pruned witness tree. In particular, any admissible
witness tree configuration has to fulfill the 5 properties above.

Let T denote the set of tree shapes corresponding to at least one
admissible witness tree configuration, and let KT denote the set of
all admissible witness tree configurations with tree shape T ∈ T .
An admissible configuration K is said to be active if the outcome
of the random switching corresponds to all paths of the configura-
tion. Hence, each admissible configuration K has a probability to
become active, which is just 2−ρ(K) with ρ(K) denoting the total

number of randomly flipped switches covered by all paths of K.
As a consequence, the probability that the c-collision process takes
more than t rounds can be bounded by∑

T∈T

∑
K∈KT

2−ρ(K)

︸ ︷︷ ︸
=: E(T ) .

We aim to give an upper bound on E(T ), for a fixed tree shape
T ∈ T . E(T ) is equal to the expected number of active witness
tree configurations with tree shape T . Note that the tree shape T
only restricts the number of admissible configurations, that is, it
defines the setKT , but does not influence the probability for a given
configuration K ∈ KT to become active. This probability depends
only on ρ(K), and, hence, on the overlapping of the paths in the
randomization levels.

In the following, we utilize Properties 2 and 5 that govern how
paths may overlap to compute E(T ). Instead of summing over all
admissible configurations in KT and multiplying each individual
configuration with its probability, we consider the nodes of the wit-
ness tree one by one and calculate an upper bound on the expected
number of configurations for each individual node. In particular,
we consider first all the internal tree nodes and then all the pruning
nodes; both sets of nodes are considered in the order of visitation.

Define the configuration of an internal node vi to consist of the
down path of vi and the up paths of the children of vi, for 1 ≤ i ≤
m. Furthermore, define the configuration of a pruning node wi to
be the down path of wi and the two paths belonging to the colliding
request of wi, for 1 ≤ i ≤ m′. A collection of node configurations
is said to be admissible, if they are a subset of an admissible tree
configuration. Note that a collection of admissible configurations
for all internal and all pruning nodes (in conjunction with the tree
shape) completely defines the configuration of the witness tree.

For an internal node vi and a collection K of configurations
for the nodes v1, . . . , vi−1, let Ecoll(vi,K) denote the expected
number of active configurations for vi under the assumption that
the configurations in K are active. Note that K already specifies
the request associated with vi. (For the root v1 we assume that K
specifies only this request.) Let Ecoll(vi) be the maximum over all
configurations K of Ecoll(vi,K).

Lemma 2.2 Ecoll(vi) ≤ log n/c! .

Proof. We bound the expected number of active configurations for
vi by choosing the down path p of vi arbitrarily and then deriving
an upper bound on the expected number of choices of active up
paths p1, . . . , pc of the children of vi that fulfill Properties 1 and 2.

The expected number of active down paths p is at most one.
This is because, there are several different paths in BBn that con-
nect the two input and output nodes which are given by the config-
uration K. However, at most two of them are active, and the con-
figuration K determines which of them is the up path and which is
the down path of vi.

Given path p, there are d = log n possible choices for the col-
lision edge at which the down path collides with p1, . . . , pc. Let e
denote this edge and ! the level of this edge. W.l.o.g., we assume
that d/2 + 1 ≤ ! ≤ d.

We calculate an upper bound on the expected number of active
up paths p1, . . . , pc traversing e and fulfilling Property 2. Property
2 ensures that p1, . . . , pc use only unrevealed random switches.
Therefore, we assume for the following that all switches are un-
revealed. Note that this does not decrease the number of admissi-
ble configurations, and, hence, not decrease the expected number
of active configurations for p1, . . . , pc. The main problem in cal-
culating the number of active configurations for p1, . . . , pc is to



handle overlappings among these paths and overlapping between
these paths and the down path p in the randomization levels.

The number of nodes on level 0 from which e can be reached
is 2�−1. We select an input node for each of the pi’s from these
nodes. The number of possible ways to choose these c nodes is(
2�−1

c

)
because the requests associated with the children of a node

are ordered according to the ID’s of the input nodes. Let s1, . . . , sc

denote the source nodes of the paths p1, . . . , pc on level 0 and
d1 = π(s1), . . . , dc = π(sc) the destination nodes of these paths
on level 2d.

Next we choose an intermediate destination d′i for each path pi

on node level d+!. For every pi, there are (eventually) several pos-
sibilities to choose these intermediate destination. However, inde-
pendent from the other paths of the configuration of vi, the number
of active destinations is at most one. Hence, the expected number
of active intermediate destinations is at most one.

Now assume the intermediate destinations are fixed. Note that
this also fixes the path from level d + ! to level 2d. It remains to
consider the number of active configurations of c paths p′1, . . . , p

′
k

such that p′i connects si and d′i and traverses e. Paths p′1, . . . , p
′
k

and p do not overlap in the randomization levels. This can be shown
as follows. If two paths share a random switch s then these paths
arrive and leave s on different edges. Furthermore, these paths do
not overlap at any other switch with distance less than d + 1 from
s. Hence, two paths that traverse edge e cannot have used a random
switch with distance less than d+1 from the two switches adjacent
to e, and consequently, they cannot meet on a random switch on the
levels 0, . . . , d/2 − 1 or the levels d+ d/2 + 1, . . . , d+ !.

The number of different paths connecting si with d′i and travers-
ing e is one. Thus, the number of admissible configuration for the
p′i’s is at most one. All paths in the admissible configuration do not
share a randomly flipped switch with another path from the config-
uration of vi. Hence, the number of unrevealed random switches
traversed by each of these paths is d/2 + (d+ !)− (d+ d/2) = !.
Except for the switch on level 0, all of these switches must corre-
spond to the course of the respective path. The probability for this
event is 2−(�−1). As a consequence, the probability that all k paths
are active is at most 2−c·(�−1).

Putting it all together, the expected number of active configura-
tions for vi is

d ·
(

2�−1

c

)
· 2−c·(�−1) ≤ d

c!
,

which completes the proof of Lemma 2.2.

Now we give an upper bound on the expected number of the
active configurations for the pruning nodes. For a pruning node
wi and a collection K of configurations for all internal nodes and
the pruning nodes w1, . . . , wi−1, letEprune(wi,K) denote the ex-
pected number of active configurations forwi under the assumption
that all configurations inK are active. LetEprune(wi) be the max-
imum over all configurations K of Eprune(wi,K).

Lemma 2.3 Eprune(wi) ≤ 25c+3 · (log n+ 1)/
√
n .

Proof. The conflicting path p of pruning node wi is either asso-
ciated with the conflicting node ui or p or its buddy shares a ran-
domly flipped switch with a path associated to ui. The tree shape
specifies ui, and the configuration K fixes the request associated
with ui. For any consistent setting of the random switches, the
number of paths sharing a randomly flipped switch with the two
paths belonging to this request is at most 2 · (log n + 1) (inclu-
sive the two paths themselves). Consequently, for any setting of
the switches, the number of candidates for the collision request is
at most 2 · (log n + 1), and, hence, the number of candidates for
the collision path is at most 4 · (log n+ 1).

Now suppose the collision path is fixed. The down path of wi

collides with this path. First, we assume that the collision is in
level !, with d/2+1 ≤ ! ≤ d. Let e denote the respective collision
edge. There is at most one admissible course for the down path of
wi from its source node on level 0, which is determined by K, to
the collision edge e.

The course of the down path from level 0 to level ! is deter-
mined by the randomly flipped switches. Property 5 ensures that
at most 5c of the switches traversed by the down path are shared
with other paths in K. Hence, at least ! − 5c of the randomly
flipped switches determining the course of the path from level 0
to level ! are independent of K, and consequently, the probabil-
ity that the down path of wi is equivalent to the only admissible
path in these levels is 2−�+5c. Summing over all collision levels
!, with d/2 + 1 ≤ ! ≤ d, yields an upper bound on the probabil-
ity that the switches along the collision path are set appropriately
of 2−d/2+5c. Since the same bound holds also for collisions when
d+ 1 ≤ ! ≤ 3d/2, the probability that the down path is equivalent
to the only admissible path is at most 2−d/2+5c+1. As a conse-
quence, the expected number of active configurations for wi is at
most 2−d/2+5c+1 · 4 · (log n+ 1) = 25c+3 · (log n+ 1)/

√
n.

The bound for Ecoll(vi) on the expected number of active con-
figurations for an internal node vi is independent of the configura-
tions of the internal nodes v1, . . . , vi−1. Furthermore, the bound
for Eprune(wi) on the expected number of active configurations
for a pruning node wi is independent of the configurations on all
internal nodes and the pruning nodes w1, . . . wi−1. Consequently,
these bounds are independent estimations of expected values and
can be multiplied in order to get an upper bound on the expected
number of all configurations. Since the number of choices for the
initial configuration K in E(v1,K) specifying the request associ-
ated with the root is n, we get the following upper bound on the
expected number of active witness tree configurations.

∑
T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi)

m′∏
j=1

Eprune(wj)

(1)

≤ n ·
∑
T∈T

(
log n

c!

)m
(

25c+3 · (logn+ 1)√
n

)m′

(2)

≤ n ·
∑
T∈T

(
25c+3 · (log n+ 1)√

n

)κ

(3)

≤ n · c2κt+κ ·
(

25c+3 · (log n+ 1)√
n

)κ

≤ n−c/4+1+o(1) ,

for κ = 
c/2� = Θ(log log n/ log log log n) and a suitably large
t = Θ (log log n/ log log log n).

Equation 1 is an immediate consequence of Lemma 2.2 and
Lemma 2.3.

Equation 2 is based on the relationship betweenm andm′: The
full witness tree includes c disjoint subtrees of height t − 1. For
each of the m′ pruning nodes, some nodes from at most two of
these subtrees are removed. Consequently, at least c − 2m′ of the
subtrees remain untouched. Since each of them include at least
ct−2 internal nodes, we get

m ≥ (c− 2m′) · ct−2 ≥ (κ−m′) · ct−2 .

Applying this equation and substituting c! = (1 + ε) · log n yields(
log n

c!

)m

≤ (1 + ε)−ct−2·(κ−m′)



≤
(

25c+3 · (log n+ 1)√
n

)κ−m′

,

for t ≥ logc log1+ε n+ 2 = Θ(log log n/ log log log n).
Equation 3 results from a bound on the number of different tree

shapes. In particular, there are at most

κ∑
j=0

(
(ct − 1)/(c− 1)

j

)
≤ cκt

possible choices for the at most κ pruning nodes among the (ct −
1)/(c− 1) internal nodes of the witness tree, and at most

(
ct+1 − 1

c− 1

)m′

≤ cκ(t+1)

possibilities to choose them′ conflicting nodes among the (ct+1 −
1)/(c+ 1) ≤ ct+1 nodes of the full witness tree. Since specifying
these nodes completely determines the shape of the tree, the total
number of different tree shapes is at most cκt + cκ(t+1) ≤ c2κt+κ.

We have already shown that
∑

T∈T E(T ) is an upper bound on
the probability that the c-collision process takes more than t rounds.
Hence, this probability is at most n−c/4+1+o(1). It remains to show
that determining which paths become inactive each round can be
done in time O(log n), with high probability. Recall that, in our
model, this computation is accomplished by sending a packet back
and forth along each active path through the network using a store-
and-forward algorithm. According to [23], such a computation can
be done in time O(congestion + dilation), with high probability,
using only constant size buffers at each edge. Note here that the
congestion we wish to bound is the congestion caused using this
store-and-forward scheme, not the congestion under the collision
algorithm. However, this congestion is easily bounded. Let C de-
note the congestion of all 2n paths.

Lemma 2.4 C ≤ α · log n/ log log n , with probability n−α+O(1).

Proof. The congestion in the randomization levels is 1. Therfore,
we only have to consider the collision levels. The probability that
a fixed collision edge is traversed by at least C paths is at most
1/C!. This bound follows analogously to the proof of Lemma 2.2.
Hence, the probability that one of the 2 · n · log n collision edges
has congestion C is at most

2 · n · log n · 1/C! ≤ n−α+O(1) ,

for C > α · log n/ log log n.

Applying Lemma 2.4 yields that each round can be computed in
time O(log n), with high probability. This completes the proof of
Theorem 2.1.

2.2 Dynamic routing in BBn

We now describe a simple algorithm that routes paths dynamically
in the network BBn, where the dynamic model is specified as fol-
lows. As before, a request is an input-output pair. An oblivious
adversary specifies an infinite sequence σ1, σ2, . . . of requests. The
request σi must be handled at time step i. If at time i neither the
input nor the output of σi is already locked, then the algorithm
must establish and lock a path in the network between the input
and output of σi: This is an arrival. If a locked path between the
input-output pair already exists, then the path is released: This is
a departure. In all other cases the request may be ignored. That

is, the algorithm only connects an input-output pair if neither is al-
ready involved in a connection. Without loss of generality we may
assume that the sequence of requests includes only valid arrival and
departure events. An input-output pair is said to exist at each time
k between its arrival and departure.
The minimum algorithm. To solve the dynamic routing problem
on the two-fold butterfly BBn, we initialize BBn as in Section
2.1. Let si denote an arrival event. A path for the corresponding
request ri is chosen as follows. For an edge e in the collision levels,
define c(e) to be the number of paths that traverse e at time i. The
algorithm examines the two paths p and p′ that connect the input
to the output of ri. The congestion c(p) of a path p is defined to
be maxe∈p(c(e)). If c(p) ≤ c(p′), path p is chosen for request ri;
otherwise, path p′ is chosen.

Theorem 2.5 At any time t, the probability that the congestion is
greater than Θ(log log n) is at most n−Θ(log log n).

Proof. The proof is similar to that of Theorem 2.1.
Constructing a witness tree. First, we fix the settings of the randomly-
flipped switches. This determines two choices of paths for each re-
quest. Assume that there is an edge e with congestion larger than
4c at some time t, where c = 
log log n�. Let p denote the last
path mapped to edge e on or before time t. When p was mapped
to e there were already 4c other paths present at this edge. Let
p1, . . . , p4c denote these paths such that pi was mapped to e at
time step ti with ti < ti+1. The root of the tree is the request
corresponding to p and the requests corresponding to p1, . . . , p4c

are its children. Now we consider the buddies p′1, . . . , p
′
4c of these

paths. Path p′i traverses an edge with congestion at least i − 1 at
time step ti, because the congestion of pi is not larger than the con-
gestion of p′i at time i, and when pi was mapped to e there were
already i − 1 other paths present at this edge. As a consequence,
we can construct a tree by applying the argument above recursively
to p′2, . . . , p

′
4c.

The tree constructed above is irregular in that nodes have vary-
ing degrees. However, it contains a c-ary tree of height c, which we
call the witness tree, with the following properties.

• The node on level 0, i.e., the root, has c children that are
internal nodes.

• Each internal node on levels 1, . . . , c − 2 has two children
that are internal nodes and c − 2 children that are leaves,
and each internal node on level c − 1 has c children that are
leaves.

Pruning the witness tree. The pruning is done by a breadth-first
traversal of the tree. We use the same definitions forB(v) and Γ(v)
as in Section 2.1. However, the pruning rules are slightly different.
When a node v is visited, the following rules are applied.

1. If a path associated with one of v’s non-pruned children tra-
verses a randomly-flipped switch that is also traversed by a
path associated with a node u from B(v) ∪ Γ(v) then all
nodes below v are pruned. Node u is denoted the conflicting
node of v. Note that the down path of v either shares a colli-
sion edge with a path p that is associated with u, or it shares
a collision edge with a path p such that p or its buddy shares
a random switch with a path associated with u. This path p
is denoted the conflicting path of v.

2. Depending on the conflicting path p we apply a further prun-
ing. For each node u ∈ Γ(v) such that either the input or
output node of u coincides with the input or output node of
path p, we prune all the nodes below u. The first pruning rule
ensures that there is at most one request in B(v) ∪ Γ(v) in-
cident on each input and output of the network, even though



the requests inB(v)∪Γ(v) exist at possibly non-overlapping
times. Thus, at most two nodes, call them u and u′, get
pruned due to an application of this rule. Nodes u and u′

are defined to be the conflicting nodes of v. (For simplic-
ity, we pretend that each pruning node v has two conflicting
nodes u and u′; if this is not the case we simply set u and u′

to be the same node.) The second pruning rule ensures that
Properties 4 and 5 as stated in Section 2.1 hold for the pruned
witness tree – specifically, the down path of a pruning node
cannot share more than two randomly-flipped switches with
a given conflicting path.

We continue the pruning process till either there are no more
nodes to visit or there are κ = 
c/3� pruning nodes. In the latter
case, we apply a final pruning. If v is the κth pruning node, we
remove from the tree all nodes not included in B(v) ∪ Γ(v). The
remaining tree is called the pruned witness tree.
Bounding the probability of occurrence of a pruned witness
tree. The terms tree shape, admissible configuration, and active
configuration are defined as in Section 2.1. Let T denote the set of
all tree shapes, and, for T ∈ T , let E(T ) denote the expected
number of active witness tree configurations with tree shape T .
Let v1, . . . , vm be the m internal nodes of T . Furthermore, for
a collection K of configurations for the nodes v1, . . . , vi−1, let
Ecoll(vi,K) denote the expected number of active configurations
for vi under the assumption that K is active, and let Ecoll(vi) de-
note the maximum over all configurations K of Ecoll(vi,K).

Lemma 2.6 Ecoll(vi) ≤ log n/c! .

Proof. The proof is identical to that of Lemma 2.2, since the
pruned witness constructed here fulfills Properties 1 and 2 as stated
in Section 2.1.

Let w1, . . . , wm′ denote the m′ pruning nodes of T , and let ui

and u′i denote the conflicting nodes associated with wi. For a col-
lectionK of configurations for the nodes v1, . . . , vm andw1, . . . , wi−1,
let Eprune(wi,K) denote the expected number of active configu-
rations for wi under the assumption that K is active. Furthermore,
let Ecoll(wi) denote the maximum over all configurations K of
Ecoll(vi,K).

Lemma 2.7 Eprune(wi) ≤ 25c+3 · (log n+ 1)/
√
n .

Proof. The pruned witness tree described above fulfills Properties
3, 4 and 5 stated in Section 2.1. Hence, the proof of Lemma 2.3,
which is based only on these three properties, holds also for this
lemma.

The probability that the congestion exceeds 4c is at most the
probability that a pruned witness tree exists. The latter probability
is at most

∑
T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi)

m′∏
j=1

Eprune(wj)

≤ n ·
∑
T∈T

(
log n

c!

)m

·
(

25c+3 · (log n+ 1)√
n

)m′

(1)

≤ n ·
∑
T∈T

(
25c+3 · (log n+ 1)√

n

)κ

(2)

≤ n · c5κ · 23cκ ·
(

25c+3 · (log n+ 1)√
n

)κ

≤ n−c/6+1+o(1) ,

where κ = 
 c
3
� = Θ (log log n).

Equation 1 follows from the relationship between m and m′:
Each of the c children of the root of the full witness tree is a root of
a subtree with 2c−1 − 1 internal nodes. For each of them′ pruning
nodes, nodes from at most 3 of these subtrees are removed. Thus, at
least c−3m′ of the subtrees remain untouched. As a consequence,

m ≥ (c− 3m′) · (2c−1 − 1) ≥ (κ−m′) · (2c−1 − 1) .

Applying this equation and substituting c = 
log log n� yields

(
log n

c!

)m

≤ 2−(2c−1−1)·(κ−m′) ≤
(

25c+3 · (log n+ 1)√
n

)κ−m′

,

for sufficiently large n.
Equation 2 results from a bound on the number of different tree

shapes. In particular, there are at most

κ∑
j=0

(
c · 2c−1

j

)
≤ 2 · cκ · 2(c−1)·κ

possible ways of chooosing the at most κ pruning nodes from the at
most c · 2c−1 internal nodes of the witness tree. Furthermore, there
are at most (

c2 · 2c−1
)2m′

≤ c4κ · 2(c−1)·2κ

possibilities to choose the 2m′ conflicting nodes from the at most
c2 · 2c−1 nodes of the full witness tree. Multiplying the bounds
yields that the total number of different tree shapes is at most c5κ ·
23cκ.

This completes the proof of Theorem 2.5.

3 A proposal for a data server

We present an application of our techniques to the data server archi-
tecture proposed in the introduction. For each input node i, let oi
be the object requested by the user at input node i of the randomly-
wired butterfly RBn. We assume that oi �= oj for i �= j. Each
object is stored on two disks: the first disk is chosen uniformly
and randomly from the first n/2 disks, while the second disk is
chosen uniformly and randomly from the last n/2 disks. We call
the two instances of object oi the copies of oi. For an object oi,
let d1(oi) and d2(oi) be the disks storing the copies of oi. As in
Section 2, we define two paths p and p′ starting at input node i: p
connects input node i with output node d1(oi), and p′ connects i
with d2(oi). Since the copies of object oi are located in different
sub-butterflies, p and p′ are edge disjoint paths. Unlike Section 2,
we must minimize not only congestion, but also the contention at
the output nodes, i.e., the maximum number of requests any disk
has to serve.

3.1 Static routing

For the static selection of paths we use a modified version of the
collision protocol of Section 2. Initially, all paths are active and
not selected. For a path p connecting input node i and output node
dk(oi), k ∈ {1, 2}, let ∆(p) be the destination of p. A path p is
selected if for each edge e ∈ p the number of active paths plus the
number of selected paths traversing e is at most c, and the number
of active paths plus the number of selected paths with destination
∆(p) is at most c̄. If p and its buddy p′ are both eligible to be
selected, one is chosen arbitrarily. A path p ceases to be active in a
round if p is selected or the buddy of p, p′, is selected in that round.
The algorithm terminates when there are no more active paths.



Theorem 3.1 For any c̄ ≥ 5 and c! ≥ 2 log n, the probability that
the collision algorithm onRBn takes more than t = logc̄ log(n/ log n)

rounds to select a path for every request is at most n−c̄/2+1+o(1).

Proof. The proof is similar to that of Theorem 2.1 in Section 2.1.
Constructing a witness tree. For each input node i fix its re-
quested object oi. Fix the random permutations π0 and π1 used to
define the randomly-wired butterflyRBn, and fix the random disks
d1(oi) and d2(oi), for i = 0, . . . , n− 1. For each request, this de-
termines two paths. We say that two paths p and p̂ edge-collide,
if p and p̂ both traverse an edge e. They are said to disk-collide if
p and p̂ have the same destination node on the output level. Two
paths that either edge- or disk-collide are said to simply collide.

Assume that there is a request with paths p and p′, and nei-
ther path has been selected by round t, where the value of t is
to be determined later. Then p either edge-collided with c other
paths p1, . . . , pc in round t or p disk-collided with c̄ other paths
p1, . . . , pc̄ in round t. If p is involved in an edge-collision (resp.,
disk-collision), the root of the witness tree is the request corre-
sponding to p and the requests corresponding to p1, . . . , pc (resp.,
p1, . . . , pc̄) are the children. Now p1, . . . , pc (resp., p1, . . . , pc̄)
and their buddies p′1, . . . , p

′
c (resp., p′1, . . . , p

′
c̄) must have been ac-

tive in round t − 1. Applying the same argument recursively to
p′1, . . . , p

′
c (resp., p′1, . . . , p

′
c̄) we can construct a tree of height t.

This tree is called witness tree.
Each node in the witness tree is a request with two paths, a

down path and an up path. Some nodes in the tree corresponding to
disk collisions have degree c̄, while others corresponding to edge
collisions have degree c ≥ c̄. The rightmost c − c̄ children of a
node representing an edge collision are called superfluous nodes. In
order to bound the number of nodes in the witness tree, all subtrees
rooted at a child of a superfluous node are removed. (We will not
refer to this as “pruning’ in the sequel.) Note that a superfluous
node does not represent a collision.
Pruning the witness tree. As in Section 2.1, the nodes of a witness
tree do not necessarily correspond to distinct requests. However,
the situation here is less complex because there are no randomly-
flipped switches that could be shared by different paths. Thus, it is
sufficient to ensure that the requests in the pruned witness tree are
distinct.

The pruning is done by a breadth-first traversal of the witness
tree. LetB(v) and Γ(v) be defined as in Section 2. When a node v
is visited, we use the following pruning rules:

1. If a path associated with one of v’s non-pruned children is
also associated with a node u in Γ(v), then the subtrees rooted
at the children of v are removed from the tree, and the sub-
trees rooted at the children of u are also removed from the
tree. The node v is called a pruning node. The node u is
denoted the conflicting node of v.

2. If a path associated with one of v’s non-pruned children is
associated with a node u from B(v) then the subtrees rooted
at the children of v are removed from the tree. The node v is
called a pruning node. The node u is denoted the conflicting
node of v.

We continue the pruning process till either there are no more
nodes to visit or there are κ = 
 c̄

2
� pruning nodes. In the latter

case, we apply a final pruning. If v is the κth pruning node, we
remove from the tree all nodes not included in B(v) ∪ Γ(v). This
effectively stops the pruning process at the κth pruning node. The
remaining tree is called the pruned witness tree.

Let v1, . . . , vm be the m internal nodes and let w1, . . . , wm′

be the m′ pruning nodes in the order of visitation. Further, let ui

denote the conflicting node of wi, for 1 ≤ i ≤ m′. The pruned
witness tree possesses the following properties:

1. Any internal node v represents a collision of the down path of
v with the up paths of the children of v. The down path of a
pruning node w collides with a path p that is associated with
its conflicting node u. The path p is called the conflicting
path of w.

2. All nodes of the tree correspond to different requests. In par-
ticular, pruning node wi does not represent the same request
as a conflicting node uj , 1 ≤ j ≤ i.

Bounding the probability of occurrence of a pruned witness
tree. We define the tree shape to be a description of the topology
of the pruned tree including the degree (c or c̄) of the inner nodes,
the pruning and the conflicting nodes. An admissible witness tree
configuration is a tree shape with associated requests, up and down
paths, and conflicting paths, which eventually, i.e. for some set-
ting of the random permutations defining the RBn and the random
choices for the d1(oi), d2(oi), 0 ≤ i ≤ n − 1, matches a pruned
witness tree. In particular each admissible witness tree configura-
tion has to fulfill the two properties stated above. An admissible
configuration is active if the outcome of the random choices corre-
sponds to all paths in the configuration.

The set of tree shapes corresponding to at least one admissible
witness tree configuration is denoted by T . As in Section 2.1, we
bound the expected number of active witness tree configurations
E(T ), for an arbitrary T ∈ T . Let Ecoll and Eprune be as defined
in Section 2.1.

Lemma 3.2 Ecoll(vi) ≤ max{ log n
c! ,

2c̄

c̄! }.

Proof. We first bound the expected number of active configura-
tions for vi representing an edge collision. In this case vi has c
children. Fix the random permutation π0 and π1 used to define the
randomly-wired butterfly.

The expected number of active down paths for vi is at most one.
Given path p, there are d = log n possibilities to chose an edge e
at which p collides with the up paths p1, . . . , pc of the children
of vi. Let ! be the level of e. Since π0 and π1 are fixed, there
are at most

(
2�−1

c

)
possibilities to chose c paths possibly attaining

e. Depending on the random choices of the destinations each such
path attains ewith probability 2−(�−1). Thus, the expected number
of active configurations for vi is

d ·
(

2�−1

c

)
· 2−c(�−1) ≤ d

c!

Similarly, the expected number of active configurations for vi rep-
resenting a disk collision (vi has c̄ children) is bounded by(

n

c̄

)
·
(

2

n

)c̄

≤ 2c̄

c̄!
,

since there are n paths possibly having the same destination as the
down path of vi and each such path actually has this destination
with probability 2/n.

Lemma 3.3 Eprune(wi) ≤ d/n.

Proof. Let ui be the conflicting node of wi. Assume that wi

represents an edge collision. Since ui is associated with 2 paths,
there are 2d possibilities to choose the edge e on which the collision
takes place. We distinguish two cases. If the up path p of wi uses
a cross edge in level 0, then its buddy p′ starts by using a straight
edge in level 0. Thus the level 1 node attained by p′ is a random
node. If p uses a straight edge in level 0, then p′ uses a cross edge
in level 0, and thus attains a random node in level 1.



In the levels subsequent to level 1, the course of the down
path p′ of wi depends only on the random choice of its destina-
tion ∆(p′), hence at every level p′ attains a random edge and thus
the probability for p′ to collide with edge e is 1/(2n). As a con-
sequence the expected number of active configurations at pruning
node wi is at most 2d · 1

2n
Now, assume that wi represents a disk collision. Then let ∆(p)

be the destination of the down path p of wi. The probability for the
paths associated to ui to have destination ∆(p) is 1/n. Thus the
expected number of active configurations at wi is at most 2/n ≤
d/n, if d ≥ 2.

As in Section 2.1 we proceed by bounding the expected number
of active witness tree configurations.

∑
T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi) ·
m′∏
j=1

Eprune(wi)

≤ n ·
∑
T∈T

max

{
log n

c!
,
2c̄

c̄!

}m (
d

n

)m′

(1)
≤ n ·

∑
T∈T

(
d

n

)κ

(2)
≤ n · c̄2κtc 2(c̄t) ·

(
d

n

)κ

(3)
≤ n−c̄/2+1+o(1) .

Equation 1 follows from a bound relating m and m′. Equation 2 is
obtained by bounding the number of trees in T , taking into account
the fact each internal tree node can either represent an edge colli-
sion or a disk collision. Both of these bounds are derived in a fash-
ion similar to their counterparts in Section 2.1. Equation 3 follows
from the fact that t = logc̄ log(n/d) and max{ log n

c!
, 2c̄

c̄!
} ≤ 1/2.

3.2 Dynamic routing

Model description. The model is similar to the adversary model
used in Section 2.2. An oblivious adversary constructs an infinite
sequence of events, where each event is either an input requesting
an object or an input releasing an object. At any given time each
object is accessed by at most one input, and each input accesses at
most one object.
The minimum algorithm. Let a request (i, o) arrive at time t,
where i is an input node and o is the object requested by i. For an
edge e, define c(e) to be the number of paths that traverse e at time
t, and ĉ(i) to be the number of paths with destination i at time t.
(We leave the t implicit as the meaning will be clear.) The conges-
tion c(p) of a path p is defined to be max{maxe∈p(c(e)), ĉ(∆(p))},
where ∆(p) is the destination of p. The algorithm examines the two
paths p and p′ that connect input node i with the two output nodes
d1(o) and d2(o) that store object o. The request is fulfilled by p if
c(p) ≤ c(p′), otherwise the request is fulfilled by p′.

Theorem 3.4 At any time t, the probability that the congestion ex-
ceeds Θ(log log n) is at most n−Θ(log log n).

Proof. As in Section 3.1, we construct a witness tree obeying
the modifications made in Section 2.2 to the witness tree construc-
tion of Section 2.1. We prune the tree using the rules in Section
3.1 (modified as in Section 2.2) using at most κ = 
c/3� pruning
nodes. The proofs of the following lemmas are similar to the proofs
of the corresponding lemmas in Section 3.1.

Lemma 3.5 Ecoll(vi) ≤ log n/c!.

Lemma 3.6 Eprune(wi) ≤ d · 1
n .

Finally, we bound the probability that the congestion exceeds 4c,
where c = Θ(log log n), by bounding the probability that a pruned
witness tree exists.

∑
T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi) ·
m′∏
j=1

Eprune(wi)

≤ n ·
∑
T∈T

(
log n

c!

)m

·
(
d

n

)m′

(1)
≤ n ·

∑
T∈T

(
d

n

)κ

(2)
≤ n · c4κ · 22cκ ·

(
d

n

)κ

≤ n−c/3+1+o(1) ,

where Equations 1 and 2 are justified as in Section 2.2.
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