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Abstract— High performance Internet routers require a
mechanism for very efficient IP address look-ups. Some
techniques used to this end, such as binary search on levels,
need to construct quickly a good hash table for the appropri-
ate IP prefixes. In this paper we describe an approach for
obtaining good hash tables based on using multiple hashes
of each input key (which is an IP address). The methods we
describe are fast, simple, scalable, parallelizable, and flex-
ible. In particular, in instances where the goal is to have
one hash bucket fit into a cache line, using multiple hashes
provesextremely suitable. We provide a general analysis of
this hashing technique and specifically discuss its application
to binary search on levels.

I. INTRODUCTION

We describe a new hashing approach suitable for use
in network routing software and hardware. This hashing
approach can be applied to improve IP lookups using the
technique of binary search on levels to find the longest
matching prefix. In particular, we expect that this approach
will prove highly suitable for IP-v6 addresses (when com-
bined with previous techniques such as prefix expansion),
and for new programmable network processors [4]. We ex-
pect that it will also be useful for similar problems, such as
packet classification and filtering, where hashing is com-
monly used as a subroutine to allow fast lookups [13].

The basic idea of the approach is to use multiple hash
functions. The idea has been analyzed and developed in
several recent theoretical works. We therefore specifically
address how this approach can be used to improve perfor-
mance on the real problem of IP lookups. In particular, we
emphasize that by properly structuring the data, one can
parallelize memory accesses so that using multiple hash
functions is desirable.

We test the performance of our approach through exten-
sive simulation, including experiments on real data from a
snapshot of the MaeEast database.
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A. Hashing for IP lookups

The standard approach used by an IP router to forward a
packet is to keep a forwarding table based on IP destination
address prefixes. Each prefix is associated with the next
hop towards the destination. The IP router looks in its table
for the longest prefix that matches the destination address
of the packet, and forwards according to that match.

One attack for solving the longest matching prefix prob-
lem is to perform binary search on levels [14], [17]. We
briefly review the main ideas.1 Prefixes are divided ac-
cording to length, with all prefixes of a given length in a
table. We then perform a binary search for matching pre-
fixes of the destination address according to prefix lengths.
A match in a given table implies that the longest matching
prefix is at least as long as the size of prefixes in the ta-
ble, whereas a failure to match implies the longest match-
ing prefix is shorter. Tables for each prefix length can be
stored as a hash table. In this case, if there are W different
possible prefix lengths and n different prefixes, the search
requires O(n log2W ) memory and O(log2W ) time. This
technique is enhanced by using the process of controlled
prefix expansion in order to reduce the number of distinct
prefix lengths, as described by Srinivasan and Varghese
[14]. If the number of distinct prefix lengths used is only
` instead of the W possible, then only log2 ` table lookups
are required, instead of log2W . This reduces the search
to O(log2 `) time; the amount of memory used depends
on the increase in the number of prefixes. Srinivasan and
Varghese suggest that from experiments on real data, the
possible increase in the number of prefixes does not lead
to large increases in memory requirements [14].

The binary search on levels scheme depends on being
able to create suitable hash tables in order to minimize the
number of memory accesses. Since a memory access re-
quires reading in a cache line, a natural goal is to ensure
that the number of items that fall in a bucket corresponds to
the capacity of a single cache line, so that each hash bucket
corresponds to a cache line of memory. This ensures that
each level examined during the binary search only requires
a single memory access. Srinivasan and Varghese there-
fore suggest searching for a “semi-perfect” hash function
where each bucket has only c collisions, where c is the
number of items that can fit in a single cache line [14]. In

1Of course there are other possible attacks for this problem as well,
as detailed for example in [2], [14].
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their case, c = 6.
One potential problem with the above method is that

finding a suitable semi-perfect hash function can be a slow
process. As reported in [14], for the MaeEast database of
IP addresses, constructing such a hash function took al-
most 13 minutes. The authors argue that this time may not
be a problem, as prefixes change rarely enough that this
computation can be done off-line. Note that if one attempts
to handle table modifications on-line, there is the possibil-
ity that the capacity of a bucket could be exceeded by an
unfortunate selection of values to be hashed. Such a prob-
lem could be handled by choosing a new hash function and
re-hashing all entries; however, if finding a suitable hash
function requires significant time, this is not desirable.

A related potential problem is that the above scheme po-
tentially wastes significant memory. When some buckets
have fewer than six elements, space is wasted for cache
lines that do not hold their full contingent of items.

Our hashing scheme is designed to solve the problems
introduced by searching for a semi-perfect hash function,
by instead using multiple hash functions. The approach
is very general and hence should prove highly suitable for
IP-v6 addresses (when combined with previous techniques
such as prefix expansion), as well as other similar lookup
problems that use hashing.

B. Multiple hash functions

For some time it has been known that using multiple
hash functions can lead to different performance behavior
than using a single hash function. One of the first analyses
suggested using multiple tables, with a separate function
for each table. Elements that collide in one table percolate
to the next. The tables shrunk in size and the hashes could
be computed in parallel [3].

A seminal result in the area considered the following
natural hashing scheme [1], which we here call the d-
random scheme. Suppose that n items are hashed sequen-
tially into a table with n buckets, in the following manner.
Each item is hashed using d hash functions, which we as-
sume yield independent and identically distributed buck-
ets for each item. The item is placed in the least loaded
bucket (that is, the bucket with the fewest items); ties are
broken arbitrarily. A search for an item now requires ex-
amining the d possible buckets; however, as shown in [1]
the maximum load in a bucket (with high probability) is
log log n
log d + O(1). This compares quite favorably to the sit-

uation where just one hash function is used, in which case
the maximum load is log n

log log n(1 + o(1)) (with high proba-
bility). The key point of this result is that using two hash
functions leads to a completely different behavior than us-
ing a single hash function, while three is not too much dif-

.
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Fig. 1. The 2-left scheme. A newly inserted item, labeled z,
is placed in the less filled of two random buckets, one from
the left and one from the right. Ties are broken to the left.
A search for z may require searching both of the buckets in
which z might have been placed.

ferent from two. Besides improving the maximum load,
using two hash functions in this way leads to a more equal
distribution of the load across buckets. A numerical analy-
sis of this hashing process is given in [11], and extensions
to queueing models are presented in [10], [9], [16].

The hashing scheme we examine here is a variation of
the d-random scheme that offers better performance and
is more suitable for the IP lookup problem. It was first
introduced and analyzed theoretically by Vöcking [15]; a
simpler analysis more relevant to our discussion was de-
veloped by Vöcking and Mitzenmacher [12].

II. MULTIPLE HASHES: THE d-LEFT SCHEME

We begin by focusing on the case of two hash functions.
The scheme we describe was introduced by Vöcking in
[15] and is referred to as the 2-left scheme in [12]. Our
hash table consists of n buckets. (We assume n is even.)
We split the n buckets into two disjoint equal parts, which
for convenience we call the left and the right.2 When an
item is inserted, we call both hash functions, where each
hash function has a range of [1; n=2]. The first hash func-
tion determines a bucket on the left, the second a bucket
on the right. The item is placed in the bucket with the
smaller number of existing items; in case of a tie, the item
is placed in the bucket on the left. In order to do a lookup,
one must examine the contents of the two possible buckets
corresponding to the two hashes of an item.

An obvious disadvantage of this approach is that it re-
quires two hash table lookups for each level. Note, how-
ever, that these lookups are independent, in that they can
be performed in parallel. Specifically, if the hash table
is placed into memory so that the left and right parts of
the table are guaranteed to map to different memory areas,

2We emphasize that “left” and “right” are terms chosen simply for
convenience; the point is simply that the table consists of two disjoint
parts.
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then accessing the two buckets corresponding to an item
can naturally be pipelined. For example, in software one
might arrange so that the left side of the table corresponds
to even cache lines and the right side to odd cache lines.
Alternatively, in hardware one could store different parts
of the table in distinct memory bank subsystems. Hence
we do not feel that the requirement that two memory ac-
cesses are required will have an important negative perfor-
mance impact. (Similarly, if the machine can issue multi-
ple instructions, then the two buckets may be searched for
the item in parallel as well.) We show that in return for this
price, we obtain significant benefits.

We may generalize the above to more hash functions,
with the d-left scheme using d hash functions. Initially
the n buckets of the hash table are divided into d groups
of n=d buckets. (Again, we assume n=d is an integer.)
We think of the groups as running consecutively from left
to right. An incoming item is placed in the bucket with
the smallest number of existing items; in case of a tie, the
item is placed in the bucket of the leftmost group with the
smallest number of items. In order to search for an item in
the hash table, the contents of d buckets must be checked.
Again, the corresponding memory lookups can easily be
pipelined. We show that by increasing the number of hash
functions used, one can reduce the memory required for
the hash table at the potential expense of more (pipelined)
memory accesses and computation.

An interesting question is why we suggest that ties be
broken towards the left, rather than breaking ties randomly
as in the d-random scheme. Surprisingly, the asymmetry
introduced by breaking ties toward the left actually im-
proves performance, in that the maximum number of items
placed in a bucket is smaller (in a probabilistic sense) when
one breaks ties in this manner. The intuition for this im-
provement is that as items are added, the cases where there
are ties are extremely significant. For example, suppose
the largest load thus far is four. In order to obtain a bucket
with load five, we must choose two buckets with load four.
Ties are therefore necessary to push the maximum load to
new, higher levels.

By breaking ties asymmetrically, one reduces the num-
ber of ties during the course of the process, and this im-
proves the overall balance. To see this, again suppose the
system is in a state with several buckets of load four. Buck-
ets with load five are created when two buckets of load four
are chosen; subsequently, buckets of load six are created
when two buckets of load five are chosen. If ties are bro-
ken randomly, the buckets of load five are spread evenly on
the left and right sides. If, however, ties are broken asym-
metrically, the buckets of load five initially are all placed
on the left hand side. Since our random bucket choices are

taken one from each side using d-left, this causes it to take
longer before a bin of load six can arise.

In the context of IP lookups, this asymmetry is also
helpful in that it can be used to slightly reduce the average
lookup time, in the case where the item being searched for
is actually in the table. As the leftmost groups are more
likely to hold more items, they can be examined first. If
the pattern is found in one hash bucket, the other need not
be searched. Hence, for the 2-left scheme, more than half
the time the second (pipelined) memory access for each
level will not have to be examined when the item is to be
found in the table.

A. A Basic Analysis

We provide a simple approximate fluid limit analysis of
the d-left scheme. For this section we follow [12]; how-
ever, we present the analysis here for completeness. The
fluid limit analysis captures the behavior of the system as
the number of buckets grows to infinity. The analysis de-
pends on viewing the insertion of items as a deterministic
process, where loads behave essentially according to their
expectations. Appropriate large deviation theory yields
that for sufficiently large systems, this approach is quite
accurate; Chernoff-like bounds can be obtained, using the-
ory that dates back to Kurtz [6], [7], [8]. Essentially, the
theory demonstrates that the law of large numbers applies
to these systems. Hence, from these Chernoff-like bounds,
the probability of deviating significantly from the loads
given by the differential equations falls exponentially in
the size of the system, in terms of the number of buckets
n. In practice, as we shall see, this analysis proves ac-
curate even for systems of reasonable size, as the theory
would suggest.

For convenience we begin with the case d = 2; thus
we have two groups and n=2 buckets. Let yi(t) be the
fraction of the n hash buckets that contain at least i items
and are in the first, that is, leftmost, group when nt items
have been placed. Similarly, let zi(t) be the fraction of the
n hash buckets that contain at least i items and are in the
second group when nt items have been placed. Note that
yi(t); zi(t) � 1=2 and that y0(t) = z0(t) = 1=2 for all t.
We will drop the explicit reference to t and simply use yi
and zi where the meaning is clear.

If we choose a random hash bucket on the left, the prob-
ability that it has at least i items is yi

1=2 = 2yi. Analo-
gously, if we choose a random hash bucket on the right,
the probability that it has load at least i is 2zi.

The fluid limit behavior expresses the deterministic be-
havior the system would follow in the limit as the number
of buckets n and the number of items nt grow to infinity.
It is expressed by a family of differential equations, where
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for i � 1:

dyi
dt

= 2 (yi�1 � yi) (2zi�1) ;

dzi
dt

= 2 (zi�1 � zi) (2yi):

These equations express the following natural intuition.
Let dt represent the amount of time during which one item
is placed in the hash table. For yi to increase over some
interval dt, the newly inserted item must choose a bucket
on the left with exactly i � 1 items and a bucket on the
right with at least i � 1 items. The probability of this oc-
curring is simply 2 (yi�1 � yi) (2zi�1). Similarly, for zi
to increase over some interval dt, the newly inserted item
must choose a bucket on the left with at least i items and a
bucket on the right with exactly i� 1 items.

It will be somewhat more convenient to generalize to the
case of general d if we write these equations all in terms of
a single sequence xi. If we substitute x2i for yi and x2i+1

for zi, the equations above nicely simplify to the following
(for i � 2):

dxi
dt

= 2 (xi�2 � xi) (2xi�1)

= 4 (xi�2 � xi) xi�1: (1)

For the d-left scheme, we may think of xjd+k as repre-
senting the fraction of the buckets that have at least j items
in the kth group from the left (where the leftmost group is
the 0th group from the left). Then the fluid limit model
yields the following family of differential equations:

dxi
dt

= dd (xi�d � xi)
i�1Y

j=i�d+1

xj: (2)

We will use these equations to derive the approximate
behavior when multiple hash functions are used. It is also
worth noting what these families of differential equations
tell us about the distribution of items to hash buckets. For
example, suppose we have n items and n hash buckets (so
that we can think of the equations as running until time
t = 1). How do the xi behave?

As in [15], [12], to describe this behavior, we define the
generalized Fibonacci number Fd(k) by Fd(k) = 0 for
k � 0, Fd(1) = 1. and Fd(k) =

Pd
i=1 Fd(k � i) when

k > 1. Note that for d = 2 the generalized Fibonacci
numbers are just the standard Fibonacci numbers. Then
the behavior of the xi is essentially

xi(1) � 2�Fd(i):

We provide a loose justification. From equation 2, we have

dxi
dt

� dd
i�1Y

j=i�d
xj ;

so by integrating

xi(1) � dd
Z 1

0

i�1Y
j=i�d

xj(t)dt

� dd
i�1Y

j=i�d

Z 1

0
xj(t)dt

� dd
i�1Y

j=i�d
xj(1):

Now suppose xj(1) � 2�Fd(j)�1=d for i� d � j � i� 1.
Then

xi(1) � dd
i�1Y

j=i�d

2�Fd(j)�1

d

�
i�1Y

j=i�d
2�Fd(j)�1

� 2�d2�
Pi�1

j=i�d
Fd(j)

�
2�Fd(i)

d
:

Hence, once the tails become sufficiently small, a simple
induction can be used to show the tails decrease faster than
2�Fd(i); that is, the decrease has a generalized Fibonacci
number in the exponent.

Because xjd+k represents the fraction of the buckets that
have at least j items in the kth group from the left, the
fraction of buckets with load at least i is

Pd�1
k=0 xid+k �

2�Fd(di): Recall that for large i, Fd(k) grows exponen-
tially; that is, Fd(k) � �kd for some constant �d. In fact �2
is the golden ratio 1+

p
5

2 = 1:618 : : :, and the �d form an
increasing sequence satisfying 2(d�1)=d < �d < 2. (For
reference, �3 = 1:839 : : : and �4 = 1:927 : : :) So, for ex-
ample, when d = 2 the fraction of buckets with load at
least i falls approximately like 2�2:6

i
; note that the i is in

the exponent of the exponent. Intuitively, this implies that
the xi fall extremely quickly with i, and hence the maxi-
mum load is very small.

Indeed, an alternative proof technique based on witness
trees demonstrates that the maximum load is log log n

d log �d
+

O(1) with high probability [15]. The analysis based on
differential equations is not completely suitable for obtain-
ing such fine bounds [11]; however, it does yield accurate
numerical information useful for predicting the behavior
of the hash function in practice.

B. Modeling Dynamic Deletions and Additions

In the section, we extend previous work by showing how
to modify the basic equation (1) to handle dynamic addi-
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tions and deletions to the table. Our goal here is to suggest
that additions and deletions of addresses can be handled
on-line with our suggested hashing scheme. We empha-
size, however, that when attempting to handle table addi-
tions on-line there is always the possibility that the load on
a bucket will exceed the maximum capacity, as given by
the cache line size. In such a case, one must be prepared to
take an action such as re-hashing the data using new hash
functions. An advantage of our multiple hash function ap-
proach is that finding suitable new hash functions is very
quick, and our analysis demonstrates that the need for such
emergency procedures can generally be made so rare that
it is not a significant issue.

Note that if we are required to handle dynamic addi-
tions only, equation (1) still holds. One only needs an up-
per bound on the number of items to be hashed, and the
equation can be used to determine the distribution when
the number of items hashed reaches this upper bound.

If there are additions and deletions, we must model how
deletions occur. Two important points are the rate of dele-
tions compared with the rate of additions, and how the
items to be deleted are chosen. For the first issue, a natural
breakdown is to assume that items are added only up to
some point in time, and then additions and deletions vary.
We let the probability that an event is an insertion be p and
the probability that an event is a deletion be 1� p. For the
second issue, we can vary our equations to analyze the case
where, when a item is to be deleted, the item is chosen uni-
formly at random from all items. More concretely, we can
model the situation where all addresses have lifetimes that
are exponentially distributed with the same mean. More
general deletion models, such as models where the age of
an item can affect its probability of being deleted, can be
handled using the analysis of [15], although this approach
does not give the numerical answers we desire here. The
model where a random bucket is chosen and an item is
deleted from that bucket can also be handled using these
techniques, however [9].

We modify the equation (1) to account for deletions by
noting that the total number of balls is

P
i�0 i(x2i+x2i+1),

and the number of balls that can be deleted that cause a
reduction in xi is b i2c(xi � xi+2). Hence the equations
that describe the behavior of the system are given by

dxi
dt

=4p (xi�2�xi)xi�1 �
(1�p)bi=2c(xi�xi+2)P

j�0j(x2j+x2j+1)
:(3)

Intuitively, the final distribution is likely to be smoother
when deletions occur in this manner, as heavily loaded
buckets are more likely to incur a deletion than lightly
loaded buckets.

III. DATA

A. Evaluating the differential equations

Number of items
n=2 n 2n 3n 4n

0 6.1e-01 3.7e-01 1.4e-01 5.0e-02 1.8e-02
1 3.0e-01 3.7e-01 2.7e-01 1.5e-01 7.3e-02
2 7.6e-02 1.8e-01 2.7e-01 2.2e-01 1.5e-01
3 1.3e-02 6.1e-02 1.8e-01 2.2e-01 2.0e-01
4 1.6e-03 1.5e-02 9.0e-02 1.7e-01 2.0e-01
5 1.6e-04 3.1e-03 3.6e-02 1.0e-01 1.6e-01
6 1.3e-05 5.1e-04 1.2e-02 5.0e-02 1.0e-01
7 9.4e-07 7.3e-05 3.4e-03 2.2e-02 6.0e-02
8 5.9e-08 9.1e-06 8.6e-04 8.1e-03 3.0e-02
9 3.3e-09 1.0e-06 1.9e-04 2.7e-03 1.3e-02
10 1.6e-10 1.0e-07 3.8e-05 8.1e-04 5.3e-03
11 7.4e-12 9.2e-09 6.9e-06 2.2e-04 1.9e-03
12 3.1e-13 7.7e-10 1.2e-06 5.5e-05 6.4e-04
13 1.2e-14 5.9e-11 1.8e-07 1.3e-05 2.0e-04
14 4.2e-16 4.2e-12 2.5e-08 2.7e-06 5.6e-05
15 1.4e-17 2.8e-13 3.4e-09 5.5e-07 1.5e-05

TABLE I
LOADS IN THE FLUID LIMIT (n BUCKETS, 1 CHOICE).

ENTRIES REPRESENT THE FRACTION OF BUCKETS WITH

THE EXACT LOAD GIVEN IN THE LEFT COLUMN.

We first demonstrate what results we obtain by evalu-
ating the fluid limit system given by the family of differ-
ential equations. The results obtained here were found by
simulating the progress of the differential equations using
discrete time steps of 5 � 10�7, which prove more than suf-
ficient for this level of accuracy. For example, to obtain a
result for n=2 items and n buckets, we run the differential
equations up to t = 1=2. Values of less than 1e�100 are
left blank in our tables.

For comparison purposes, we include in Table I equiv-
alent results in the case where a single hash function is
used, assuming that the hash function distributes items in-
dependently and uniformly at random into buckets. We
note the well-known fact that as n grows to infinity the
fraction of buckets with load k when the average load is
� approaches a Poisson random variable, and hence the
fraction with load k is simply e���k

k! .
Two important points are manifest from Tables I, II,

and III. First, when using two or more hash functions, the
fraction of buckets with a given load decreases remark-
ably quickly with the load, especially in comparison with
the single choice. This is to be expected given our pre-
vious discussion. As an example, consider when n items
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Number of items
n=2 n 2n 3n 4n

0 5.3e-01 2.3e-01 3.4e-02 4.6e-03 6.2e-04
1 4.4e-01 5.5e-01 2.1e-01 4.0e-02 6.9e-03
2 3.0e-02 2.2e-01 5.0e-01 2.0e-01 4.3e-02
3 8.6e-06 4.4e-03 2.6e-01 4.8e-01 1.9e-01
4 9.2e-16 5.2e-08 9.1e-03 2.7e-01 4.7e-01
5 1.4e-42 1.2e-21 5.0e-07 1.2e-02 2.8e-01
6 5.3e-58 7.2e-19 1.1e-06 1.3e-02
7 1.5e-50 6.6e-18 1.6e-06
8 5.7e-48 1.8e-17
9 8.4e-47

TABLE II
LOADS IN THE FLUID LIMIT (n BUCKETS, 2 CHOICES).

ENTRIES REPRESENT THE FRACTION OF BUCKETS WITH

THE EXACT LOAD GIVEN IN THE LEFT COLUMN.

Number of items
n=2 n 2n 3n 4n

0 5.1e-01 1.6e-01 9.1e-03 4.6e-04 2.3e-05
1 4.9e-01 6.8e-01 1.6e-01 1.0e-02 6.0e-04
2 6.8e-03 1.6e-01 6.6e-01 1.5e-01 1.1e-02
3 5.5e-15 1.1e-05 1.7e-01 6.6e-01 1.5e-01
4 2.9e-92 4.4e-33 2.0e-05 1.8e-01 6.6e-01
5 2.2e-31 2.2e-05 1.8e-01
6 4.6e-31 2.3e-05
7 5.6e-31

TABLE III
LOADS IN THE FLUID LIMIT (n BUCKETS, 3 CHOICES).

ENTRIES REPRESENT THE FRACTION OF BUCKETS WITH

THAT LOAD.

are hashed into n buckets, for large n. Our results show
that 1e-06 of the buckets will have load at least 9 if a sin-
gle hash function is used; with two hash functions, only
about 5.2e-08 + 1.2e-21 + 5.3e-58 � 5.2e-08 of the buck-
ets will have load four or greater, and similarly with three
hash functions, only 4.4e-33 of the buckets will even have
load four!

Second, when tn items are placed, the loads are strongly
centered around the integers nearest to t. This follows nat-
urally from the above, since the average bucket load is of
course t, and the probability of high bucket loads decreases
so quickly. These two effects are exactly what we desire
from our hash table. We wish the probability of having a
heavily loaded bucket should be small, so that we do not
overload a cache line; however, we wish most cache lines
to be reasonably full.

It is worth noting that there is a noticeable gain in mov-
ing from two hash functions to three. The difference fol-
lows from the Fibonacci decrease of the tails; the tails
decrease significantly faster with each additional choice.
(From our theoretical analysis, we have that when d = 2
the fraction of buckets with load at least i falls approxi-
mately like 2�2:6

i
; for d = 3, the fraction of buckets with

load at least i falls instead like 2�6:2
i
.) Hence one can

trade off the number of memory accesses required in order
to improve the memory usage. Using more hash functions
requires more memory accesses (although they can still be
pipelined in a straightforward fashion); in return, more en-
tries can be stored without violating the constraint given
by the number of entries that can fit on a cache line.

B. Comparing the differential equations and simulations

Items Buckets Results
32000 64000 Max. load 5 for 3992 trials

Max. load 6 for 5375 trials
Max. load 7 for 598 trials
Max. load 8 for 34 trials
Max. load 9 for 1 trials

32000 32000 Max. load 6 for 675 trials
Max. load 7 for 6487 trials
Max. load 8 for 2485 trials
Max. load 9 for 320 trials
Max. load 10 for 30 trials
Max. load 11 for 3 trials

32000 16000 Max. load 8 for 233 trials
Max. load 9 for 4437 trials
Max. load 10 for 4075 trials
Max. load 11 for 1040 trials
Max. load 12 for 178 trials
Max. load 13 for 29 trials
Max. load 14 for 7 trials
Max. load 15 for 1 trials

32000 8000 Max. load 11 for 2 trials
Max. load 12 for 1105 trials
Max. load 13 for 4354 trials
Max. load 14 for 3018 trials
Max. load 15 for 1139 trials
Max. load 16 for 287 trials
Max. load 17 for 74 trials
Max. load 18 for 15 trials
Max. load 19 for 2 trials

TABLE IV
SIMULATION RESULTS, RANDOM INSERTIONS, 1 CHOICE.
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Items Buckets Results
32000 64000 Max. load 2 for 5826 trials

Max. load 3 for 4174 trials
32000 32000 Max. load 3 for 9980 trials

Max. load 4 for 20 trials
32000 16000 Max. load 4 for 9911 trials

Max. load 5 for 89 trials
32000 8000 Max. load 6 for 9895 trials

Max. load 7 for 105 trials

TABLE V
SIMULATION RESULTS, RANDOM INSERTIONS, 2 CHOICES.

Items Buckets Results
30000 60000 Max. load 2 for 10000 trials
30000 30000 Max. load 2 for 7154 trials

Max. load 3 for 2846 trials
30000 15000 Max. load 3 for 7441 trials

Max. load 4 for 2559 trials
30000 7500 Max. load 5 for 8462 trials

Max. load 6 for 1538 trials
30000 6000 Max. load 6 for 8735 trials

Max. load 7 for 1265 trials

TABLE VI
SIMULATION RESULTS, RANDOM INSERTIONS, 3 CHOICES.

Because the results given by the differential equations
describe asymptotic behavior, it is worth comparing their
behavior to simulations of the underlying random process.
In particular, we are interested in whether the differential
equations accurately predict the maximum load of a bucket
for numbers of items and buckets likely to arise in practice.
For this reason, we focus on instances where the number of
buckets and items are in the small tens of thousands. Our
differential equations would better match larger systems,
and give less accurate results for smaller systems.

For the case of one or two hash functions, we simulated
systems with 32,000 items with varying numbers of buck-
ets: 8,000, 16,000, 32,000, and 64,000. In order to di-
vide groups evenly, we used slightly different numbers of
buckets for the case of three choices (see Table VI). These
simulations are idealized, in that the buckets for each item
were chosen independently and uniformly at random from
the left and right sides (using the pseudo-random genera-
tor drand48). We emphasize that this idealization does not
necessarily correspond to the data itself being random in
practice, but rather that the hashes of the initial data ap-
pear random. Using a computationally expensive but pow-
erful hash function such as MD5 could approximate this
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Fig. 2. One vs. two hash functions, over 10,000 trials. In the
legend, the the number of items (in thousands) is followed
by the number of buckets (in thousands).

behavior. In practice, we suggest simpler hash functions,
as described in Section IV.

As an example of how to compare these results with the
fluid limits, consider the case of 32,000 items and 32,000
buckets. The fluid limit suggests that a fraction 5.2e-08
of the buckets will have load 4 (or greater) in this case.
Hence, over 10,000 runs, we would expect to see around
16 or 17 buckets with load 4. In simulations we see a
maximum load of 4 only 14 times, suggesting the fluid
limit provides an excellent guide to the behavior of realis-
tic sized systems.

We provide a graphical representation of the difference
between using one and two hash functions in Figure 2. The
legend gives the number of items (in thousands) followed
by the number of buckets (in thousands). The main point
here is that using two hash functions allows greater pre-
dictability and a smaller maximum load, even while using
much less memory.

The power of using three hash functions is rather sur-
prising. Consider the case where there are tens of thou-
sands of items, and six items can fit into a cache line; this
is essentially the situation considered in [14]. With 30,000
items and 6,000 buckets using three hash functions, even
though the average load is five items per bucket, the max-
imum load is only six! Using two hash functions, we see
that with 32,000 items and 8,000 buckets the maximum
load is very likely to be six. Hence we can achieve an
average load of four and a maximum load of six, using
two hash functions. In general, we see that for parameters
that appear reasonable for the IP routing scenario, we can
achieve a very good utilization of memory with our hash
table using a small number of hash functions.

For a more direct comparison between our simulations
and the fluid limit calculation, we provide detailed results
for each of our sets of 10,000 trials. We present the frac-
tion of buckets with each load. The results of Tables VII
and VIII are almost exactly the same as predicted by our
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analysis as given in Tables II and II. The small differ-
ences might simply be the statistical effect of having too
small a sample for rare events. Alternatively, the analysis
might slightly underestimate the fraction of buckets with
the largest load for our simulations; for larger numbers of
items and buckets this discrepancy would shrink.

The results are strongly robust. For example, we ran
1,000,000 experiments with 32,000 items and 8,000 buck-
ets, using two choices. The maximum load was 6 for
987,296 of these trials, and 7 for the remaining 12,704 tri-
als.

Again, the results make clear that using two or three
hash functions can drastically reduce the maximum load
and the variance in the maximum load, leading to better
and more predictable hashing performance. Further, using
multiple hash functions can dramatically improve upon the
total space used to store the hash table by reducing the
amount of unused space.

Load

Number of buckets
64,000 32,000 16,000 8,000

0 5.3e-01 2.3e-01 3.4e-02 6.3e-04
1 4.4e-01 5.5e-01 2.1e-01 6.9e-03
2 3.0e-02 2.2e-01 4.9e-01 4.3e-02
3 8.6e-06 4.5e-03 2.6e-01 1.9e-01
4 6.3e-08 9.1e-03 4.7e-01
5 5.6e-07 2.8e-01
6 1.3e-02
7 1.3e-06

TABLE VII
LOADS FOUND BY SIMULATIONS (32; 000 ITEMS, VARYING

NUMBERS OF BUCKETS, 2 CHOICES). ENTRIES REPRESENT

THE FRACTION OF BUCKETS WITH THAT EXACT LOAD.

C. Simulations for Deletions and Additions

The differential equations (3) describe the behavior of a
system with insertions and random deletions. Such equa-
tions can be used to determine the end state of the system.
However, what is important in the setting of deletions is
not the end state, but the amount of time until the number
of items hashed to a single bucket becomes too large. At
such time, a cache line cannot store a bucket, and we are
forced to do a potentially expensive re-hash to create a new
hash table.

The results from the differential equations can be used
to obtain very loose approximations for the probability that
some bucket exceeds its capacity during the course of a
process. Since x2i + x2i+1 is meant to approximate the
fraction of buckets with load at least i as the number of

Load

Number of buckets
60,000 30,000 15,000 7,500

0 5.1e-01 1.6e-01 9.1e-03 2.4e-05
1 4.9e-01 6.8e-01 1.6e-01 5.9e-04
2 6.8e-03 1.6e-01 6.6e-01 1.1e-02
3 1.1e-05 1.7e-01 1.5e-01
4 2.0e-05 6.6e-01
5 1.8e-01
6 2.3e-05
7

TABLE VIII
LOADS FOUND BY SIMULATIONS (30; 000 ITEMS, VARYING

NUMBERS OF BUCKETS, 3 CHOICES). ENTRIES REPRESENT

THE FRACTION OF BUCKETS WITH THAT EXACT LOAD.

buckets and buckets grows large, the total expected num-
ber of buckets with load at least i over the first T steps can
approximately be upper bounded by

T�1X
t=0

x2i(t) + x2i+1(t) � T max
0�t�T�1

x2i(t) + x2i+1(t):

The expected number of buckets with load at least i over
the first T steps is certainly larger than the probability of
seeing a bin with load at least i over the first T steps.
Hence, if this expectation is small, we obtain a bound on
the corresponding probability.

We emphasize that the point here is not so much to get
accurate upper bounds for the probability a bin ever ex-
ceeds some load. Rather, the point is that the xi shrink so
fast that we would expect to run a significant number of
steps before needing to re-hash if we choose our param-
eters appropriately. We consider a specific example: sup-
pose we start by inserting 32,000 items into 16,000 buckets
using two choices. We then either insert or delete an item,
each with equal probability, until we see a bucket with load
six. For convenience, we refer to each insert or delete op-
eration as a step.

From Table II, the asymptotic fraction of buckets with
load at least six is 7.2e-19 after the insertion stage. As
deletions tend to reduce the number of highly loaded buck-
ets, we would therefore expect that our hash table could
deal with insertions and deletions for a long time before a
bucket with load six appears. In practice, however, with
such a small number of bins, the variance has a very large
effect.

We simulated the process with 32,000 items and 16,000
bins, stopping when we saw a bucket with load six or the
number or when we had performed 10,000,000 steps. In
one hundred trials, we reached 10,000,000 steps without
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seeing a bucket with load six seventy-five times. Of the
remaining twenty-five trials, the smallest number of steps
was only 121,805, but the average was approximately 4.54
million. In all of these twenty-five trials, the number of
hashed items was greater than 32,000 when the process
stopped; the average was over 34,500 items. Hence the
maximum number of items that one expects to be in the
system should be a major concern when deciding the ap-
propriate size of the hash table. These results justify our
assertion that our hashing schemes are highly robust under
deletions and insertions.

D. Implications

It is worth summarizing some of the benefits and the
new tradeoffs that our approach yields.

One important benefit is that under the assumption that
hash functions are sufficiently random (which we discuss
below), the performance of these hashing schemes for var-
ious values of the memory size, cache line size, etc. can
easily be tested numerically using the appropriate differen-
tial equations. Although the results obtained in this fashion
are asymptotic, they appear quite accurate for systems of
reasonable size (say, in the tens of thousands). This is not
surprising, given that Chernoff-like bounds apply.

Similarly, when a fixed number of items are to be in-
serted in the hash table, one can use the asymptotic results
to predict the probability of success for a given cache line
size. This number can be used to trade pre-processing time
for space. In particular, in order to use less memory, it may
be suitable to aim for a setup where the probability that no
cache line size is exceeded is, say, only 20%. In this case,
trying several combinations of hash functions may be nec-
essary; the set of items can be re-hashed offline until a
suitable hash table is produced. Knowing the probability
of success allows one to estimate the time to find an appro-
priate combination. The search for good hash functions is
likely to be very efficient, as we describe in Section IV.

There are tradeoffs between the number of hash func-
tions used, the memory used, and the applicable cache line
size. Increasing the number of hash functions decreases
the maximum load, and hence allows smaller cache lines.
While two hash functions appear generally sufficient, three
can be used to improve memory utilization. Similarly, in-
creasing the hash table size reduces the maximum load
while increasing the total memory used.

Our hash scheme also performs well when items are in-
serted and deleted from the table. Deletions have a ten-
dency to decrease more full buckets, and therefore the sys-
tem can handle a significant number of insertion and dele-
tion steps before unfortunate circumstances necessitate a
re-hashing of the data.

Finally, we reiterate that all memory look-ups required
by this scheme can be done in parallel, in either hardware
or software, since each hash function yields buckets that
can be stored in completely separate areas of memory.

IV. IMPLEMENTATION DETAILS

In practice one cannot simply obtain a perfectly random
hash function; instead one generally chooses a hash func-
tion from a small family of hash functions. Our analysis
thus far has assumed that our hash functions are perfectly
random, and unfortunately we don’t know how to analyze
the use of smaller hash families (e.g., 2-universal families
[3], [5]) in this context, although our belief is that standard
hash families will provide performance similar to the anal-
ysis in practice. Our belief is centered on the fact that in
practice we will not have adversarially chosen worst case
data, and hence our hash functions are likely to be “suffi-
ciently random” that our analysis describes actual behav-
ior. An interesting question that is outside the scope of
this paper is to consider what the best hash functions to
use on IP routing data would be. A related question is how
random does IP routing data appear.

A simple hash function (for both hardware and soft-
ware) that one can use is to treat the input as an element in
an appropriate finite field Z[2k] and multiply by a random
element in the field Z[2k], that is, modulo a given irre-
ducible prime polynomial. This is simply implemented as
a multiplier without carries and a CRC (cyclic redundancy
check). Each hash function can be based on a different
random multiplier and a different irreducible prime poly-
nomial. Using a more complex and larger family of hash
functions based on using several random multipliers (see,
e.g., [3]) more closely approximates the family of all pos-
sible hash functions, if this is desired.

An IP router that needed to build a hash table could sim-
ply choose two random elements of the field, using one el-
ement as a multiplier for each hash function. If the hash
table is found suitable, in that the maximum number of
items in a bucket fits on a cache line, these multipliers are
used; otherwise, new random elements are chosen. The
process is repeated until a suitable hash function is found.

To test how realistic hash functions perform, we imple-
mented a simple scheme that derives two hash values from
prefixes by computing the standard 16 bit CRCs, CRC-
16 and CRC-CCITT, on them. (Hence we have not even
bothered with random multipliers for the hash function.)
Note that if we assume that our prefixes are, for exam-
ple, 32 bit strings generated uniformly at random, then it
is as though our hashes give two uniform, independent val-
ues for each hash function. (This follows simply from the
Chinese remainder theorem, applied over this polynomial
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domain.) We checked our implementation by testing it on
32 bit strings generated uniformly at random, and found
that it indeed behaves entirely similarly to the simulations
based on hashes being perfectly random.3

Consecutive prefixes (which may be likely to arise in
practice) naturally land in distinct buckets for each hash
function, which should actually improve performance. We
tested this with the following experiment. Items are di-
vided into blocks. The first 32 bit string for each block
is generated randomly; the rest of the bit strings in the
block are just consecutive integers. The results appear in
Table IX. Although performance appears quite similar to
our simulations where items are hashed independently and
uniformly at random when the block size is small, when
the block size is large performance actually improves. This
is because the small stride ensures that all items within a
block hash to different buckets.

We performed similar tests using different strides; for
example, we tried having consecutive elements in the same
block differ by 256 or 173. For most strides, performance
was similar to that of our simulations where items are
hashed independently and uniformly at random. However,
for a stride of 256, performance degraded for large block
sizes. We believe that this particular stride interacts with
the hash function in some way that some buckets tend to be
repeated. Further tests suggested that there may be a small
number of stride values that have worse performance than
expected. This problem disappears, however, when we in-
troduce random multipliers as described above, as shown
in Table X.

A. Using Real IP Data

We also examined the performance of these hash func-
tions on real data obtained from Srinivasan and Varghese,
who used this data in [14]. Our tests were based on a snap-
shot of the MaeEast database with 38,816 prefixes.

Our primary test was to take the input data that arises
for one of the hash tables using the Binary Search on Lev-
els with controlled prefix expansion. Using three levels
(with prefixes of 16, 24, and 32 bits), the table of 24-bit
prefixes has 198,734 entries. (The other tables are signifi-
cantly smaller, and we ignore them here.) The hash func-
tion determined in [14] used 131,072 buckets of 32 bytes,
and therefore requires four megabytes of space, in order to
ensure that at most six entries were held in each cache line.
The hash function took a few minutes to find on a modern
Alpha system. Using just the two CRCs as hash functions
and 65,536 buckets, we obtained a maximum load of five.

3Because our hashes are 16 bits and our simulations use a number of
buckets that is not a power of 2, some buckets are slightly more likely
to be chosen. We have not found this to have a significant impact.

Items Buckets Block size Results
32000 16000 10 Max. load 4 for 9925 trials

Max. load 5 for 75 trials
32000 16000 100 Max. load 4 for 9966 trials

Max. load 5 for 34 trials
32000 16000 1000 Max. load 3 for 1919 trials

Max. load 4 for 8075 trials
Max. load 5 for 6 trials

32000 8000 10 Max. load 6 for 9866 trials
Max. load 7 for 134 trials

32000 8000 100 Max. load 6 for 9942 trials
Max. load 7 for 58 trials

32000 8000 1000 Max. load 5 for 3128 trials
Max. load 6 for 6870 trials
Max. load 7 for 2 trials

TABLE IX
SIMULATION RESULTS, 2 CRCS AS HASH FUNCTIONS, WITH

BLOCKED INPUTS (STRIDE 1).

Items Buckets Block size Results
32000 16000 10 Max. load 4 for 9902 trials

Max. load 5 for 98 trials
32000 16000 100 Max. load 4 for 9700 trials

Max. load 5 for 300 trials
32000 16000 1000 Max. load 4 for 668 trials

Max. load 5 for 8565 trials
Max. load 6 for 765 trials
Max. load 7 for 2 trials

32000 16000 1000 Max. load 4 for 9562 trials
with random multiplier Max. load 5 for 436 trials

Max. load 6 for 2 trials

TABLE X
SIMULATION RESULTS, 2 CRCS AS HASH FUNCTIONS, WITH

BLOCKED INPUTS (STRIDE 256).

Using 50,000 buckets suffices for a maximum load of six.
Our hash table requires half the space (or less) and was
found essentially instantaneously. Experiments using ran-
dom multipliers along with the CRCs show essentially the
behavior, although it appears that using just the two CRCs
is somewhat fortunate. For 1,000 trials with random multi-
pliers and 65,536 buckets, the maximum load was five for
835 trials and six for the remaining trials.

We repeated the experiment when the first prefix level
uses 18 bits. In this case, the number of entries for the
24 bit hash table is reduced to 117,131. Again, in this in-
stance the hash function determined in [14] requires four
megabytes of space and some time to find. Using the two
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CRCs, we can achieve a maximum load of six with only
32,768 buckets. In this case, we require only one quar-
ter the space, and again the first pair of hash functions we
tried prove successful. In fact, when this experiment was
repeated 1,000 times with random multipliers, the maxi-
mum load was six every time.

Just for fun, we tried creating a hash table using just the
38,816 prefixes, all converted into 32 bit numbers. With
9,000 buckets we achieved a maximum load of six, again
just using the CRCs.

From these results, we suggest that although we can-
not make statements regarding worst case behavior for us-
ing multiple hash functions when the hash functions are
chosen from a small, easily implemented family, we be-
lieve that in practice a reasonable implementation will per-
form similarly to our analysis. The families we have tested
(with a single random multiplier per hash function) per-
form close to the analysis and are simple to implement
in hardware or software. In fact, they are quite minimal;
one could undoubtedly design more complex hash func-
tions that would improve results. Determining what hash
functions are most appropriate depends in part on the un-
derlying data and in part on the desired tradeoff between
hashing complexity and performance. For the specific case
of IP routing, this is an avenue for possible future study.

We note that there are also further possibilities for sav-
ing space in the hash table. For example, it may be possible
not to store the entire IP prefix in the hash table. Suppose
we use a 1-1 hash function (a random permutation) that
maps 32 bit IP prefixes (in, say, IPv-6) to 32 bit values.
We may use the first 16 bits as an index into a hash table,
and identify the prefix in the table using only the remaining
16 bits from the hash.

V. CONCLUSIONS

We have suggested a hashing scheme, d-left, based on
using multiple hash functions that is suitable for situations
where it is important to bound the maximum number of
items that fall into a bucket, such as when the bucket is
meant to fit in a cache line. A key feature of the d-left
scheme is that all hashes and memory lookups can be done
in parallel in a straightforward manner.

We have also discussed the applicability of d-left to IP
routing, using the binary search on levels approach. Impor-
tant future work includes building a more complete testbed
for testing the d-left hashing scheme on real data and com-
paring its performance against other approaches. We also
believe that d-left hashing is a simple but extremely pow-
erful technique that will prove useful in other applications
as well, and we are actively seeking possible applications.
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