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Abstract To better understand Best Fit, researchers then turned

their attention to the skewed distributiob§0, a) where
W\e prove that Best Fit bin packing has linear waste on the item sizes are independent random variables uniform
the discrete distribution U{j, ¥} (where items are drawn over the interval0, a] for somea strictly less than oné.
uniformly fromthe set {1/k,2/3,---,j/k}) for sufficiently For these distributions, the optimal packing is perfect in the
large k when j = ak and 0.66 < a < 2/3. Our results ~ sensethdim,, .., E(OPT(L,)/(a1+az2+---+a,)) = 1.
extend to continuous skewed distributions, where items are Therefore the expected asymptotic performance ratio of

drawn uniformly on [0, a], for 0.66 < a < 2/3. Thisim- Best Fit is strictly greater than 1 if and only if the waste
pliesthat the expected asymptotic performanceratio of Best grows linearly in the number of items. Based on experi-
Fit isstrictly greater than 1 for these distributions. mental evidence, it was conjectured that for all skewed dis-

tributionsU (0, a) the growth of the waste was linear [5, 1].

The discrete distributionS {j, k} were introduced in [4]

1 Introduction in the hope of gaining insight into the continuous case.
Under distributior/{j, k}, items are drawn independently
and uniformly from the sef1/k,2/k,...,j/k}. The dis-

1.1 Background and results tributionsU {j, k} approxi;{at/e thé continu/ojs distribution
U(0,a) ifone setg = ak and letsk go to infinity. Note that

In the bin packing problem, one is given a sequence U{j, k} can equivalently be thought of as the bins having

L, = ai,...,a, € (0,1] of items and asked to pack them capacityk and the item sizes being uniformly distributed

into bins of unit capacity so as to minimize the number of on the integer{1,...,;}; we generally use this formula-

bins used. This problem is well known to be NP-hard, and tion. Thanks to extensive experimental work [4, 6], sev-

a vast literature has developed around the design and analeral extreme cases have been analyzed Widlgrk }: when

ysis of efficient approximation algorithms for it. The most j = k — 1, the expected waste 8(n'/2log k) [4]; when

widely studied among these is the Best Fit algorithm, in j = k—2, the expected waste#(1) [9] (a result which can
which the items are packed on-line, with each successivealso be extended to First Fit [2]); and the expected waste is
item going into a partially filled bin with the smallest resid- alsoO(1) whenj < v/2k + 2.25 — 1.5 [4]. The only case

ual capacity large enough to accommodate it; if no such bin where the expected waste of Best Fit was provento be linear

exists, a new bin is started. was for the two distribution#/{8,11} andU{9,12} [6].

Best Fit was first analyzed in the worst case in 1974 Unfortunately, none of these results gave any information

in [7], where it was proved that the number of bins used about the continuous distribution&0, a).

is always within a factor 1.7 of optimal, so that the asymp- | this paper, we first study the discrete distributions

tqtlc.per.formance ratio of Best Fit is 1.7. Fpr the uniform U{j,k} and prove that Best Fit has linear waste wien

dIS.tI’IbutIOI’l on_[()., 1], the expected asymptotic performance g large enough and.66k < j < (2/3)k. We then pro-
ratio of Best Fitis 1, and3 more precisely the expected wasteceed to prove our main result: Best Fit has linear waste for

of Best Fit isO(n'/*log** n) [14, 10]. The waste is the  the continuous distributior’s (0, a) with 0.66 < a < 2/3.

total unused space, i.e. the difference between the numbetrhjs work therefore provides the first proof of linear waste
of bins used and the sum of the sizes of all the items. for Best Fit under skewed continuous distributions.

*Part of this work was done while the author was visiting AT&T.

TSupported in part by an Alfred P. Sloan Research Fellowship and NSF.
CAREER Grant CCR-9983832. Part of this work was done while the au-  *Next Fit was analyzed undéf(0, a) by Karmakar in 1982 [8] using
thor was visiting AT&T. completely different techniques.




1.2 Proof techniques

In the discrete case, as in most previous work, we view
the algorithm as a multi-dimensional Markov chain [6].

ment. The result for discrete distributions cannot be applied
directly to continuous distributions by simply lettikkggo to
infinity, because when bin sizes are scaled to 1, our discrete
result shows thad;, the number of bins with remaining ca-

The states of the chain are non-negative integer vectors?@City 1/, grows linearly, but a3/ goes to O the contri-

s = (s1,-..,8k—1), Wheres; represents the current num-
ber of open bins of residual capacitylt is a simple matter

to write down the new vector' that results from the arrival
of any itemi € {1,...,7} when in states. This defines
an infinite Markov chain ofZ®~'. The expected waste of
Best Fit is directly related to the asymptotic behavior of this
chain, which we analyze in detail.

The first novel ingredient in this paper is Lemma 1, a
simple but crucial observation which we formulated after
examining detailed simulations: if the maximum item size
max is less thar2/3 times the bin capacity, then Best
Fit has at most one open bin with remaining capacity in the
rangefc/3, ¢ — max). Hence we focus on values gfwith
j < 2k/3.

At a high level, our approach is surprisingly simple. Our
goal is to show that,, the number of bins of residual ca-
pacity 1, grows linearly inn. For most configurations, the
next incoming item will on average tend to increaseor
at least not decrease it. The only exceptions are configura
tions with open bins of remaining capacity?, . . ., m, and
no bins of larger remaining capacity (upjte- 1). Thanksto
Lemma 1, this impliesn < k/3. Intuitively, such config-
urations are then extremely short-lived, and inserting a few
more items then typically modifies them into configurations
in which s, is biased towards increasing. Thus the undesir-

able effects of these configurations should be amortized by

running the Markov chain forward in time for a few steps.

In practice, running the Markov chain féf steps, there
arej¢ possible sequences to analyze, which would be com-
putationally infeasible ag gets large. To get around this
problem, our detailed analysis partitions the configurations

bution to the waste is sublinear. Hence in the continuous
case, instead of studying, we focus on bins with remain-
ing capacity in the rangé, ] for some small constaret

and suitably adapt the proof of the discrete case.

2 Analysisof discrete skewed distributions
2.1 TheMarkov chain

In this section we study the discrete distributiéfy, &}
where the bin capacity i& and items are picked uniformly
at random from the sdftl, 2, ..., j}. We focus specifically
on the case wherg = ak for 33/50 < a < 2/3, and
we assume that and k are sufficiently large so that our
arguments hold throughout.

Let us first recall the associated Markov chain setting.
We shall denote the state of the system at tirbg s(t)
(s1(t),...,sk—1(t)), wheres;(t) is the number of open
bins at timet with residual capacity exactly. Initially,
the state of the system ig0) = (0,...,0), reflecting the
fact that there are no open bins. Lebe the size of the
next item inserted. Let be the smallest index such that
i > ¢ ands;(t) > 0, if such exists: in this case, the algo-
rithm inserts iten¥ into a bin with capacityi, so we have
si(t+1) = s;(t)—1and,ifi > £, s;_¢(t+1) = s;—(t)+1;
all other components &f(¢) are unchanged. If no suc¢tex-
ists, then the algorithm inserts itefrinto an empty bin, so
we havesy_¢(t + 1) = s,_¢(t) + 1 and all other compo-
nents ofs are unchanged. This completes the description of
the Markov chain.

into a constant number of groups. We then use stochastic

domination, i.e. take the worst case configuration within
each group. This worst case configuration is determined by
dynamic programming: we successively find the worst con-

2.2 Thedifficult configurations

Our attack for proving instability is straightforward: we

figuration within each group given that there is one more show thats;, the number of almost full bins, is biased up-
item to be inserted, and from that calculate the worst caseward and hence tends to increase. Ketlenote the number
given that there are two more items to be inserted, and soof ways to increase, andY; € {0, 1} denote the number of
on. This use of dynamic programming is commonly used in ways to decrease . The values; increases exactly when
the analysis of Markov decision processes (see, e.9., [3, 12])an item of sizer is inserted and we havg = 0, 5,1 # 0,
and has been used for contention resolution protocols [11];and soX; is exactly the number of such pai(s,, s, 1)
as far as we know, this is the first time it has been applied towith z < j. At every time step, ifs;(t) = 0 we have
stochastic bin-packing. Although the derived dynamic pro- Y; = 0, and if s;(t) # 0 thenY () = 1. namely,s; can
gram only has to deal with a constant number of cases, itdecrease only when an item of size 1 arrives. The only
is too large to be processed manually and so we ended ugsituations where; is biased downward are i, has one
writing a computer program for it. The actual table filled in  way to decrease and no way to increase, i.e. if for spme
by the program has tens of thousands of entries. 51,82,...,8m # 0andsy,i1 = ... = sp_j41 = 0. We
The continuous model follows the same general argu- call these configurations whese is biased downwards dif-



ficult configurations, as handling them is the challenge of 2.4 A stopping time framewor k

the problem.
The lemma below will enable us to conclude thamust
be less thaik /3 in any difficult configuration.

2.3 Theopen rangelemma

Recall that the difficult configurations are the ones such
that for somem < k/3, s1,82,...,8m # 0ands,,+1 =

. = sp—j+1 = 0. In these cases, we consider the evolu-
tion of the system over steps for some randostopping
time 7, and will show that the expected number of ways for

In this subsection, we demonstrate that one cannot haves: t0 increase is greater than 1 over thessteps. For con-
more than one bin with remaining capacity within a rather venience, imagine the process starting at time 0, with time

large range. We call the resulting lemma then range

t corresponding to the moment after thb item has been

lemma. The following fact is a classical basic property of inserted. The stopping time will correspond to one of the

Best Fit.

Fact 1 Any two open bins with remaining capacities g and
g must haveg + ¢’ < k.

Lemmal [Open rangelemma] If the maximumitem size
jisstrictly lessthan 2k /3, then skt + Sk <1

Proof: Note that initiallys; /3 + ... + sx—j—1 = 0. Hence
we need only show that when /3 + ... + 51 = Lit
cannot increase.

Consider any timéwhens;, j3+. . .+s;—;—1 = landlet
i€ {k/3,...,k—j—1} besuchthat; = 1. Leti’ be such
thatk/3 <i' < k—j— 1. How cans; increase? Note that
sy cannot increase by having an item of size- i’ placed
into an empty bin, sincé — i’ is greater thar, the largest
item size. Thus a bin with remaining capacitycan only
be introduced by adding some item of siz& a bin which
already has a remaining capacitygofwith g — =z = 7',

Assume then that at timethere is one bin with remain-
ing capacity; and one with remaining capacity From
Fact 1, we havé+ g < k, so that

k—g>i>k/3. 1)

By definition the remaining capacity must be larger than
i. Also, by the definition of Best Fit, itema would have
been placed in the bin with remaining capadgitit had fit
there, rather than in the bin with remaining capagitySo
it must be thatr does not fit in remaining capacity

x>i>k/3. (2)
Now, by assumption
k
> =
i'> 3 3)
Summing inequalities (1), (2), and (3) we obtain- g +

x +14 > k,and hence’ > g — z, a contradiction.
[

following events:

1. Time step”' has been reached, for some fixed constant
C.

The coordinate; increases or decreases.
The coordinate,,, becomes 0.

The coordinate,,, . ; becomes positive.

a M DN

For some: > m, the coordinate, becomes equal to
2.

6. For somex > m + 1, the coordinates, ands,_
become positive.

The idea of this stopping time is as follows: we run the
chain for at mosiC' steps, or until some other (unlikely)
event occurs. 1§, is more likely to increase than decrease
over the interval corresponding to the stopping time, then
we can “collapse” the steps of the process until the stopping
time into a single long superstep. Thanis either unbiased
or biased upwards over any normal step or any superstep of
the chain, and this is sufficient to prove instability.

We include certain events in the stopping time that would
affect our analysis. In particular, in our analysis, we con-
sider that the number of ways fef to increase is exactly
Sm+1 + Sm42 + ... + sj41; thus we assume that when-
ever somes, for k/2 > a > m becomes non-zero then
it becomes 1, and that it corresponds to a “useful gap” for
us (i.e. an entering item of size— 1 will causes; to in-
crease). This fails to be true if both ands, ; become
positive, or ifs, becomes 2. Rather than complicate our
analysis further, we essentially remove these “edge effects”
from analysis by introducing these events into the stopping
time. As these events occur with very small (constant) prob-
ability (for large enough values d&f compared taC) they
will not affect our argument, as we explain, and so we will
generally dismiss them in subsequent analysis.

We wish to show that the probability that increases

We reiterate that the open range lemma simplifies the over the interval ofr steps is greater than the probability
analysis, since it ensures that there is some well-definedthats, decreases. We now introduce another simplification.

range of values where most of the values must be 0, and
hence that any difficult configuration must hawe< k/3.

Let X; be a random variable representing the number of
ways fors; to increase at timefor ¢ € [0, C). Then, up to



lower order terms, the difference from the probability that 2.5.1 Using stochastic domination: a nonrigorous ex-
s1 increases to the probability that decreases is at least ample

We first present an example of a simplified and nonrigor-
(E [ 532—01 X;/C | state at time)] — 1) ous analysis, which demonstrates how we attack the under-
- lying Markov chain. For our simplified analysis, we will
ignore the effect of non-empty bins with remaining capac-
ity at leastk/2. That is, we assume the number of such
Intuitively, the above formula shows that we can jUSt count pins is 0 throughout_ As we describe Subsequenﬂy, such
the number of ways§; can increase at each step and subtract mosﬂy empty bins Comp”cate the ana|ysi5_ Take the exam-
the number of ways; can decrease at each step oger  ple wherek—j > m > k/4. Atevery step, there ae= ko
steps in order to compute difference in the probability that possibilities for the item arriving. Out of these possibilities,
s1 increases rather than decreases over an interval that endg, has at leasj — k/2 = k(2« — 1)/2 ways of increas-
at a stopping time. Of course this calculation is not exact, ing, corresponding to insertions of iterg2, k/2+1,...,j
since for example the stopping time might be reached before(this is because of our assumption that there are never bins
C steps. However, because the probability that an event Ofmore than half empty) On the other hand, Si@gﬁstays
type2,3,4,5, or 6 occurs over steps isO(1/j) (where  positive X; has at mosk/2 — m ways of decreasing if it
the constant factor depends 6f), it can be checked that s non-zero and no way of decreasing if it is equal to 0. It
the above expectation differs from the proper difference by is worth also noting thak’; has at mostn.X; ways to de-
anO(1/5*) lower order term. Hence, for our purposes, the crease in general, since for bin than contributeX tothere
above expression gives the proper bound. are onlym possible items that could enter and reduce its
From our definition of the stopping time, which excludes residual capacity to something less than (For this range
problematic events, it is easy to see tiat the number of ~ of m, however, the bound df/2 —m is better.) We now use
ways fors; to increase, at each time step in this range is Stochastic domination. Following standard definitions (see,
equal t0s,,11 + ... + s;+1, and thus we are reduced to €.9. [13]) we say thal stochastically dominatek’ and
analyzing this simple expression. We therefore show thatwrite X > Y if Pr(X > u) > Pr(Y" > ) for all real values
there exists an integer constants> 0 and a real constant ~ u. Intuitively, X is more likely to take on larger values than

J

e > 0 (independent of) such that for sufficiently large, Y. Itis simple to show (say via induction) that, > Z,
where
c—-1
m+1(t)+... ir1(t . Zo = 0
E | 20 Smia(Dt. 4550 (1) | state at time)| > I-+e. 0 b(2ae1)
C Zt + 1 Wp W’
(4) Ziy1 = Z;—1 w.p. W if Z; # 0,0 otherwise,

Note that we require that the right hand side be greater than 7y with all remaining probability.

1 + € so as to absorb the error term introduced by our ap-
proximations due to the stopping time. Hence, we show that; ;5 easily checked that the probability & increasing is

up to amortizing slightly over time, the bin-packing proce- gmajjest and the probability of, decreasing is largest for
dure is more likely to increasg than decrease it when it the smallest value af, o = 33/50, and the smallest value
begins in a difficult configuration. We then show that this ¢, _ k/4. Thatis, X, > Z,, where

implies thats; must have a slight bias toward increasing
over all steps; from this we conclude thaatand hence the Zy = 0
waste grow linearly in the number of items Zi+1 w.p.8/33,
Zyi1 = Zy—1 w.p.25/66if Z; # 0,0 otherwise,
Zy with all remaining probability.
25 Theanalysisstarting from a difficult configu-

ration We check by explicit calculation thd#((Zy + Z; + ... +

Zc-1)/C) > 1 for a small constan€. (ForC = 30,
E((Zo+Z1+...+Zc-1)/C) ~ 1.007; by calculating the
, stationary distribution, we see that@gets largeF ((Z, +
in a state where,, sz,..., s, # 0 andspi = ... = Zi + ...+ Zc_1)/C) approaches?.) Hence, sinceX

sj+1 = 0. In this states; has no possibility to increase.  gy,chastically dominates, we have for a small consta6t
Note that proving (4) will imply that for sufficiently large that

k the values; diverges to infinity. Our proof is based on
stochastic domination. E((Xo+...+Xc1)/C) > E((Zo+...+Zc-1)/C) > 1.

We assume thagt= ak for a € (33/50,2/3). We begin



We can continue by breaking down the process into a fi- E. = E( f;; Xi/c| state at timé) until we find a suf-
nite number of similar cases, covering the entire range.of  ficiently largeC so thatEs > 1 + €. The interesting point
(For example, we could take the cagest m < k/8 and of our calculation is that in ambiguous situations we use a
k/8 < m < k/4.) In each case, we can bound the proba- worst-case analysis, similar in spirit to allowing an oblivi-
bility of X; increasing and decreasing, so as to find a domi- ous adversary some limited power in deciding the flow of
nating simple one-dimensional random walk. It is therefore the process. For example, suppase= 1, and an item
easy to check each specific case, simply by determining theof size in the rangg0.5k, j] arrives. Such an item could
distribution of Z; over a reasonably small number of steps. be placed in the light bin; alternatively, such an item may
prove too large for the light bin, and instead caigego in-
crease. The effect of the item depends on the exact residual
capacity of the light bin and the value of the entering item;
however, we have failed to include the capacity of the light
The above analysis captures the fundamental flavor of ourbin in our state.
argument: simplify the high-level behavior of the Markov
process according to the number of ways thatcan in- In such ambiguous situations we can comite; from
crease, and consider this behavior over a small number off, by taking the worst-case possibility fé. This simpli-
steps. Unfortunately, the analysis above fails to take into fies our case analysis, in that we need not try to distinguish
consideration the behavior of the process when “mostly further subcases whe#t, = 1; however, it complicates it,
empty” bins arise. That is, it ignores possibilities when in that we must consider several various possibilities at each
s; > 0fori > k/2. step. This makes any direct analysis very complicated, re-

To see that these cases have an important impact, conquiring us to use computer analysis.
sider the case wherg = 0.34k, andm = 0.32k, and

soeak = L. In this case it is impossible for any of Finally, note that we must apply this analysis over the
Sm+1;Sm+2, - -+, Sk/2 10 INCrease on the next step. Thus it space of al(m, a) pairs, but we may wish to break up this

is important to keep track of the presence of bins of remain- gnace into several cases, as we did in Section 2.5.1. We
ing capacity greater thak/2. The following fact, easily  gyggest the approach we have taken. Suppose one focuses
derived from Fact 1, proves fundamental: on a specific value ofi (such asx = 33/50), and proves

E¢ > 1+ e by splitting up the possible values of over a

small number of ranges. We claim that then there are small
constant®, ¢’ > 0 such thatEc > 1+ € for o' € [a —

Let us call a non-empty bin with remaining capacity at 0>« + ¢]. This is because with very high probability, the
leastk/2 alight bin. Fact 2 says there is at most one light Markov chain will behave the same ow€érsteps regardless
bin. Hence we can consider two kinds of states: those with Of Whetherj = ak or j = o'k; the small probability that
a light bin, and those without. In fact, we refine our anal- the two behave differently is absorbed in the'. Hence
ysis further, to three kinds of states, by dividing states with it Suffices to try a sufficiently dense subsetcofalues in
a light bin into two subtypes. Let us call a light bielp-  the rang€33/50,2/3), and by the “continuity” implied by

252 Theimportant parameters describing a configu-
ration

Fact 2 There can be only one open bin with remaining ca-
pacity at least & /2.

ful if its remaining capacity is at mogt+ 1. A helpful ~ the above argument, we may conclule > 1 + ¢ for a
light bin can immediately lead to an increassinif an ap- suitablec everywhere in the interval.

propriately sized item arrives. Similarly we call a light bin

unhelpful if its remaining capacity is greater than- 1. The list of cases is substantial enough that we do not in-

We may now represent the state of our bin-packing pro- clude itin this extended abstract. (A sample case is included
cess by a triplé X;, A;, B;), whereX, is again the number  inthe appendix.) Luckily we have found that calculating up
of ways fors; to increase at time A4, is a 0/1 randomvari- 10 Eiqo is sufficient. (Indeed, the worst case appears to be
able representing whether or not there is a light helpful bin, the lower end of the interva33/50; we cannot expand the
andB; is a 0/1 random variable representing whether or not range beyon@/3 simply because the open range lemma
there is a light unhelpful bin. Note that wheh = 1, we ceases to apply.) Hence our calculations, when aided by a
must have thak (t) > 1, since by definition a helpful light ~ machine, are actually relatively straightforward.
bin provides one way fa¢; to increase.

We note that we have chosen the bardief50 for conve-
nience, and we have not tried to determine the exact range
for which the argument holds. It appears that additional
We then use a computer program to assist in computingwork detailing the cases would be required, however, to ex-
successive lower bounds for the value of the expressiontend the lower bound of the range bel6wg5 = 13/20.

253 Thedynamic program



2.6 Wrapping up the proof

Note that showingE [Ztc:_ol X | state at time)] >

1 + e immediately proves that the waste fo/{j, k} di-
verges. We now prove that, given that we have shown that

E [Etc:—o1 X | state at time)] > 1+¢, then for sufficiently

largek, the waste folU{j, k} grows linearly.

Theorem 1 The number of s; bins for Best Fit bin pack-
ing under the discrete distribution U{j, £}, 33k/50 < j <
2k/3, growslinearly in n for sufficiently large k.

Proof: Let Y; be the indicator function of the event
s1(t) # 0, and defineZ(t) = X; — Y:. The distribution
of s1(t) given the state at time— 1 is:

{

ThusE(s(t) |stateat — 1) = s1(t — 1)+ Z(t — 1), and
summing givesE (s, (T)) = E(Y¢ ' Z(t)).

We always haveZ (t) > —1. The “bad” configurations
are exactly the ones for whick(¢) = —1. Consider run-
ning the chain fom steps, and divide time intsupersteps.

A superstep is simply a normal step of the chain, except in
the case where we reach a state whé(g® = —1. In this
case all the steps from this point until the stopping time are
combined into a superstep; in fact, we call thikoag su-
perstep. Every short superstep hZ¢t) > 0 and every long
superstep ha&B' (3", supersteg (t) > 0

To show linear waste, we note the following: there will
be linear waste over steps as long as there are (on average)
> ¢n short supersteps which haZ&t) > 0, or as long as
there are (on average) cn long supersteps. Note that this
is equivalent to saying that there are at leéststeps with

Sl(t— 1) +1 W-p-Xt—l/j
sit—1)—1 wp.Yi1/j.

S1 (t)

Z(t) > 0, as each such step is either an appropriate short

superstep or falls in a long superstep (of constant size).
Hence we must show thai(t) > 0 for a constant frac-

tion of the steps, on average. This may appear obvious;

however, a priori it is possible that all of tkg except those

with constant probability. In fact the probability is approx-
imately v2/4; we simply need the immediate insertion of
two items into empty bins that yield bins with remaining
capacity in this range.

To show that all ofsy_j, sk ji1,8k—j4ryj/2 A€ Si-
multaneously 0 for an expected constant fraction of the
time steps, we show tha¥ = sp_; + sp_j41... +
Sk—j+~j/2 1S Stochastically dominated by a random walk
that is biased downward. This follows since when the range
Sk/3++/4s- -, Sk—j—1 are all 0, there are at mosfj/2 en-
tering item sizes that increaSevhenS # 0, corresponding
to when items are placed into empty bins. No other items
can increas&, by the same logic as the open range lemma.
Of course, at leasty;j/4 possible item sizes decreaSe
namely, any item size in the ranfje/3 + v/4,k — j — 1].
(Note there may be at most one non-zero entry in the
rangesy /st 4, -+, Sk—j—1, by Lemma 1, in which case
we do not know thaB~y;/4 possible entering item sizes
decreaseS. However, it is easy to show that this non-
zero entry disappears after an expected constant number
of steps, and no such non-zero entry can return as long as
Sk—j + Sk—j+1.-- + Sk—jp~i/2 > 0; hence it has a trivial
effect on the argument.)

Hence we either have that some constant fraction of
the supersteps are going to be short supersteps such that
Z(t) > 0, or a constant fraction of the supersteps are long
supersteps, and 96(s1(T")) = Q(T). Note that the con-
stant factor implied by th@ notation is in fact independent
of k.

[ |

3 Analysis of continuous skewed distribu-
tions

Our above analysis can easily be extended to show that
linear waste occurs when bins have size 1 and the items
are uniform over the real intervé), a], for a in the range
33/50 < a < 2/3. We believe this is the first non-trivial
probabilistic analysis of Best-Fit for the continuous case

determined in the open range lemma are greater than 0 fowhen the interval is other th&o, 1].

almost all steps, in which case we might h&g) = 0 for
almost every step. We can show that this is not the case

The result of Theorem 1 cannot be extended immediately
ask grows to infinity to yield the continuous case, since if

simply by showing that the area adjacent to the open rangeWe scale back the bin sizes in th{j, k} model so that all

guaranteed by the open range lemma must also be open
constant fraction of the time. Specifically, tet= 2/3 — a.

We show that all ok, j, si.—jy1, Sk—j4-;/2 @re simultane-
ously 0 for an expected constant fraction of the time steps.

Rins have size 1, Theorem 1 only says that the number of
bins with remaining capacity/k grows linearly. A more

careful argument avoids this, giving us waste that grows in-
dependent ok. Rather than extend the discrete case, how-

From this it is easy to conclude that an expected constantever, we simply outline the corresponding argument for the

fraction of the steps are short supersteps with) > 0,
since from a state wherg,_;, si—jy1,sk—j4j/2 are all

simultaneously 0 we achieve a state where exactly two non-

neighborings; in the range are non-zero in two time steps

continuous case.
We first note that the open range lemma that simplifies
our analysis has a continuous analog.



Lemma?2 Let1/2 < a < 2/3. Then when the bin capacity remaining capacity of a bin contributing tg , is at least

is 1 and the item sizes are drawn from (0, a], there can only the constand /-, this implies linear waste.

be one bin with remaining capacity in theinterval (1/3,1—

a). Theorem 2 Best Fit bin packing with item sizes chosen uni-
formly from the range [0, a] has linear waste, for 33/50 <

Moving from the discrete case to the continuous case re-q < 2/3.

quires some care. The primary difference is that for the con-

tinuous case, we consider the creation and deletion of bins4

with remaining capacityjé/~, d) for some suitably small

constanty and suitably large constant We call the num-

Conclusions and open problems

ber of such bins; .. Note that the choices @fand~ are We have shown linear waste for discrete distributions
dependent om. Also note that we consider bins with re- Of the formU{j, k}, wherej = ak for a in the range
maining capacity in the randé/~, §) rather tharfo, §), be- [0.66,2/3), and from this derived an argument for the con-

cause if we allow the lower bound to go to 0, we cannot tinuous cas&0, a] for a in the above range. Our analysis
give strong enough statements about the waste represente@ePends on a careful breakdown of the underlying Markov

by these bins. chain. Although we feel that the complexity of our argu-
We sketch the proof, which follows the same outline as ment is in fact necessitated by the complex behaviors of the
before, in that we use our analysis of a chalfy, A;, B;). system, it may be possible to simplify our argument sub-

Whereas before(, represented the number of ways to in- Stantially. . _
creases, , it should now represent the number of ways that  ONne open problem is to determine the extent of the range
s5.- can be increased. That is, suppose that there is a pirPf values for which our argument functions. Itis clear that
with remaining capacity < a+ 4, and no bin with remain- the rang€0.66,2/3) can be expanded, in both directions.
ing capacity in the range: — &, z). Then this bin represents Our currgnt argumgnt appears to work down to values of
a way thatss , can increase, as any incoming item in the ¢ (or a, in the continuous case) of almds65 = 13/20
range[z — 6,z — §/v) increases;,. Assuming without and could perhaps be improved further. Extending the range
loss of generality that all open bins have distinct remain- UPwards would be more delicate since Lemma 1 would no
ing capacitiesX; is simply the number of distinct values ~ longer apply. _ .
with this property at time. The valuesd; andB; then have It seems likely that our techniques might also apply to
similar meanings as in the discrete case. First Fit. It is conjectured that First Fit has linear waste on
We must change our definition of the stopping time as INPUt distributions(0, a] for a < 1 as well.
well. For example, in the discrete case we did not wish
to allow two bins with remaining capacitiésandi + 1 to References
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Appendix: Caseanalysis

The following presents part of our case analysis, for the
case wherd /4 < m < 1/3. Let the entering item have

weightwk, wherel < w < a. Recall thatX; is the number

of ways to increase; ; A; is 1if and only if there is a helpful
light bin, and 0 otherwiseB, is 1 if and only if there is an
unhelpful light bin, and 0 otherwise.

e Case1:4; =0,B; =0.

— If w < 1/4, no change.

—If 1/4 < w < 1/3, the adversary decides be-
tween setting\;, 1 to X; — 1 (if possible) or set-
ting By, to 1.

—f1/3<w<1—a

x If X; =0, SetBt+1 to 1.

= If X; > 0, the adversary decides between
settingX;,1 to X; — 1 or settingB;,1 to 1.

—fl-a<w<1/2:
x If Xy =0, setd;q to 1.

= If X; > 0, the adversary decides between
settingX;4+1 to X; — 1 or settingA;,1 to 1.

—If ]./2 <w<a, SetXt+1 to X; + 1.
e Case 2:4; = 1.

— If w < 1/4, no change.

—If 1/4 < w < 1/3, the adversary decides be-
tween setting\;;1 to X; — 1 (if possible) or set-
ting A1 to O (either increasing’; or not.)

- 1f1/3<w<1/2:

x If X; =0, setdqy; to 0, and adversary de-
cides whether to increasé; or not.

= If X; > 0, the adversary decides between
setting A1 to O (either increasind(;, or
not) and setting\;; to X; — 1.

—If 1/2 < w < «, the adversary decides between
settingX;41 to X; + 1 or settingA; to 0.
e Case 3.B; = 1.

— If w < 1/4, no change.

- If 1/4 < w < 1/3, the adversary decides be-
tween setting\;, 1 to X; — 1 (if possible) or set-
ting B; 1 to O (either increasing;, or not)

—1f1/3<w<1/2

x If X; =0, setB;y1 to 0, and adversary de-
cides whether to increasé; or not.

« If X; > 0, the adversary decides between
setting B;+1 to O (either increasind(;, or
not) and setting\;,; to X; — 1.

—If1/2<w < a, setByy; 10 0.

We require similar analysis for the following ranges of

m: 0 < m < 12/100, 12/100 < m < 22/100, and
22/100 < m < 25/100.



