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Abstract

We prove that Best Fit bin packing has linear waste on
the discrete distribution Ufj; kg (where items are drawn
uniformly from the set f1=k; 2=3; � � � ; j=kg) for sufficiently
large k when j = �k and 0:66 � � < 2=3. Our results
extend to continuous skewed distributions, where items are
drawn uniformly on [0; a], for 0:66 � a < 2=3. This im-
plies that the expected asymptotic performance ratio of Best
Fit is strictly greater than 1 for these distributions.

1 Introduction

1.1 Background and results

In the bin packing problem, one is given a sequence
Ln = a1; : : : ; an 2 (0; 1] of items and asked to pack them
into bins of unit capacity so as to minimize the number of
bins used. This problem is well known to be NP-hard, and
a vast literature has developed around the design and anal-
ysis of efficient approximation algorithms for it. The most
widely studied among these is the Best Fit algorithm, in
which the items are packed on-line, with each successive
item going into a partially filled bin with the smallest resid-
ual capacity large enough to accommodate it; if no such bin
exists, a new bin is started.

Best Fit was first analyzed in the worst case in 1974
in [7], where it was proved that the number of bins used
is always within a factor 1.7 of optimal, so that the asymp-
totic performance ratio of Best Fit is 1.7. For the uniform
distribution on[0; 1], the expected asymptotic performance
ratio of Best Fit is 1, and more precisely the expected waste
of Best Fit is�(n1=2 log3=4 n) [14, 10]. The waste is the
total unused space, i.e. the difference between the number
of bins used and the sum of the sizes of all the items.

�Part of this work was done while the author was visiting AT&T.
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To better understand Best Fit, researchers then turned
their attention to the skewed distributionsU(0; a) where
the item sizes are independent random variables uniform
over the interval[0; a] for somea strictly less than one.1

For these distributions, the optimal packing is perfect in the
sense thatlimn!1E(OPT (Ln)=(a1+a2+� � �+an)) = 1.
Therefore the expected asymptotic performance ratio of
Best Fit is strictly greater than 1 if and only if the waste
grows linearly in the number of items. Based on experi-
mental evidence, it was conjectured that for all skewed dis-
tributionsU(0; a) the growth of the waste was linear [5, 1].

The discrete distributionsUfj; kgwere introduced in [4]
in the hope of gaining insight into the continuous case.
Under distributionUfj; kg, items are drawn independently
and uniformly from the setf1=k; 2=k; : : : ; j=kg. The dis-
tributionsUfj; kg approximate the continuous distribution
U(0; a) if one setsj = ak and letsk go to infinity. Note that
Ufj; kg can equivalently be thought of as the bins having
capacityk and the item sizes being uniformly distributed
on the integersf1; : : : ; jg; we generally use this formula-
tion. Thanks to extensive experimental work [4, 6], sev-
eral extreme cases have been analyzed underUfj; kg: when
j = k � 1, the expected waste is�(n1=2 log k) [4]; when
j = k�2, the expected waste isO(1) [9] (a result which can
also be extended to First Fit [2]); and the expected waste is
alsoO(1) whenj � p

2k + 2:25� 1:5 [4]. The only case
where the expected waste of Best Fit was proven to be linear
was for the two distributionsUf8; 11g andUf9; 12g [6].
Unfortunately, none of these results gave any information
about the continuous distributionsU(0; a).

In this paper, we first study the discrete distributions
Ufj; kg and prove that Best Fit has linear waste whenk
is large enough and0:66k < j < (2=3)k. We then pro-
ceed to prove our main result: Best Fit has linear waste for
the continuous distributionsU(0; a) with 0:66 � a < 2=3.
This work therefore provides the first proof of linear waste
for Best Fit under skewed continuous distributions.

1Next Fit was analyzed underU(0; a) by Karmakar in 1982 [8] using
completely different techniques.
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1.2 Proof techniques

In the discrete case, as in most previous work, we view
the algorithm as a multi-dimensional Markov chain [6].
The states of the chain are non-negative integer vectors
s = (s1; : : : ; sk�1), wheresi represents the current num-
ber of open bins of residual capacityi. It is a simple matter
to write down the new vectors0 that results from the arrival
of any itemi 2 f1; : : : ; jg when in states. This defines
an infinite Markov chain onZk�1

+ . The expected waste of
Best Fit is directly related to the asymptotic behavior of this
chain, which we analyze in detail.

The first novel ingredient in this paper is Lemma 1, a
simple but crucial observation which we formulated after
examining detailed simulations: if the maximum item size
max is less than2=3 times the bin capacityc, then Best
Fit has at most one open bin with remaining capacity in the
range[c=3; c�max). Hence we focus on values ofj with
j < 2k=3.

At a high level, our approach is surprisingly simple. Our
goal is to show thats1, the number of bins of residual ca-
pacity1, grows linearly inn. For most configurations, the
next incoming item will on average tend to increases1 or
at least not decrease it. The only exceptions are configura-
tions with open bins of remaining capacity1; 2; : : : ;m, and
no bins of larger remaining capacity (up toj+1). Thanks to
Lemma 1, this impliesm � k=3. Intuitively, such config-
urations are then extremely short-lived, and inserting a few
more items then typically modifies them into configurations
in whichs1 is biased towards increasing. Thus the undesir-
able effects of these configurations should be amortized by
running the Markov chain forward in time for a few steps.

In practice, running the Markov chain forC steps, there
arejC possible sequences to analyze, which would be com-
putationally infeasible asj gets large. To get around this
problem, our detailed analysis partitions the configurations
into a constant number of groups. We then use stochastic
domination, i.e. take the worst case configuration within
each group. This worst case configuration is determined by
dynamic programming: we successively find the worst con-
figuration within each group given that there is one more
item to be inserted, and from that calculate the worst case
given that there are two more items to be inserted, and so
on. This use of dynamic programming is commonly used in
the analysis of Markov decision processes (see, e.g., [3, 12])
and has been used for contention resolution protocols [11];
as far as we know, this is the first time it has been applied to
stochastic bin-packing. Although the derived dynamic pro-
gram only has to deal with a constant number of cases, it
is too large to be processed manually and so we ended up
writing a computer program for it. The actual table filled in
by the program has tens of thousands of entries.

The continuous model follows the same general argu-

ment. The result for discrete distributions cannot be applied
directly to continuous distributions by simply lettingk go to
infinity, because when bin sizes are scaled to 1, our discrete
result shows thats1, the number of bins with remaining ca-
pacity1=k, grows linearly, but as1=k goes to 0 the contri-
bution to the waste is sublinear. Hence in the continuous
case, instead of studyings1, we focus on bins with remain-
ing capacity in the range(0; �] for some small constant�,
and suitably adapt the proof of the discrete case.

2 Analysis of discrete skewed distributions

2.1 The Markov chain

In this section we study the discrete distributionUfj; kg
where the bin capacity isk and items are picked uniformly
at random from the setf1; 2; : : : ; jg. We focus specifically
on the case wherej = �k for 33=50 < � < 2=3, and
we assume thatj andk are sufficiently large so that our
arguments hold throughout.

Let us first recall the associated Markov chain setting.
We shall denote the state of the system at timet by s(t) =
(s1(t); : : : ; sk�1(t)), wheresi(t) is the number of open
bins at timet with residual capacity exactlyi. Initially,
the state of the system iss(0) = (0; : : : ; 0), reflecting the
fact that there are no open bins. Let` be the size of the
next item inserted. Leti be the smallest index such that
i � ` andsi(t) > 0, if such exists: in this case, the algo-
rithm inserts item̀ into a bin with capacityi, so we have
si(t+1) = si(t)�1 and, ifi > `, si�`(t+1) = si�`(t)+1;
all other components ofs(t) are unchanged. If no suchi ex-
ists, then the algorithm inserts item̀into an empty bin, so
we havesk�`(t + 1) = sk�`(t) + 1 and all other compo-
nents ofs are unchanged. This completes the description of
the Markov chain.

2.2 The difficult configurations

Our attack for proving instability is straightforward: we
show thats1, the number of almost full bins, is biased up-
ward and hence tends to increase. LetXt denote the number
of ways to increases1 andYt 2 f0; 1g denote the number of
ways to decreases1. The values1 increases exactly when
an item of sizex is inserted and we havesx = 0; sx+1 6= 0,
and soXt is exactly the number of such pairs(sx; sx+1)
with x � j. At every time step, ifs1(t) = 0 we have
Yt = 0, and if s1(t) 6= 0 thenY (t) = 1: namely,s1 can
decrease only when an item of size 1 arrives. The only
situations wheres1 is biased downward are ifs1 has one
way to decrease and no way to increase, i.e. if for somem,
s1; s2; : : : ; sm 6= 0 andsm+1 = : : : = sk�j+1 = 0. We
call these configurations wheres1 is biased downwards dif-
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ficult configurations, as handling them is the challenge of
the problem.

The lemma below will enable us to conclude thatmmust
be less thank=3 in any difficult configuration.

2.3 The open range lemma

In this subsection, we demonstrate that one cannot have
more than one bin with remaining capacity within a rather
large range. We call the resulting lemma theopen range
lemma. The following fact is a classical basic property of
Best Fit.

Fact 1 Any two open bins with remaining capacities g and
g0 must have g + g0 < k.

Lemma 1 [Open range lemma] If the maximum item size
j is strictly less than 2k=3, then s k

3

+ : : :+ sk�j�1 � 1.

Proof: Note that initiallysk=3 + : : :+ sk�j�1 = 0. Hence
we need only show that whensk=3 + : : : + sk�j�1 = 1 it
cannot increase.

Consider any timetwhensk=3+: : :+sk�j�1 = 1 and let
i 2 fk=3; : : : ; k� j�1g be such thatsi = 1. Let i0 be such
thatk=3 � i0 � k� j� 1. How cansi0 increase? Note that
si0 cannot increase by having an item of sizek � i0 placed
into an empty bin, sincek � i0 is greater thanj, the largest
item size. Thus a bin with remaining capacityi0 can only
be introduced by adding some item of sizex to a bin which
already has a remaining capacity ofg, with g � x = i0.

Assume then that at timet there is one bin with remain-
ing capacityi and one with remaining capacityg. From
Fact 1, we havei+ g < k, so that

k � g > i � k=3: (1)

By definition the remaining capacityg must be larger than
i. Also, by the definition of Best Fit, itemx would have
been placed in the bin with remaining capacityi if it had fit
there, rather than in the bin with remaining capacityg. So
it must be thatx does not fit in remaining capacityi:

x > i � k=3: (2)

Now, by assumption

i0 � k

3
: (3)

Summing inequalities (1), (2), and (3) we obtaink � g +
x+ i0 > k, and hencei0 > g � x, a contradiction.

We reiterate that the open range lemma simplifies the
analysis, since it ensures that there is some well-defined
range of valuesi where most of the valuessi must be 0, and
hence that any difficult configuration must havem < k=3.

2.4 A stopping time framework

Recall that the difficult configurations are the ones such
that for somem < k=3, s1; s2; : : : ; sm 6= 0 andsm+1 =
: : : = sk�j+1 = 0. In these cases, we consider the evolu-
tion of the system over� steps for some randomstopping
time � , and will show that the expected number of ways for
s1 to increase is greater than 1 over these� steps. For con-
venience, imagine the process starting at time 0, with time
t corresponding to the moment after thetth item has been
inserted. The stopping time will correspond to one of the
following events:

1. Time stepC has been reached, for some fixed constant
C.

2. The coordinates1 increases or decreases.

3. The coordinatesm becomes 0.

4. The coordinatesm+1 becomes positive.

5. For somea > m, the coordinatesa becomes equal to
2.

6. For somea > m + 1, the coordinatessa and sa�1
become positive.

The idea of this stopping time is as follows: we run the
chain for at mostC steps, or until some other (unlikely)
event occurs. Ifs1 is more likely to increase than decrease
over the interval corresponding to the stopping time, then
we can “collapse” the steps of the process until the stopping
time into a single long superstep. Thens1 is either unbiased
or biased upwards over any normal step or any superstep of
the chain, and this is sufficient to prove instability.

We include certain events in the stopping time that would
affect our analysis. In particular, in our analysis, we con-
sider that the number of ways fors1 to increase is exactly
sm+1 + sm+2 + : : : + sj+1; thus we assume that when-
ever somesa for k=2 > a > m becomes non-zero then
it becomes 1, and that it corresponds to a “useful gap” for
us (i.e. an entering item of sizea � 1 will causes1 to in-
crease). This fails to be true if bothsa andsa�1 become
positive, or if sa becomes 2. Rather than complicate our
analysis further, we essentially remove these “edge effects”
from analysis by introducing these events into the stopping
time. As these events occur with very small (constant) prob-
ability (for large enough values ofk compared toC) they
will not affect our argument, as we explain, and so we will
generally dismiss them in subsequent analysis.

We wish to show that the probability thats1 increases
over the interval of� steps is greater than the probability
thats1 decreases. We now introduce another simplification.
Let Xt be a random variable representing the number of
ways fors1 to increase at timet for t 2 [0; C). Then, up to
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lower order terms, the difference from the probability that
s1 increases to the probability thats1 decreases is at least

�
E
hPC�1

t=0 Xt=C j state at time0
i
� 1

�
j

:

Intuitively, the above formula shows that we can just count
the number of wayss1 can increase at each step and subtract
the number of wayss1 can decrease at each step overC
steps in order to compute difference in the probability that
s1 increases rather than decreases over an interval that ends
at a stopping time. Of course this calculation is not exact,
since for example the stopping time might be reached before
C steps. However, because the probability that an event of
type 2; 3; 4; 5; or 6 occurs overC steps isO(1=j) (where
the constant factor depends onC), it can be checked that
the above expectation differs from the proper difference by
anO(1=j2) lower order term. Hence, for our purposes, the
above expression gives the proper bound.

From our definition of the stopping time, which excludes
problematic events, it is easy to see thatXt, the number of
ways fors1 to increase, at each time step in this range is
equal tosm+1 + : : : + sj+1, and thus we are reduced to
analyzing this simple expression. We therefore show that
there exists an integer constantsC > 0 and a real constant
� > 0 (independent ofk) such that for sufficiently largek,

E

"PC�1
t=0 sm+1(t)+: : :+sj+1(t)

C
j state at time0

#
> 1+�:

(4)
Note that we require that the right hand side be greater than
1 + � so as to absorb the error term introduced by our ap-
proximations due to the stopping time. Hence, we show that
up to amortizing slightly over time, the bin-packing proce-
dure is more likely to increases1 than decrease it when it
begins in a difficult configuration. We then show that this
implies thats1 must have a slight bias toward increasing
over all steps; from this we conclude thats1 and hence the
waste grow linearly in the number of itemsn.

2.5 The analysis starting from a difficult configu-
ration

We assume thatj = �k for � 2 (33=50; 2=3). We begin
in a state wheres1; s2; : : : ; sm 6= 0 andsm+1 = : : : =
sj+1 = 0. In this states1 has no possibility to increase.
Note that proving (4) will imply that for sufficiently large
k the values1 diverges to infinity. Our proof is based on
stochastic domination.

2.5.1 Using stochastic domination: a nonrigorous ex-
ample

We first present an example of a simplified and nonrigor-
ous analysis, which demonstrates how we attack the under-
lying Markov chain. For our simplified analysis, we will
ignore the effect of non-empty bins with remaining capac-
ity at leastk=2. That is, we assume the number of such
bins is 0 throughout. As we describe subsequently, such
mostly empty bins complicate the analysis. Take the exam-
ple wherek�j � m � k=4. At every step, there arej = k�
possibilities for the item arriving. Out of these possibilities,
Xt has at leastj � k=2 = k(2� � 1)=2 ways of increas-
ing, corresponding to insertions of itemsk=2; k=2+1; : : : ; j
(this is because of our assumption that there are never bins
more than half empty). On the other hand, sincesm stays
positiveXt has at mostk=2 � m ways of decreasing if it
is non-zero and no way of decreasing if it is equal to 0. It
is worth also noting thatXt has at mostmXt ways to de-
crease in general, since for bin than contributes toXt, there
are onlym possible items that could enter and reduce its
residual capacity to something less thanm. (For this range
ofm, however, the bound ofk=2�m is better.) We now use
stochastic domination. Following standard definitions (see,
e.g. [13]) we say thatX stochastically dominatesY and
writeX � Y if Pr(X > u) � Pr(Y > u) for all real values
u. Intuitively,X is more likely to take on larger values than
Y . It is simple to show (say via induction) thatXt � Zt,
where

Z0 = 0

Zt+1 =

8<
:

Zt + 1 w.p. k(2��1)2k� ;

Zt � 1 w.p. (k=2�m)
k� if Zt 6= 0; 0 otherwise,

Zt with all remaining probability.

It is easily checked that the probability ofZt increasing is
smallest and the probability ofZt decreasing is largest for
the smallest value of�, � = 33=50, and the smallest value
of m,m = k=4. That is,Xt � Zt, where

Z0 = 0

Zt+1 =

8<
:

Zt + 1 w.p. 8=33;
Zt � 1 w.p. 25=66 if Zt 6= 0; 0 otherwise,
Zt with all remaining probability.

We check by explicit calculation thatE((Z0 + Z1 + : : : +
ZC�1)=C) > 1 for a small constantC. (For C = 30,
E((Z0+Z1+ : : :+ZC�1)=C) � 1:007; by calculating the
stationary distribution, we see that asC gets large,E((Z0+
Z1 + : : : + ZC�1)=C) approaches169 .) Hence, sinceX
stochastically dominatesZ, we have for a small constantC
that

E((X0+: : :+XC�1)=C) � E((Z0+: : :+ZC�1)=C) > 1:
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We can continue by breaking down the process into a fi-
nite number of similar cases, covering the entire range ofm.
(For example, we could take the cases0 � m � k=8 and
k=8 � m � k=4.) In each case, we can bound the proba-
bility of Xt increasing and decreasing, so as to find a domi-
nating simple one-dimensional random walk. It is therefore
easy to check each specific case, simply by determining the
distribution ofZt over a reasonably small number of steps.

2.5.2 The important parameters describing a configu-
ration

The above analysis captures the fundamental flavor of our
argument: simplify the high-level behavior of the Markov
process according to the number of ways thats1 can in-
crease, and consider this behavior over a small number of
steps. Unfortunately, the analysis above fails to take into
consideration the behavior of the process when “mostly
empty” bins arise. That is, it ignores possibilities when
si > 0 for i � k=2.

To see that these cases have an important impact, con-
sider the case wherej = 0:34k, andm = 0:32k, and
s0:64k = 1. In this case it is impossible for any of
sm+1; sm+2; : : : ; sk=2 to increase on the next step. Thus it
is important to keep track of the presence of bins of remain-
ing capacity greater thank=2. The following fact, easily
derived from Fact 1, proves fundamental:

Fact 2 There can be only one open bin with remaining ca-
pacity at least k=2.

Let us call a non-empty bin with remaining capacity at
leastk=2 a light bin. Fact 2 says there is at most one light
bin. Hence we can consider two kinds of states: those with
a light bin, and those without. In fact, we refine our anal-
ysis further, to three kinds of states, by dividing states with
a light bin into two subtypes. Let us call a light binhelp-
ful if its remaining capacity is at mostj + 1. A helpful
light bin can immediately lead to an increase ins1, if an ap-
propriately sized item arrives. Similarly we call a light bin
unhelpful if its remaining capacity is greater thanj + 1.

We may now represent the state of our bin-packing pro-
cess by a triple(Xt; At; Bt), whereXt is again the number
of ways fors1 to increase at timet,At is a 0/1 random vari-
able representing whether or not there is a light helpful bin,
andBt is a 0/1 random variable representing whether or not
there is a light unhelpful bin. Note that whenAt = 1, we
must have thatX(t) � 1, since by definition a helpful light
bin provides one way fors1 to increase.

2.5.3 The dynamic program

We then use a computer program to assist in computing
successive lower bounds for the value of the expression

Ec = E(
Pc�1

t=0 Xt=c j state at time0) until we find a suf-
ficiently largeC so thatEC > 1 + �. The interesting point
of our calculation is that in ambiguous situations we use a
worst-case analysis, similar in spirit to allowing an oblivi-
ous adversary some limited power in deciding the flow of
the process. For example, supposeAt = 1, and an item
of size in the range[0:5k; j] arrives. Such an item could
be placed in the light bin; alternatively, such an item may
prove too large for the light bin, and instead causeXt to in-
crease. The effect of the item depends on the exact residual
capacity of the light bin and the value of the entering item;
however, we have failed to include the capacity of the light
bin in our state.

In such ambiguous situations we can computeEt+1 from
Et by taking the worst-case possibility forEt. This simpli-
fies our case analysis, in that we need not try to distinguish
further subcases whenAt = 1; however, it complicates it,
in that we must consider several various possibilities at each
step. This makes any direct analysis very complicated, re-
quiring us to use computer analysis.

Finally, note that we must apply this analysis over the
space of all(m;�) pairs, but we may wish to break up this
space into several cases, as we did in Section 2.5.1. We
suggest the approach we have taken. Suppose one focuses
on a specific value of� (such as� = 33=50), and proves
EC > 1 + � by splitting up the possible values ofm over a
small number of ranges. We claim that then there are small
constants�; �0 > 0 such thatEC > 1 + �0 for �0 2 [� �
�; � + �]. This is because with very high probability, the
Markov chain will behave the same overC steps regardless
of whetherj = �k or j = �0k; the small probability that
the two behave differently is absorbed in the�; �0. Hence
it suffices to try a sufficiently dense subset of� values in
the range[33=50; 2=3), and by the “continuity” implied by
the above argument, we may concludeEC > 1 + � for a
suitable� everywhere in the interval.

The list of cases is substantial enough that we do not in-
clude it in this extended abstract. (A sample case is included
in the appendix.) Luckily we have found that calculating up
to E100 is sufficient. (Indeed, the worst case appears to be
the lower end of the interval,33=50; we cannot expand the
range beyond2=3 simply because the open range lemma
ceases to apply.) Hence our calculations, when aided by a
machine, are actually relatively straightforward.

We note that we have chosen the barrier33=50 for conve-
nience, and we have not tried to determine the exact range
for which the argument holds. It appears that additional
work detailing the cases would be required, however, to ex-
tend the lower bound of the range below0:65 = 13=20.
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2.6 Wrapping up the proof

Note that showingE
hPC�1

t=0
Xt

C j state at time0
i

>

1 + � immediately proves that the waste forUfj; kg di-
verges. We now prove that, given that we have shown that

E
hPC�1

t=0
Xt

C j state at time0
i
> 1+�, then for sufficiently

largek, the waste forUfj; kg grows linearly.

Theorem 1 The number of s1 bins for Best Fit bin pack-
ing under the discrete distribution Ufj; kg, 33k=50 < j <
2k=3, grows linearly in n for sufficiently large k.

Proof: Let Yt be the indicator function of the event
s1(t) 6= 0, and defineZ(t) = Xt � Yt. The distribution
of s1(t) given the state at timet� 1 is:

s1(t) =

�
s1(t� 1) + 1 w.p.Xt�1=j
s1(t� 1)� 1 w.p. Yt�1=j:

ThusE(s1(t) j state att� 1) = s1(t� 1) + Z(t� 1), and
summing givesE(s1(T )) = E(

PT�1
0 Z(t)).

We always haveZ(t) � �1. The “bad” configurations
are exactly the ones for whichZ(t) = �1. Consider run-
ning the chain forn steps, and divide time intosupersteps.
A superstep is simply a normal step of the chain, except in
the case where we reach a state whereZ(t) = �1. In this
case all the steps from this point until the stopping time are
combined into a superstep; in fact, we call this along su-
perstep. Every short superstep hasZ(t) � 0 and every long
superstep hasE(

P
t2 superstepZ(t)) > 0.

To show linear waste, we note the following: there will
be linear waste overn steps as long as there are (on average)
� cn short supersteps which haveZ(t) > 0, or as long as
there are (on average)� cn long supersteps. Note that this
is equivalent to saying that there are at leastc0n steps with
Z(t) > 0, as each such step is either an appropriate short
superstep or falls in a long superstep (of constant size).

Hence we must show thatZ(t) > 0 for a constant frac-
tion of the steps, on average. This may appear obvious;
however, a priori it is possible that all of thesi except those
determined in the open range lemma are greater than 0 for
almost all steps, in which case we might haveZ(t) = 0 for
almost every step. We can show that this is not the case,
simply by showing that the area adjacent to the open range
guaranteed by the open range lemma must also be open a
constant fraction of the time. Specifically, let
 = 2=3� �.
We show that all ofsk�j ; sk�j+1; sk�j+
j=2 are simultane-
ously 0 for an expected constant fraction of the time steps.
From this it is easy to conclude that an expected constant
fraction of the steps are short supersteps withZ(t) > 0,
since from a state wheresk�j ; sk�j+1; sk�j+
j=2 are all
simultaneously 0 we achieve a state where exactly two non-
neighboringsi in the range are non-zero in two time steps

with constant probability. In fact the probability is approx-
imately 
2=4; we simply need the immediate insertion of
two items into empty bins that yield bins with remaining
capacity in this range.

To show that all ofsk�j ; sk�j+1; sk�j+
j=2 are si-
multaneously 0 for an expected constant fraction of the
time steps, we show thatS = sk�j + sk�j+1 : : : +
sk�j+
j=2 is stochastically dominated by a random walk
that is biased downward. This follows since when the range
sk=3+
=4; : : : ; sk�j�1 are all 0, there are at most
j=2 en-
tering item sizes that increaseS whenS 6= 0, corresponding
to when items are placed into empty bins. No other items
can increaseS, by the same logic as the open range lemma.
Of course, at least3
j=4 possible item sizes decreaseS;
namely, any item size in the range[k=3 + 
=4; k � j � 1].
(Note there may be at most one non-zero entry in the
rangesk=3+
=4; : : : ; sk�j�1, by Lemma 1, in which case
we do not know that3
j=4 possible entering item sizes
decreaseS. However, it is easy to show that this non-
zero entry disappears after an expected constant number
of steps, and no such non-zero entry can return as long as
sk�j + sk�j+1 : : : + sk�j+
j=2 > 0; hence it has a trivial
effect on the argument.)

Hence we either have that some constant fraction of
the supersteps are going to be short supersteps such that
Z(t) > 0, or a constant fraction of the supersteps are long
supersteps, and soE(s1(T )) = 
(T ). Note that the con-
stant factor implied by the
 notation is in fact independent
of k.

3 Analysis of continuous skewed distribu-
tions

Our above analysis can easily be extended to show that
linear waste occurs when bins have size 1 and the items
are uniform over the real interval(0; a], for a in the range
33=50 � a < 2=3. We believe this is the first non-trivial
probabilistic analysis of Best-Fit for the continuous case
when the interval is other than(0; 1].

The result of Theorem 1 cannot be extended immediately
ask grows to infinity to yield the continuous case, since if
we scale back the bin sizes in theUfj; kg model so that all
bins have size 1, Theorem 1 only says that the number of
bins with remaining capacity1=k grows linearly. A more
careful argument avoids this, giving us waste that grows in-
dependent ofk. Rather than extend the discrete case, how-
ever, we simply outline the corresponding argument for the
continuous case.

We first note that the open range lemma that simplifies
our analysis has a continuous analog.
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Lemma 2 Let 1=2 < a < 2=3. Then when the bin capacity
is 1 and the item sizes are drawn from (0; a], there can only
be one bin with remaining capacity in the interval (1=3; 1�
a).

Moving from the discrete case to the continuous case re-
quires some care. The primary difference is that for the con-
tinuous case, we consider the creation and deletion of bins
with remaining capacity[�=
; �) for some suitably small
constant� and suitably large constant
. We call the num-
ber of such binss�;
 . Note that the choices of� and
 are
dependent ona. Also note that we consider bins with re-
maining capacity in the range[�=
; �) rather than[0; �), be-
cause if we allow the lower bound to go to 0, we cannot
give strong enough statements about the waste represented
by these bins.

We sketch the proof, which follows the same outline as
before, in that we use our analysis of a chain(Xt; At; Bt).
Whereas beforeXt represented the number of ways to in-
creases1, it should now represent the number of ways that
s�;
 can be increased. That is, suppose that there is a bin
with remaining capacityx < a+�, and no bin with remain-
ing capacity in the range[x��; x). Then this bin represents
a way thats�;
 can increase, as any incoming item in the
range[x � �; x � �=
) increasess�;
 . Assuming without
loss of generality that all open bins have distinct remain-
ing capacities,Xt is simply the number of distinct valuesx
with this property at timet. The valuesAt andBt then have
similar meanings as in the discrete case.

We must change our definition of the stopping time as
well. For example, in the discrete case we did not wish
to allow two bins with remaining capacitiesi andi + 1 to
both count forXt, and we introduced a stopping time to
prevent such an event. We do the equivalent here; should
we introduce over multiple steps of the process two bins
with remaining capacitiesx andx + � for � < � that could
count forXt, the event signals the stopping time.

Given these modifications, we can show with the
same argument as in the discrete case that even when
Xt = 0, over the nextC steps we haveEC =

E
hPC�1

t=0
X(t)
C j state at time 0

i
> 1 + �0 for some con-

stants�0 andC. Indeed, we may use the same dynamic
programming formulation as in the discrete case, where the
evolution of(Xt; At; Bt) is analyzed independent ofk; by
making� sufficiently small and
 sufficiently large, the ef-
fect on the analysis can be made arbitrarily small. As be-
fore, the constant�0 also handles any problems introduced
by using stopping times.

We may conclude that the rate at which bins with re-
maining capacity in the range[�=
; �) are created is slightly
larger (by a small constant factor) than the rate at which
they disappear. Hence the rate at whichs�;
 increases is
slightly larger than the rate at which it decreases. Since the

remaining capacity of a bin contributing tos�;
 is at least
the constant�=
, this implies linear waste.

Theorem 2 Best Fit bin packing with item sizes chosen uni-
formly from the range [0; a] has linear waste, for 33=50 �
a < 2=3.

4 Conclusions and open problems

We have shown linear waste for discrete distributions
of the formUfj; kg, wherej = �k for � in the range
[0:66; 2=3), and from this derived an argument for the con-
tinuous case(0; a] for a in the above range. Our analysis
depends on a careful breakdown of the underlying Markov
chain. Although we feel that the complexity of our argu-
ment is in fact necessitated by the complex behaviors of the
system, it may be possible to simplify our argument sub-
stantially.

One open problem is to determine the extent of the range
of values for which our argument functions. It is clear that
the range[0:66; 2=3) can be expanded, in both directions.
Our current argument appears to work down to values of
� (or a, in the continuous case) of almost0:65 = 13=20
and could perhaps be improved further. Extending the range
upwards would be more delicate since Lemma 1 would no
longer apply.

It seems likely that our techniques might also apply to
First Fit. It is conjectured that First Fit has linear waste on
input distributions[0; a] for a < 1 as well.
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Appendix: Case analysis

The following presents part of our case analysis, for the
case where1=4 � m � 1=3. Let the entering item have
weightwk, where0 � w � �. Recall thatXt is the number
of ways to increases1;At is 1 if and only if there is a helpful
light bin, and 0 otherwise;Bt is 1 if and only if there is an
unhelpful light bin, and 0 otherwise.

� Case 1:At = 0; Bt = 0.

– If w � 1=4, no change.

– If 1=4 � w � 1=3, the adversary decides be-
tween settingXt+1 toXt� 1 (if possible) or set-
tingBt+1 to 1.

– If 1=3 � w � 1� �:

� If Xt = 0, setBt+1 to 1.
� If Xt > 0, the adversary decides between

settingXt+1 toXt � 1 or settingBt+1 to 1.

– If 1� � � w � 1=2:

� If Xt = 0, setAt+1 to 1.

� If Xt > 0, the adversary decides between
settingXt+1 toXt � 1 or settingAt+1 to 1.

– If 1=2 � w � �, setXt+1 toXt + 1.

� Case 2:At = 1.

– If w � 1=4, no change.

– If 1=4 � w � 1=3, the adversary decides be-
tween settingXt+1 toXt� 1 (if possible) or set-
tingAt+1 to 0 (either increasingXt or not.)

– If 1=3 � w � 1=2:

� If Xt = 0, setAt+1 to 0, and adversary de-
cides whether to increaseXt or not.

� If Xt > 0, the adversary decides between
settingAt+1 to 0 (either increasingXt, or
not) and settingXt+1 toXt � 1.

– If 1=2 � w � �, the adversary decides between
settingXt+1 toXt + 1 or settingAt to 0.

� Case 3:Bt = 1.

– If w � 1=4, no change.

– If 1=4 � w � 1=3, the adversary decides be-
tween settingXt+1 toXt� 1 (if possible) or set-
tingBt+1 to 0 (either increasingXt, or not)

– If 1=3 � w � 1=2

� If Xt = 0, setBt+1 to 0, and adversary de-
cides whether to increaseXt or not.

� If Xt > 0, the adversary decides between
settingBt+1 to 0 (either increasingXt, or
not) and settingXt+1 toXt � 1.

– If 1=2 � w � �, setBt+1 to 0.

We require similar analysis for the following ranges of
m: 0 � m � 12=100, 12=100 � m � 22=100, and
22=100 � m � 25=100.
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