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Abstract

In this paper we examine the theoretical limits on developing algo-

rithms to �nd blocking probabilities in a general loss network. We demon-

strate that exactly computing the blocking probabilities of a loss network

is a #P-complete problem. We also show that a general algorithm for ap-

proximating the blocking probabilities is also intractable unless RP=NP,

which seems unlikely according to current common notions in complex-

ity theory. Given these results, we examine implications for designing

practical algorithms for �nding blocking probabilities in special cases.

1 Introduction

Loss networks are a powerful model for computer and telecommunications net-
works with limited resources. One aspect of the model is that customers can be
turned away, or blocked, if resources are already being used to capacity. It is of
great practical signi�cance to know the probability that a customer is blocked.
As customers can be of di�erent types, depending upon the resources they wish
to choose, these probabilities are collectively referred to as the blocking probabil-
ities of the network. There exist explicit formulae for blocking probabilities, but
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nevertheless they seem di�cult to calculate, and much e�ort has been directed
at �nding approximations and asymptotic results.

In this paper, we examine the theoretical limits on developing algorithms to
�nd blocking probabilities in a general loss network. In particular, we demon-
strate that exactly computing the blocking probabilities of a loss network is a
#P-complete problem. Since the #P-complete problems are at least as hard as
NP-complete problems and in fact appear much harder, a polynomial time al-
gorithm to �nd blocking probabilities becomes extremely unlikely. One natural
reaction to this result would be to consider algorithms which only approximate
the blocking probabilities instead of determining them exactly. We also show,
however, that a general algorithm for approximating the blocking probabilities
is also intractable unless RP=NP. Given these results, we examine the impli-
cations for designing practical algorithms for �nding blocking probabilities for
loss networks in special cases.

In many respects loss networks resemble the Ising model of statistical me-
chanics. Our work in this paper has been partly motivated by the important
recent paper of Jerrum and Sinclair ([10], see also the review [28]), who have pre-
sented an e�cient randomized algorithm to approximate the partition function
of an arbitrary ferromagnetic Ising model to any speci�ed degree of accuracy,
even though the exact calculation is a #P-complete problem. It seems, however,
that a loss network resembles the non-ferromagnetic, or `spin-glass', case of the
Ising model, where Jerrum and Sinclair have shown that even approximation is
di�cult.

2 A loss network model

We begin by de�ning the model of a loss network. Here we primarily follow the
description given by Kelly in [15], which provides an introduction to the theory
of loss networks and an overview of recent work on the subject. Our description
is based on the canonical example of a loss network, a telephone network.

Consider a network of nodes connected by links labelled j = 1; 2; : : : ; J . Link
j holds Cj circuits, where Cj 2 Z+, the non-negative integers. A route is de�ned
by a subset of links; the routes are labelled r = 1; 2; : : : ; R. Notice here that
we do not restrict routes to be connected paths in the graph representing the
network; as we shall see, however, our results hold even in this restricted case.
A call on route r requires Ajr circuits from link j, where again Ajr 2 Z+. It is
assumed that customers requesting route r arrive as a Poisson stream with rate
�r, and that the streams for the various routes are independent. An arriving
call requesting route r is accepted only if at the time of arrival there are at least
Ajr circuits available on each link j for j = 1; 2; : : : ; J . An accepted call holds
those circuits simultaneously and exclusively for the duration of the call, which
is independent of earlier arrival times and call durations. Assume also that calls
on route r have identically distributed call durations with unit mean. If a call
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is not accepted, it is lost; the caller neither queues for service nor retries later.
We let nr(t) be the number of calls in progress using route r at time t. We

also de�ne the column vectors n(t) = (nr(t) : r = 1; : : : ; R) andC = (Cj : j = 1; : : : ; J)
and the matrix A = (Ajr : j = 1; : : : ; J; r = 1; : : : ; R). Then the stochastic pro-
cess (n(t); t � 0) has a unique stationary distribution and under this distribution
�(n) = P(n(t) = n) is given by

�(n) = G(C)�1
RY
r=1

�nrr
nr!

; n 2 S(C);(1)

where

S(C) = fn 2 ZR+ : An � Cg(2)

and G(C) is the normalizing constant or partition function

G(C) =

� X
n2S(C)

RY
r=1

�nrr
nr !

�
:(3)

This result is easy to verify in the case when call distributions are exponen-
tially distributed by noting that the distribution �(n) given in (1) satis�es the
detailed balance conditions

�(n) � �r = �(n+ er) � (nr + 1); n; n+ er 2 S(C);

where er = (I[r0 = r]; r0 = 1; : : : ; R) is a unit vector corresponding to one call
on route r (cf. [1]). The insensitivity of the distribution given in (1) to call
duration distributions can be deduced from the work of Kelly [13] on general
arrival rates to networks of quasi-reversible queues, or by direct application of
results from the theory of generalized semi-Markov processes [2].

This model can be used naturally to model connections across a circuit-
switched communication network, such as a telephone network system. The
de�ning parameters of the system, however, are simply the matrix A, the ca-
pacity vector C, and the arrival rates �r. The freedom available in choosing the
link-route matrix A makes this class of model applicable to other problems as
well, such as database locking systems, local area networks, multiprocessor in-
terconnection architectures, mobile radio, and broadband packet networks (see
[8, 14, 16, 18, 19, 21, 23]).

Notice that the stationary probability that a call requesting route r is blocked,
which we will write as Lr, can be written in terms of the partition function, as

Lr = 1�
X

n2S(C�Aer)

�(n);

from which we can derive

Lr = 1� G(C �Aer)G(C)
�1:(4)
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The explicit simple forms for the equilibrium distribution and the partition
function would seem to suggest that we have found a complete solution to this
problem. However, computing the partition function, G(C), directly is quite
di�cult, since it requires summing over the state space S(C), which, as (2)
demonstrates, may grow rapidly with the number of routes or with the capacities
of links. Various more re�ned methods have been proposed, and will be brie
y
discussed in Section 7, but all require an e�ort which grows quickly with the size
of the network. We will demonstrate that computing G(C) is in fact di�cult
in a well-de�ned sense; moreover, we shall see that a fundamental problem in
computing G(C) comes from the di�culty in computing the vectors that lie in
the state space S(C). Using this, we will show that computing the blocking
probabilities is #P-complete.

3 The Loss Partition Problem

Surprisingly, the reason that computing the partition function is intrinsically
di�cult need not have anything to do with the practical problems of computing
with real numbers or the rapid growth of the state space S(C) when the links
are given large capacities. Although these features of the problem do complicate
it, by examining the problem in the restricted case where all capacities are 1 and
the arrival rates are uniform and integer-valued, we can show that even when
these issues are disregarded the problem remains for all intents and purposes
intractable. Of course, the problem of computing the partition function in
general is at least as hard as it is in this special case, so our results provide a
lower bound on the worst-case complexity of the problem.

We formalize the notion of the problem of computing the partition function
of a loss network, in the case where there is a uniform arrival rate and link
capacities are 1, by de�ning the following problem:

Loss Partition

INSTANCE: A matrix A = (Ajr : j = 1; : : : ; J; r = 1; : : : ; R) with entries in
f0,1g and a natural number �.

QUESTION: What is the partition function

G = G(A; �) =
X

n2f0;1gR

I[An � 1]
RY
r=1

�nr:(5)

In both the above and the following we often abuse notation by using 1 to
refer to the column vector whose entries are all 1 when the context makes the
meaning clear. Notice that the instance of a Loss Partition problem corresponds
to �nding the partition function given in (3) of a loss network where all link
capacities are 1 and all arrival rates are �. Also, as the arrival rate is uniform
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across all routes, it is possible to write the partition function as

G =
RX
k=0

Nk�
k;

where
Nk =

X
n2f0;1gR

I[An � 1]I[1Tn = k]

is the number of feasible con�gurations with exactly k calls in progress.
We will show that Loss Partition is #P-complete. Recall that a function

is in #P if it can be computed by a counting Turing machine of polynomial
time complexity [27]. More intuitively, we call a problem in which one wishes to
�nd the number of distinct solutions an enumeration problem. An enumeration
problem lies in #P if there is a nondeterministic polynomial time algorithm such
that for each instance of the problem, the number of distinct nondeterministic
computations that lead to the acceptance of the instance is exactly the number
of distinct solutions to the problem. Similarly, a problem is #P-complete if it
is in #P and any other problem in #P can be reduced to it in polynomial time.
The extensions of most NP-complete problems to enumeration problems can be
shown to be #P-complete using parsimonious transformations [5].

To show that Loss Partition is #P complete, we �rst show that it lies in #P.

Theorem 1 Loss Partition is in #P.

Proof: Consider the nondeterministic Turing machine which, on being given
an instance of Loss Partition, nondeterministically chooses a column vector
n 2 f0; 1gR and a number from 1 to �mn , where mn is the number of ones in
the vector n. The Turing machines accepts if An � 1 and rejects otherwise.
All of this can clearly be accomplished in time polynomial in the input. The
number of accepting computations is

X
n2f0;1gR

I(An � 1)�mn =
X

n2f0;1gR

I(An � 1)
RY
r=1

�nr :

The �nal expression is just the partition function as given in (5). Thus Loss
Partition lies in the class #P. 2

To show that Loss Partition is #P-complete, we consider the following NP-
complete and #P-complete problems.

Set Packing

INSTANCE: A collection C of �nite sets and a positive integer K � jCj:

QUESTION: Does C contain a subcollection of at least K mutually disjoint
sets?
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#Set Packing

INSTANCE: A collection C of �nite sets and a positive integer K � jCj:

QUESTION: How many subcollections of at least K mutually disjoint sets does
C contain?

These problems can be shown to be NP-complete and #P-complete respec-
tively by reducing to them one of several similar problems, including Indepen-
dent Set and #Independent Set [5]. Notice that in a capacity one loss network,
two routes must be disjoint in order for there to be a feasible con�guration with
a call on each route. Thus there seems to be an intuitive connection between
loss networks and the Set Packing problem. We make this intuition explicit in
the theorem below.

Theorem 2 Loss Partition is #P-complete.

Proof: We have shown in Theorem 1 that Loss Partition is in #P. We now
present a polynomial time reduction from#Set Packing to Loss Partition, which
su�ces to prove the theorem.

Let C and K be an instance of #Set Packing. Without loss of generality,
we may suppose the elements of the sets in C are simply the integers from 1 to
J for some J and that the sets in the collection C are distinct. We can create
in polynomial time an instance of Loss Partition corresponding to C as follows.
Let R = jCj and associate a route with each set in C. The links correspond
to the integers 1 to J which are elements of the sets of C. The matrix A is
determined by letting Ajr be 1 if j is an element of the rth route (set) in C
and 0 otherwise. Together with an integer � this de�nes an instance of Loss
Partition.

The output of Loss Partition is the partition function

G =
RX
k=0

Nk�
k:

Recall that Nk is just the number of distinct feasible con�gurations having
exactly k calls in progress. But for each such feasible con�guration there is a
corresponding subcollection of k disjoint sets of C. Moreover, there are certainly
at most 2R such subcollections of size k, since there are only 2R subcollections
in total.

Now take the instance of Loss Partition described above with � = 22R: The
output can be thought of as an integer in base 2R, and the Nk are simply the
digits of this number. Thus the Nk can be found by repeatedly dividing by
22R and looking at the remainders. Knowing the Nk allows one to computePR

k=K Nk, which solves the instance of #Set Packing. Given an algorithm for
Loss Partition, this computation can be done in polynomial time. 2
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The above proof of Theorem 1 uses an arrival rate � exponential in R.
Alternatively, one could note that G is a polynomial of degree R in � with
coe�cients Nk. A polynomial algorithm for Loss Partition would allow one to
�nd the value of the polynomial when � = 1; 2; : : : ; R + 1. Using these R + 1
values, one can compute the Nk e�ciently. Indeed one could even use R + 1
distinct rational values of �, if Loss Partition were de�ned more generally to
allow rational as well as integer arrival rates (see, for example, [27], fact 5).

One complaint that might be o�ered concerning the above result is that
the routes described in the theorem may not correspond with connected paths
in a graph, as might be expected in many application areas. However, it is
a relatively simple exercise to extend the above argument to show that Loss
Partition is #P-complete even if one restricts the problem to the case where all
routes are connected paths.

Theorem 3 Loss Partition is #P-complete in the restricted case where all
routes are connected paths.

Proof: As in the above problem, we reduce from #Set Packing. Given an
instance of #Set Packing, we create an instance of Loss Partition de�ned by
a graph such that each set corresponds to one route in the graph, two routes
share a link if and only if their corresponding sets intersect, and all routes are
connected paths in the graph.

Again let R = jCj. The graph for the Loss Partition instance consists of
vertices

V = fvi;j : 1 � i � R; 1 � j � R+ 1g [ fwfi;jg;k : 1 � i < j � R; 1 � k � 2g:

We identify the vertex wfi;jg;k with the vertex wfj;ig;k when j > i, so each such
vertex has two equivalent labels. The edges of the graph are

E = f(vi;j; vi;j+1) : 1 � i; j � Rg [ f(vi;j; wfi;jg;1) : 1 � i; j � R; i 6= jg[
f(wfi;jg;1; wfi;jg;2) : 1 � i < j � Rg [ f(wfi;jg;2; vi;j+1) : 1 � i; j � R; i 6= jg:

The links of the loss network correspond to the edges.
Intuitively, we describe the routes as follows. For the ith set in C there

corresponds a route which is a path from vi;1 to vi;R+1. The route will contain
the edge (vi;j; vi;j+1) unless the ith and jth set have a non-empty intersection
(where, for convenience, we say that a set does not intersect itself); in this
case, the route detours through the edges (vi;j; wfi;jg;1); (wfi;jg;1; wfi;jg;2); and
(wfi;jg;2; vi;j+1). It is clear that the routes corresponding to the ith and jth set,
where i 6= j, intersect on the link (wfi;jg;1; wfi;j;g2) only if the sets intersect,
and the routes will not intersect otherwise. The size of this instance of Loss
Partition is polynomial in the size of the input, proving the theorem. 2

Theorems 2 and 3 shows that a generalized algorithm for exactly computing
the partition function of a loss network is by current standards infeasible, even in
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the case where all capacities are one, the arrival rate is uniform, and all routes
are connected paths. One natural inclination after seeing this result might
be to consider algorithms for approximating the partition function instead of
�nding it exactly. For example, rejection sampling from the truncated Poisson
process or simulation of the actual stochastic process are both potential means
of approximating the partition function. Our next argument, however, shows
that unless a widely held belief in complexity theory is false we cannot even
hope to �nd an e�cient approximation algorithm for Loss Partition.

4 Probabilistic Complexity Classes and Approx-

imation Algorithms

In order to consider e�cient approximation algorithms, we shall describe exactly
what we mean by a randomized algorithm and brie
y examine some complexity
classes that arise once we expand our conception of an algorithm to include
randomized algorithms.

In the most basic model, a randomized algorithm is one which can be run
on a standard Turing machine that has an extra tape containing a string of
random bits which can be read by the algorithm. This modi�ed version is
called a probabilistic Turing machine. Alternatively, one can imagine that the
algorithm is allowed to 
ip a fair coin at any point and use the result.

The notion of a randomized algorithm leads to new complexity classes. We
limit the discussion to classes of decision problems for convenience. First, let
us say that a probabilistic Turing machine recognizes a decision problem if it
returns the correct yes/no answer with probability greater than 1/2 for each
individual instance of the problem. The machine works in polynomial time
if it recognizes the decision problem in some number of steps bounded by a
polynomial in the input. The error bound of a probabilistic Turing machine
is the least upper bound of the probability of failure taken over all instances.
The error bound, by de�nition, is at most 1/2 if a probabilistic Turing machine
recognizes a decision problem.

We now recall the following complexity classes:
BPP, the class of bounded probabilistic polynomial time problems, is the class

of problems recognized by a polynomial time probabilistic Turing machine with
error bound c < 1=2.

RP, the class of random polynomial time problems, is the class of prob-
lems recognized by a polynomial time probabilistic Turing machine with zero
probability of error when the correct answer is no.

It is clear that RP � NP. Also, note that any problem in either BPP or RP
can be recognized by a probabilistic Turing machine with an arbitrarily small
error bound simply by testing the problem some large (but polynomial) number
of times. From this we can easily show that RP � BPP. It has not been proven
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whether any of these inclusions are proper; however, it is widely thought that
RP 6= NP.

We shall also consider randomized algorithms which approximate a desired
result. In discussing approximation algorithms, we will use the standard of
a fully polynomial randomized approximation scheme established by Karp and
Luby in [12]. Given non-negative real numbers a, b, and c, we say that b
approximates a within ratio 1 + c if

a(1 + c)�1 � b � a(1 + c):

If f is a function from problem instances to the real numbers, a randomized
approximation scheme for f is a randomized algorithm which, when given an
instance x of a problem and a real number � 2 (0; 1], yields a real number
that approximates f(x) within ratio (1 + �) with a probability of at least 3/4.
By using repeated trials one can reduce the probability of error from 1/4 to
any desired value � > 0, by running the algorithm 0(log ��1) times and using
the median of the results ([10],[11]). Finally, a fully polynomial randomized
approximation scheme, or fpras, is a randomized approximation scheme that
runs in time polynomial both in the size of the problem instance given as input
and ��1. An fpras approximates a function e�ciently, although it naturally can
use larger time in order to gain accuracy.

We now show that approximating the partition function is also infeasible in
a speci�c, complexity-based sense. We do this by showing that the existence of
an fpras for Loss Partition would yield a polynomial time randomized algorithm
for Set Packing, and hence for all problems in NP. Since it is widely believed
that RP 6= NP, it seems unlikely that an fpras for Loss Partition exists.

Theorem 4 There can be no fpras for Loss Partition unless RP = NP.

Proof: Suppose we are given an instance of Set Packing with a collection
C of sets and integer K. As in Theorem 2, generate a corresponding in-
stance of Loss Partition. In this case we choose � = 22R. With this choice
of �, we see that if there is a feasible con�guration with K calls in progress,
then G =

PR

k=0Nk�
k � 22RK , while if there is no such con�guration, then

G =
PR

k=0Nk�
k � 2R22R(K�1) = 2�R22RK. Since feasible con�gurations cor-

responds to collections of disjoint sets in C, G � 22RK if C has a subcollection
of K disjoint sets, and G � 2�R22RK otherwise.

Now suppose there exists an fpras for Loss Partition. Then these two cases
are distinguishable by the fpras, and using the fpras provides a randomized
algorithm for deciding the Set Packing question. Thus Set Packing 2 BPP.
Since BPP is closed under polynomial time reductions, and Set Packing is NP-
complete, this yields that NP � BPP. However, by the work done by Ko [17],
this implies that RP = NP. 2

An entirely similar argument shows that there can be no fpras for Loss
Partition even in the restricted case where all routes correspond to connected
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paths unless RP = NP. However we have been unable to recast the proof of
Theorem 4 so that only bounded or polynomially growing arrival rates are used:
it remains possible that an fpras may exist for Loss Partition in the restricted
case of low arrival rates.

5 Theoretical Implications for Computing Loss

Probabilities

The complexity of computing the partition function leads to some interesting
conclusions regarding the ability to compute blocking probabilities for general
loss networks. In particular, recall by equation (4) that

G(C) =
1

1� Lr
G(C � Aer):(6)

Thus if a tool existed for �nding the exact blocking probabilities on a loss net-
work, G(C) could be determined recursively in at most

P
j Cj steps. A polyno-

mial time method for �nding blocking probabilities would therefore immediately
yield a polynomial time algorithm for solving Loss Partition. By what we have
shown in Theorem 2, such an algorithm would be extremely unlikely.

Moreover, we can demonstrate similarly that an fpras for Lr=(1 � Lr), the
odds of a call being lost on route r, yields an fpras for the partition function.

Theorem 5 There can be no fpras for the odds of a call being blocked on a
given route of a loss network unless RP = NP.

Proof: Since 1=(1� Lr) = 1 + Lr=(1� Lr), an fpras for Lr=(1� Lr) imme-
diately yields one for 1=(1� Lr); take the estimate given by the fpras and add
1 to �nd a suitable estimate for 1=(1� Lr).

Now suppose there is an fpras for 1=(1� Lr). Then we can create an fpras
that approximates the partition function within ratio (1 + �) as follows. Let
c =
P

j Cj and

�0 =
min(14 ;

�
2)

c
:

Compute an approximation for G(C) recursively from equation (6) by using the
fpras for 1=(1� Lr), approximating it at each step within a ratio of (1 + �0)
with probability at least 1� (4c)�1. Then with probability at least 3/4 the �nal
estimate E for G(C) satis�es

(1 + �0)�cG(C) � E � (1 + �0)cG(C);

but
(1 + �0)c � exp(c�0) < 1 + c�0 + (c�0)2 < (1 + �):
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Since c is polynomial in the input size, this yields an fpras for G(C). By Theo-
rem 4, this would imply that RP = NP. 2

It would seem that Theorem 5 should be extended to show that the blocking
probabilities themselves cannot be approximated by an fpras unless RP = NP.
However, this does not seem to follow immediately. The problem lies in the
case where the blocking probability is extremely close to 1. For example, if
Lr is close to 1, unless � is chosen small enough, the approximation algorithm
might simply return 1. For this problem, such a return value would be useless,
since the recursive algorithm for approximating G(C) requires using values for
1=(1� Lr).

One possible means of �xing this would be to bound Lr away from 1 and
then choose an appropriate �. This method does not seem feasible, however,
for the following reason. By increasing the arrival rate of calls to the network,
one increases the blocking probabilities. In particular, for a given instance of
Loss Partition, increasing the number of digits in the arrival rate � by some
polynomial factor increases the arrival rate exponentially, which in turn could
cause the blocking probabilities to approach 1 exponentially quickly. In other
words, 1=(1 � Lr) can grow exponentially in the size of the problem instance.
To approximate 1=(1� Lr) within a ratio of 1 + �, where ��1 is bounded by a
polynomial in the size of the input, would seem to require approximating Lr to
within a ratio 1 + �0, where (�0)�1 is exponential in the size of the input.

Indeed, this appears to be a general problem that must be considered when
using fpras to approximate probabilities in a [0,1) range. We can, however,
say something about the ability to approximate Lr by considering an algorithm
which does not charge for the necessity of making better approximations as Lr
approaches 1.

Theorem 6 Unless RP = NP, there does not exist an algorithm which does the
following: Given a loss network, a route r on the network, and � 2 (0; 1], the
algorithm returns an estimate E for Lr in time bounded by a polynomial in the
size of the loss network and ��1 such that

(1 + �(1� Lr))
�1Lr � E � (1 + �(1� Lr))Lr

with probability at least 3/4.

Proof: Suppose such an algorithm existed. Then we use it to create an
fpras for 1=(1�Lr) as follows. Given an �0, approximate Lr with the algorithm

above using � = �0

2 . Simple algebraic manipulation then shows that 1=(1 � E)
approximates 1=(1�Lr) within a ratio of �0. Thus the existence of an algorithm
as described above implies RP = NP by Theorem 5. 2

Notice that the algorithm described in the statement of Theorem 6 is very
much like an fpras; in fact, it is apparent that if Lr can be bounded away
from 1, such an algorithm is in fact equivalent to an fpras. Theoretically, the
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only di�erence is when Lr approaches 1, where such an algorithm grows more
accurate without requiring extra time for the gain in e�ciency.

6 The non-frustrated case

As we have seen, the #Set Packing problem can naturally be reduced to Loss
Partition. By considering another natural reduction, from #Independent Set to
Loss Partition, we �nd an interesting subcase of the Loss Partition problem.

To make the connection between the problems, we consider the following
graph based on the routes of a loss network. Let I(R;A) = ([R]; E) be an
undirected graph consisting of nodes r 2 [R] corresponding to the routes r =
1; : : : ; R of the original loss system. The edge e = fr1; r2g 2 E if and only if
routes r1 and r2 share at least one link of positive capacity, that is there exists
j 2 fi; : : : ; Jg with Cj > 0 such that Ajr1 > 0 and Ajr2 > 0. Call this the route
interaction graph for the loss network de�ned by R and A.

Notice that many loss networks can share the same route interaction graph.
Also, note that if all the capacities are 1, then a con�guration n 2 f0; 1gR

satis�es An � 1 if and only if the set of routes fr : nr = 1g is an independent
set on the route interaction graph. In other words, for a given instance of Loss
Partition, the feasible con�gurations of i calls and the independent sets of size
i on the graph are in a one-to-one correspondence.

It is easy to see that Theorems 2 and 3 can be modi�ed to reduce #Inde-
pendent Set, instead of #Set Packing, to Loss Partition. For example, given an
instance of #Independent Set G = (V;E) and b, in polynomial time one can
construct the following instance of Loss Partition for which G is the route in-
teraction graph. Let R = jV j and associate a route with each element of V . For
each edge e = fr1; r2g 2 E, set Aer1 = Aer2 = 1, so that routes r1 and r2 have
a link in common, and set Aer = 0 otherwise. Together with a positive integer
� this de�nes an instance of Loss Partition. Furthermore, it is clear that the
corresponding route interaction graph is just G. By modifying this construction
appropriately one can similarly reduce #Independent Set to the restricted case
of Loss Partition where all routes are paths.

By now proceeding as in Theorem 2, one could use an algorithm for Loss
Partition to �nd the coe�cients Nk, which correspond to the number of feasible
con�gurations with k calls. Since this equals the number of independent sets of
size k on G, knowing the Nk allows one to solve the #Independent Set problem.
Similarly, the construction in Theorem 4 can be modi�ed to make use of the
Independent Set problem instead of Set Packing.

An interesting case arises when one examines the situation where the route
interaction graph is bipartite. Let us call a network non-frustrated if the route
interaction graph is bipartite and frustrated otherwise. Frustration is a sim-
ple measure of whether the interactions between routes along di�erent paths
through the network are in phase or out of phase. A frustrated network looks
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somewhat like a \spin-glass" in statistical mechanics, whereas a non-frustrated
network is more like a regular lattice.

Now we can consider the subproblem of Loss Partition restricted where the
route interaction graph is non-frustrated, which we shall call Non-Frustrated
Loss Partition. By the same argument as the one presented above, we could
show that Non-Frustrated Loss Partition is still #P-complete if #Independent
Set is #P-complete when restricted to bipartite graphs. In fact, Provan and Ball
[24] proved that both the problem of �nding the total number of independent
sets in a bipartite graph and the problem of �nding the number of independent
sets of largest size in a bipartite graph are #P-complete, and either of these
quantities is easily derived from the Nk. Thus these problems can be reduced
in polynomial time to Non-Frustrated Loss Partition, so it too is #P-complete.

Notice, however, that the argument used in Theorem 4 to show that the
non-existence of an fpras for Loss Partition cannot be extended to this case.
This is because for a general graph the problem of �nding the maximum size of
an independent set is NP-complete, while for a bipartite graph the correspond-
ing problem can be solved in polynomial time. (For example, see [6].) The
proof in Theorem 4 requires that the existence problem (either Set Packing or
Independent Set) be NP-complete, and in the non-frustrated case, it is not.

This observation leads us to the following conjecture:

Conjecture There exists an fpras for Non-Frustrated Loss Partition.

Indeed, Jerrum and Sinclair [10] have found an fpras for the ferromagnetic
case of the Ising problem using a transformation that yields a rapidly mixing
Markov chain, even though the general case is #P-complete. It remains unclear
whether their methods can be applied to �nd an fpras for this problem as well.

7 Discussion

The importance of loss networks as models has led to intense interest in com-
putational algorithms, and many methods have been proposed to calculate the
partition function (3) and the loss probabilities (4). For work on exact methods
see Dziong and Roberts [4], Ross and Tsang [25] and the recent review of Con-
way et al. [3]. In practice direct simulation of the underlying stochastic process
is often used to estimate loss probabilities; other approximation techniques use
the truncated product form (1) as a basis for Monte Carlo estimation { see
Harvey and Hills [7] and Ross and Wang [26] for methods based on re�nements
of acceptance-rejection sampling.

All of the methods proposed require an e�ort which grows quickly with the
size of the network. This observation is largely explained by the work reported
in this paper, and in particular by the explicit connections made between the
Set Packing and Loss Partition problems. As we have seen these connections
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can be made even when all capacities in the loss network are one. The Loss
Partition problem for variable capacities is at least as di�cult: instead it is
interesting to consider brie
y a restricted version of the problem where the
matrix A de�ning the topology of a loss network is �xed, and an instance of
the problem is de�ned by the vectors � and C of tra�cs and capacities. For
this version of the problem the exact algorithm of Pinsky and Conway [22]

has time complexity O
�QJ

j=1Cj

�
, and thus is polynomial in link capacities and

exponential in the size of the input description necessary to de�ne the link
capacities. However the Monte Carlo estimation technique of Ross and Wang
[26] requires a computational e�ort that is independent of link capacities, and
indeed the limit results reviewed in [15] and the bounds obtained in a special case
by Mitra [20] suggest that approximation becomes simplerwith larger capacities.

Closed queueing networks form a further class of widely used model with
partition function akin to that of the loss network model (see, for example,
[13]). In some respects the model is richer, and it may be possible to delineate
various complexity classes within the model. We conclude with an example
to illustrate this point. Consider a network with J queues and J customers.
Suppose each customer has a subset of the J queues that it cycles around, and
suppose each queue serves at in�nite rate when it contains two customers. Thus
a state of the network is any feasible con�guration with a single customer in
each queue. Let Aij = 1 if customer i visits queue j, and let Aij = 0 otherwise.
Then the number of states of the network, and hence the partition function
under the simplest assumptions on service rates, is just the permanent of the
matrix A. Now calculation of the permanent of a 0� 1 matrix is a well-studied
problem, and has the intriguing property that for a wide class of matrices it is
both #P-complete and yet an e�cient approximation algorithm exists [9].
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