
A Derandomization Using Min-Wise Independent
Permutations

Extended abstract for submission to Random ’98

not for distribution

Andrei Z. Broder∗ Moses Charikar† Michael Mitzenmacher‡

Abstract

Min-wise independence is a recently introduced notion of limited independence,
similar in spirit to pairwise independence. The later has proven essential for the de-
randomization of many algorithms. Here we show that approximate min-wise inde-
pendence allows similar uses, by presenting a derandomization of the RNC algorithm
for approximate set cover due to S. Rajagopalan and V. Vazirani. We also discuss
how to derandomize their set multi-cover and multi-set multi-cover algorithms in re-
stricted cases. The multi-cover case leads us to discuss the concept of k-minima-wise
independence, a natural counterpart to k-wise independence.

1 Introduction

Carter and Wegman [6] introduced the concept of universal hashing in 1979, with the intent
to offer an input independent, average constant time algorithm for table look-up. Although
hashing was invented in the mid-fifties, when for the first time memory become “cheap”
and therefore sparse tables became of interest, up until the seminal paper of Carter and
Wegman the premise of the theory and practice of hashing was that the input is chosen
at random, or alternatively, that the hash function is chosen uniformly at random among
all possible hash functions. Both premises are clearly unrealistic: inputs are not random,

∗Digital SRC, 130 Lytton Avenue, Palo Alto, CA 94301, USA. E-mail: broder@pa.dec.com.
†Computer Science Dept., Stanford Univ., CA 94305, USA. E-mail: moses@cs.stanford.edu. Sup-

ported by the Pierre and Christine Lamond Fellowship and in part by an ARO MURI Grant DAAH04-96-
1-0007 and NSF Award CCR-9357849, with matching funds from IBM, Schlumberger Foundation, Shell
Foundation, and Xerox Corporation.

‡Digital SRC, 130 Lytton Avenue, Palo Alto, CA 94301, USA. E-mail: michaelm@pa.dec.com.

1

and the space needed to store a truly random hash function would dwarf the size of the
table. What Carter and Wegman have shown is that, in order to preserve the desirable
properties of hashing, it suffices to pick the hash function from what is now called a pair-
wise independent family of hash functions. Such families of small size exist, and can be
easily constructed.

Later on, pairwise independence and more generally k-wise independence have proven
to be powerful algorithmic tools with significant theoretical and practical applications. (See
the excellent survey by Luby and Wigderson [11] and references therein.) One important
theoretical application of pairwise independence is the derandomization of algorithms. A
well-known example is to find a large cut in a graph. One can color the vertices of a
graph with |E| edges randomly using two colors, the colors being determined by a pairwise
independent hash function chosen at random from a small family. The colors define a cut,
and on average the cut will have |E|/2 crossing edges. Hence, by trying every hash function
in the family one finds a cut with at least the expected number of crossing edges, |E|/2.

Recently, we introduced an alternative notion of limited independence based on what
we call min-wise independent permutations [4]. Our motivation was the connection to
an approach for determining the resemblance of sets, which can be used for example to
identify documents on the World Wide Web that are essentially the same [2, 3, 5]. In this
paper we demonstrate that the notion of min-wise independence can also prove useful for
derandomization. Specifically, we use a polynomial-sized construction of approximate min-
wise independent permutations due to Indyk to derandomize the parallel approximate set
cover algorithm of Rajagopalan and Vazirani [12]. (From now on, called the RV-algorithm.)
This example furthers our hope that min-wise independence may prove a generally useful
concept.

The paper proceeds as follows: in Section 2, we provide the definitions for min-wise
and approximately min-wise independent families of permutations. We also state (without
proof) Indyk’s results. In Section 3, we provide the necessary background for the RV-
algorithm. In particular, we emphasize how the property of min-wise independence plays
an important role in the algorithm. In Section 4, we demonstrate that the RV-algorithm
can be derandomized using a polynomial sized approximately min-wise independent family.
Finally, in Section 5, we briefly discuss how to extend the derandomization technique to the
set multi-cover and multi-set multi-cover algorithms proposed by Rajagopalan and Vazirani.
This discussion motivates a generalization of min-wise independence to k-minima-wise
independence, a natural counterpart to k-wise independence.

2 Min-wise independence

We provide the necessary definitions for min-wise independence, based on [4].
Let Sn be the set of all permutations of [n]. We say that F ⊆ Sn is exactly min-wise

independent (or just min-wise independent where the meaning is clear) if for any set X ⊆ [n]

2

and any x ∈ X, when π is chosen at random 1 from F we have

Pr(min{π(X)} = π(x)) =
1

|X| . (1)

In other words we require that all the elements of any fixed set X have an equal chance to
become the minimum element of the image of X under π.

We say that F ⊆ Sn is approximately min-wise independent with relative error ε (or
just approximately min-wise independent where the meaning is clear) if for any set X ⊆ [n]
and any x ∈ X, when π is chosen at random from F we have

∣∣∣∣∣Pr(min{π(X)} = π(x))− 1

|X|

∣∣∣∣∣ ≤
ε

|X| . (2)

In other words we require that all the elements of any fixed set X have only an almost
equal chance to become the minimum element of the image of X under π.

Indyk has found a simple construction of approximately min-wise independent per-
mutations with useful properties for derandomization [9]. His results imply the following
proposition.

Proposition 1 [Indyk] There exists a constant c such that any c/ε-wise independent fam-
ily of permutations is approximately min-wise independent with relative error ε.

Using the above proposition, an approximately min-wise independent family can be
constructed as follows. Assign as an address an r-bit string to each element of the universe,
where r = O(logn). In effect, we hash every element to a space of size 2r. The permutation
is obtained by sorting the elements in order of the addresses assigned to them, breaking ties
arbitrarily. We need n·r bits in order to assign addresses. These are obtained from a family
of bit strings of length n · r, which are O(1/ε) · r-wise independent (so that the addresses
assigned to any O(1/ε) elements are independent). The value of r is chosen suitably
large so that the effect of collisions is negligible. Proposition 1 ensures that the family
obtained is approximately min-wise independent. In fact, we can use the constructions of
almost k-wise independent random variables due to Alon et. al. [1]. The fact that the
bits will be only approximately k-wise independent can be absorbed into the relative error
for the approximately min-wise independent family of permutations. As noted in [1], the
construction of the appropriate approximately independent bit strings can be performed in
NC, implying that the construction of an approximately min-wise independent family of
permutations can be performed in NC. The size of the family of permutations obtained is
nO(1/ε).

Hence in what follows we will use the fact that there exist NC-constructible approxi-
mately min-wise independent families of permutations of size nO(1/ε).

1To simplify exposition we shall assume that π is chosen uniformly at random from F , although it could
be advatageous to use a another distribution instead. See [4].

3

3 The parallel set cover algorithm

3.1 The problem

Preprocess.

Iteration:

For each not-covered element e, compute value(e).

For each set S, include S in L if
∑

e∈U(S) value(e) ≥ CS/2.

Phase:

(a) Permute L at random.

(b) Each not-covered element e votes for the first set S in the
random order such that e ∈ S.

(c) If
∑

e votes S value(e) ≥ CS/16, then add S to the set cover.

(d) Remove from L any set not satisfying∑
e∈U(S) value(e) ≥ CS/2.

Repeat until L is empty.

Iterate until all elements are covered.

Figure 1: The RV-algorithm for parallel set cover

The set cover problem is as follows: given a collection of sets over a universe of n elements,
and given an associated cost for each set, find the minimum cost sub-collection of sets that
covers all of the n elements. This problem (with unit costs) is included in Karp’s famous
1972 list [10] of NP-complete problems. (See also [8].)

The natural greedy algorithm repeatedly adds to the cover the set that minimizes the
average cost per newly added element. In other words, if the cost of set S is CS, then at
each step we add the set that minimizes CS/|U(S)|, where U(S) is the subset of S consisting
of elements not yet covered. The greedy algorithm yields an Hn factor approximation. (Hn

denotes the harmonic number
∑

1≤i≤n 1/i.) For more on the history of this problem, see [12]
and references therein. In particular Feige [7] has shown that improving this approximation
is unlikely to be computationally feasible.

3.2 A parallel algorithm

The RV-algorithm is a natural modification of the greedy algorithm: instead of repeatedly
choosing the set that covers elements at the minimum average current-cost, repeatedly

4

choose some sets randomly from all sets with a suitably low minimum average current-
cost. The intuition is that choosing several sets at a time ensures fast progress towards a
solution; randomness is used in an ingenious way to ensure a certain amount of coordination
so that not too many superfluous sets (that is, sets that cover few if any new elements) are
used.

Define the value of an element to be:

value(e) = min
S�e

CS

|U(S)| .

That is, the value of an element is the minimum possible cost to add it to the current cover.
The algorithm of Rajagopalan and Vazirani is depicted in Figure 3.1.

The preprocessing step is used to guarantee that the costs CS lie in a limited range;
this is not of concern here since it does not involve any randomization. The randomization
comes into play when the sets of L are randomly permuted, and each element votes for the
first set in the random order. This property is exploited in the analysis of the algorithm in
two ways:

1. The set that each element votes for is equally likely to be any set that contains it.

2. Given any pair of elements e and f , let Ne be the number of sets containing e but
not f , let Nf be the number of sets containing f but not e, and let Nb be the number
of sets that contain both. The probability that both e and f vote for the same set is

Nb

Ne + Nb + Nf .

Interestingly, both of these properties would hold if L were permuted according to a min-
wise independent family of permutations; in fact, this is all that is required in the original
analysis. Hence if we had a polynomial sized min-wise independent family, we could de-
randomize the algorithm immediately. Unfortunately, the lower bounds proven in [4] show
that no such family exists; any min-wise independent family would have size exponential
in |L|.

We therefore consider what happens when we replace step (a) of the parallel set cover
algorithm with the following step:

(a’) Permute L using a random permutation from an approximately
min-wise independent family with error ε.

As we shall explain, for suitably small ε this replacement does not affect the correctness of
the algorithm, and the running time increases at most by a constant factor. Using this fact,
we will be able to derandomize the algorithm using Indyk’s polynomial-sized construction.

5

4 The derandomization

We note that the proof of the approximation factor of the algorithm, as well as the bound
on the number of iterations, does not change when we change how the permutation on L
is chosen. Hence we refer the interested reader to the proofs in [12], and consider only the
crux of the argument for the derandomization, namely the number of phases necessary for
each iteration.

As in [12], we establish an appropriate potential function Φ, and show that its expected
decrease ∆Φ in each phase is cΦ for some constant c. The potential function is such that if
it ever becomes 0 we are done. In [12], this was used to show that O(logn) phases per round
are sufficient, with high probability. By using a polynomial sized family of approximately
min-wise independent permutations, we can try all possible permutations (on a sufficiently
large number of processors) in each phase; in this way we ensure that in each phase the
potential Φ decreases by a constant factor. This derandomizes the algorithm.

We review the argument with the necessary changes. The potential function Φ is∑
S U(S). The degree of an element e, denoted deg(e) is the number of sets containing

it. A set-element pair (S, e) with e ∈ U(S) is called good if deg(e) ≥ deg(f) for at least
3/4 of the elements f ∈ U(S). We show that on average a constant fraction of the good
(S, e) pairs disappear in each phase (because sets are added to the cover), from which we
can easily show that E(∆Φ) ≥ cΦ.

Lemma 1 Let e, f ∈ U(S) with deg(e) ≥ deg(f). Then

Pr(f votes for S | e votes for S) >
1− ε

2(1 + ε)
.

Proof: Let Ne be the number of sets containing e but not f , let Nf be the number of
sets containing f but not e, and let Nb be the number of sets that contain both. The set
S is chosen by both e and f if it the smallest choice for both of them; this happens with
probability at least 1−ε

Ne+Nb+Nf
, by the definition of approximate min-wise independence.

Similarly, the set S is chosen by e with probability at most 1+ε
Ne+Nb

. Hence

Pr(f votes for S | e votes for S) ≥ 1− ε

(1 + ε)

Ne + Nb

(Ne + Nb + Nf)
≥ 1− ε

2(1 + ε)
.

The last inequality follows from the fact that Ne ≥ Nf . ✷

The above lemma suggests that if (S, e) is good, and e votes for S, then S should get
many votes. Indeed, this is the case.

Lemma 2 If (S, e) is good then

Pr(S is picked | e votes for S) >
1− 4ε

15
.

6

Proof: Clearly value(f) ≤ CS/|U(S)| for any f ∈ U(S), so

∑

f∈U(S)
deg(f)>deg(e)

value(f) ≤ CS

4
.

But if S ∈ L, then ∑
f∈U(S) value(f) ≥ CS/2. Therefore

∑

f∈U(S)
deg(f)≤deg(e)

value(f) ≥ CS

4
.

By Lemma 1, if e votes for S, then each f with deg(f) ≤ deg(e) votes for S with probability
at least (1− ε)/(2(1 + ε)). Hence, conditioned on e voting for S, the expected total value
of all elements that vote for S is at least CS(1− ε)/(8(1 + ε)). Let p be the probability
that S is picked in this case. Then as the total value from all elements that vote for S is
at most CS, clearly

pCS + (1− p)
CS

16
≥ CS(1− ε)

8(1 + ε)
.

From this we obtain that p > (1− 4ε)/15. ✷

From the Lemma above we show that the expected decrease in the potential function
is a constant fraction per round.

Lemma 3 E(∆Φ) ≥ (1−5ε)
60

Φ.

Proof: As in [12], we estimate the decrease in Φ due to each pair (S, e) when e votes for S
and S joins the cover. The associated decrease is deg(e) since Φ decreases by one for every
remaining set that contains e. Hence

E(∆Φ) ≥
∑

(S,e):e∈U(S)

Pr(e voted for S and S was picked) · deg(e)

≥
∑

(S,e) good
Pr(e voted for S) ·Pr(S was picked | e voted for S) · deg(e)

≥
∑

(S,e) good

1− ε

deg(e)

1− 4ε

15
deg(e) ≥

∑

(S,e) good

1− 5ε

15
≥

∑

(S,e):e∈U(S)

1− 5ε

60

≥ 1− 5ε

60
Φ.

✷

If initially we have n sets and m elements, then initially Φ ≤ mn, and hence we may
conclude that at most O(lognm) phases are required before an iteration completes. Given
the results of [12], we may conclude:

7

Theorem 1 The algorithm Parallel Set Cover can be derandomized to an NC3 al-
gorithm that approximates set cover within a factor of 16Hn using a polynomial number of
processors.

One may trade of the number of processors and a constant factor in the running time
by varying the error ε. However, the family must be sufficiently large so that ε is small
enough for the analysis to go through. Having ε < 1/5 is sufficient (this can be improved
easily, at least to ε < 1/3).

5 Extensions

Besides the parallel set cover algorithm, Rajagopalan and Vazirani also provide algorithms
for the more general set multi-cover and multi-set multi-cover problems. In the set multi-
cover problem, each element has a requirement re, and it must be covered re times. In
the multi-set multi-cover problem, multi-sets are allowed. These algorithms follow the
same basic paradigm as the parallel set cover algorithm, except that during the algorithm
an element that still needs to be covered r(e) more times gets r(e) votes. (Note r(e) is
dynamic; r(e) = re initially.)

Our derandomization approach using approximate min-wise independent families of
permutations generalizes to these extensions as well, subject to a technical limitation that
the initial requirements re must be bounded by a fixed constant. We need slightly more than
approximate min-wise independence, however. The following properties are sufficient2:

• the ordered r(e)-tuple of the first r(e) sets containing an element e in the random
order is equally likely to be any ordered r(e)-tuple of sets that contain e,

• for any pair of elements e and f both in some set S, the ordered (r(e)+r(f)−1)-tuple
of the first r(e)+ r(f)−1 sets containing either e or f in the random order is equally
likely to be any ordered (r(e) + r(f)− 1)-tuple of sets that contain either e or f .

Note that when r(e) = r(f) = 1, these conditions are implied by min-wise independence,
as we would expect.

These requirements suggest a natural interpretation of min-wise independence: suppose
that not just any element of a set X was equally likely to be the first after applying a
permutation, but that any ordered set of k elements of a set X are equally likely to be
the first k elements (in the correct order) after applying a permutation to X. Let us call
this k-minima-wise independence. Then the properties above correspond to maxe,f(r(e) +
r(f) − 1)-minima-wise independence; if maxe r(e) is a fixed constant, then we require a
k-minima-wise independent family of permutations for some constant k. In fact, as with
the parallel set cover problem, we require only approximate k-minima-wise independence,

2In fact they are more than is necessary; however, stating the properties in this form is convenient.

8

and the construction of Indyk can easily be generalized to give us an appropriate family of
polynomial size when k is a constant.

We note in passing that for estimating the resemblance of documents as in [2] and
[5] with a “sketch” of size k we need one sample from a k-minima-wise independent fam-
ily, while for the method presented in [3], we need k separate samples from a min-wise
independent family.

There is an interesting meta-principle behind our derandomizations, which appears
worth emphasizing here.

Remark 1 Let E be an event that depends only on the order of the first k elements of
a random permutation. Then any bound on the probability of E that holds for random
permutations also holds for any k-minima-wise independent family. Moreover, for any
approximately k-minima-wise independent family, a suitable small correction to the bound
holds.

For example, many of the lemmata in [12] prove bounds for events assuming that the
random permutations are generated by assigning each set a uniform random variable from
[0, 1] and then sorting. Because the events these lemmata bound depend only on the first
(r(e)+r(f)−1) sets of the permutation, the lemmata still hold when using (r(e)+r(f)−1)-
minima-wise independent families, and only minor corrective terms need to be introduced
for (r(e)+ r(f)− 1)-minima-wise independent families. Hence given the results of [12], the
derandomizations follow with relatively little work.

6 Conclusion

We have demonstrated a novel derandomization using the explicit construction of approx-
imate min-wise independent families of permutations of polynomial size. We expect that
this technique may prove useful for further derandomizations.

The question of how to best construct small approximately min-wise independent fam-
ilies of permutations remains open. Improvements in these constructions would lead to
improvements in the number of processors required for our derandomizations here, and
more generally may enhance the utility of this technique.

References

[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k-
wise independent random variables. Random Structures and Algorithms, 3(3):289–304,
1992.

[2] A. Z. Broder. On the resemblance and containment of documents. In Proceedings of
Compression and Complexity of Sequences 1997, pages 21–29. IEEE Computer Society,
1988.

9

[3] A. Z. Broder. Filtering near-duplicate documents. In Proceedings of FUN 98, 1998.
To appear.

[4] A. Z. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory
of Computing, pages 327–336, 1998.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the Web. In Proceedings of the Sixth International World Wide Web Conference,
pages 391–404, 1997.

[6] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, Apr. 1979.

[7] U. Feige. A threshold of lnn for approximating set cover (preliminary version). In Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
pages 314–318, Philadelphia, Pennsylvania, 22–24 May 1996.

[8] M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[9] P. Indyk, personal communication.

[10] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–104. Plenum
Press, New York, 1972.

[11] M. Luby and A. Wigderson. Pairwise independence and derandomization. Technical
Report TR-95-035, International Computer Science Institute, Berkeley, California,
1995.

[12] S. Rajagopalan and V. V. Vazirani. Primal-dual RNC approximation algorithms for
(multi)-set (multi)-cover and covering integer programs. In 34th Annual Symposium
on Foundations of Computer Science, pages 322–331, Palo Alto, California, 3–5 Nov.
1993. IEEE. Journal version to appear in SIAM Journal of Computing.

10

