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Abstract. We provide several new results related to the concept of min-
wise independence. Our main result is that any randomized sampling
scheme for the relative intersection of sets based on testing equality of
samples yields an equivalent min-wise independent family. Thus, in a
certain sense, min-wise independent families are \complete" for this type
of estimation.
We also discuss the notion of robustness, a concept extending min-wise
independence to allow more e�cient use of it in practice. A surprising
result arising from our consideration of robustness is that under a random
permutation from a min-wise independent family, any element of a �xed
set has an equal chance to get any rank in the image of the set, not only
the minimum as required by de�nition.

1 Introduction

A family of permutations P � Sn is called min-wise independent (abbreviated
MWI) if for any set X � [n] = f1; : : : ; ng and any x 2 X , when � is chosen at
random in P according to some speci�ed probability distribution we have

Pr
�
minf�(X)g = �(x)

�
=

1

jX j
: (1)

In other words we require that all the elements of any �xed set X have an equal
chance to become the minimum element of the image of X under �.

When the distribution on P is non-uniform, the family is called biased, and
it is called unbiased otherwise. In general in this paper we will not specify the
probability distribution on P unless relevant, and from now on when we say \�
chosen at random in (the min-wise independent family) P" we mean \� chosen
in P according to the probability distribution associated to P such that (1)
holds."

Together with Moses Charikar and Alan Frieze, we introduced this notion in
[4] motivated by the fact that such a family (under some relaxations) is essential
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to the algorithm used in practice by the AltaVista web index software to detect
and �lter near-duplicate documents. The crucial property that enables this ap-
plication is the following: let X be a subset of [n]. Pick a \sample" s(X) 2 X
by choosing at random a permutation � from a family of permutations P and
letting

s(X) = ��1(minf�(X)g) : (2)

Then, if P is a MWI-family, for any two nonempty subsets A and B, we have

Pr
�
s(A) = s(B)

�
=
jA \ Bj

jA [ Bj
: (3)

Hence such samples can be used to estimate the relative size of the intersection
of sets, a quantity that we call the resemblance of A and B, de�ned as

R(A;B) =
jA \ Bj

jA [ Bj
: (4)

We estimate resemblance by �rst picking, say, 100 permutations from a MWI-
family, and then computing samples for each set of interest. Then the resem-
blance of any two sets can be estimated simply by determining the fraction of
samples that coincide.

In practice we can allow small relative errors. We say that P � Sn is ap-

proximately min-wise independent with relative error � (or just approximately
min-wise independent, where the meaning is clear) if for any set X � [n] and
any x 2 X , when � is chosen at random in P we have

����Pr�minf�(X)g = �(x)
�
�

1

jX j

���� � �

jX j
: (5)

For further details about the use of these ideas to estimate document simi-
larity see [6, 1, 2]. An optimal (size-wise) construction for a MWI-family was
obtained by Takei, Itoh, and Shinozaki [13]. Explicit constructions of approxi-
mately MWI-families were obtained by Indyk [8] and by Saks & al. [11]. For an
application of these families to derandomization see [5].

We also note that concepts similar to min-wise independence have appeared
prior to our work [4] as well. For example, the monotone ranged hash functions
described in [9] have the min-wise independence property; Cohen [7] uses the
property that the minimum element of a random permutation is uniform to esti-
mate the size of the transitive closure, as well as to solve similar related problems;
and Mulmuley [10] uses what we call approximate min-wise independence to use
fewer random bits for several randomized geometric algorithms.

The main result of this paper, presented in Sect. 2, is that, rather surprisingly,
any sampling scheme that has property (3) is equivalent to a scheme derived via
equation (2) from a min-wise independent family of permutations. More precisely
we have the following theorem:



Theorem 1. Let F be a family of functions from nonempty subsets of [n] to
some arbitrary set 
. Assume there exists a probability distribution on F such

that for any two nonempty subsets, A and B,

Pr
�
f(A) = f(B)

�
=
jA \ Bj

jA [ Bj
:

Then there exists a min-wise independent family of permutations P such that

every f 2 F is de�ned by

f(X) = f
�n

��1f (minf�f (X)g)
o�

for some �f 2 P.

We note here some immediate consequences of the theorem:

(a) The induced family of permutations has the same size as the initial family
of functions, that is jPj = jFj.

(b) Each f 2 F takes exactly n distinct values f(fx1g); : : : ; f(fxng). (A priori
each f can take 2n � 1 values.)

(c) Assume that we add the condition that for every X � [n], each f 2 F
satis�es f(X) 2 X ; in other words, the \sample" must belong to the set
being sampled. Then for every x 2 [n] each f satis�es f(fxg) = x, and
hence each f has the form

f(X) = ��1f (minf�f (X)g) :

(The converse of the assumption is also true: if for every x 2 [n] we have
f(fxg) = x then f(X) 2 X follows. See Corollary 1 below.)

(d) Thus every estimation scheme that has property (3) is equivalent under
renaming to a sampling scheme derived via equation (2) from a min-wise
independent family of permutations. (For each f , f(fx1g) is the \name" of
x1, f(fx2g) is the \name" of x2, etc.)

Of course in practice it might be more convenient to represent F directly
rather than via P . (See [3] for an example.) But the fact remains that any
method of sampling to estimate resemblance via equation (3) is equivalent to
sampling with min-wise independent permutations.

To develop some intuition, before plunging into the proof, we start by observ-
ing that the choice of \min" in the de�nition (1) is somewhat arbitrary. Clearly
if we replace \min" with \max" both in (1) and in (2), property (3) holds. More
generally, we can �x a permutation � 2 Sn (think of it as a total order on [n]),
and require P to satisfy the property

Pr
�
minf�

�
�(X)

�
g = �

�
�(x)

��
=

1

jX j
: (6)

Then we can choose samples according to the rule

s(X) = ��1
�
��1

�
minf�(�(X))g

��
:



(We obtain \max" by taking �(i) = n+ 1� i.)
Is there any advantage to choosing a particular �? A moment of reection

indicates that there is nothing to be gained since we can simply replace the family
P by the family P � �. This is, in fact, a very simple instance of Theorem 1.
However, it could be of interest if a family P satis�es condition (6) with respect
to more than one order �. One reason is that, in practice, computing �(X) is
expensive (see [3] for details). If a family has the min-wise independence property
with respect to several orders, then we can extract a sample for each order.
Obviously these samples are correlated, but if the correlation can be bounded,
these samples are still usable.

Takei, Itoh, and Shinozaki [13] presented an optimal (size-wise) construc-
tion for a MWI-family under the uniform distribution. Their family has size
lcm(1; : : : ; n), matching the lower bound of [4]. They observed that their con-
struction produces a family that is simultaneously min-wise independent and
max-wise independent. In Sect. 3 we show that this is not a uke; in fact, any
min-wise independent family is also max-wise independent. Moreover, if P � Sn
is min-wise independent, then for any set X � [n], any x 2 X , and any �xed
r 2 f1; : : : ; jX jg, when � is chosen at random in P we have

Pr
�
rank(�(x); �(X)) = r

�
=

1

jX j
; (7)

where rank(x;X) for x 2 X is the number of elements in X not greater than x.
Hence the max-wise independence property follows by taking r = jX j.

In Sect. 4 we discuss families that have the min-wise independence property
with respect to all possible orders �. We call such families robust. We show
that although not every min-wise independent family is robust, there are non-
trivial robust families. On the other hand, robust families under the uniform
distribution of size lcm(1; : : : ; n) do not necessarily exist for every n.

2 Any Sampling Scheme is a MWI-Family

In this section we prove the following:

Theorem 1 Let F be a family of functions from nonempty subsets of [n] to
some arbitrary set 
. Assume there exists a probability distribution on F such

that for any two nonempty subsets, A and B,

Pr
�
f(A) = f(B)

�
=
jA \ Bj

jA [ Bj
:

Then there exists a min-wise independent family of permutations P such that

every f 2 F is de�ned by

f(X) = f
�n

��1f (minf�f (X)g)
o�

for some �f 2 P .



Proof. Assume the premises of the Theorem. We start with two Lemmas.

Lemma 1. Let X be a nonempty subset of [n]. Then for any x 2 X

Pr(f(X) = f(fxg)) =
jX \ fxgj

jX [ fxgj
=

1

jX j
:

Corollary 1. Let X = fx1; x2; : : : ; xkg be a nonempty subset of [n]. Then for

each f 2 F
f(X) 2 ff(fx1g); f(fx2g); : : : ; f(fxkg)g :

Proof.

Pr (f(X) 2 ff(fx1g); f(fx2g); : : : ; f(fxkg)g)

=

kX
i=1

Pr (f(X) = f(fxig)) = 1:

ut

Lemma 2. Let X = fx1; x2; : : : ; xkg and Y be a nonempty subsets of [n]. If

X � Y , then for every f 2 F , if f(Y ) 2 ff(fx1g); f(fx2g); : : : ; f(fxkg)g, then
f(Y ) = f(X).

Proof. By hypothesis

Pr(f(X) = f(Y )) =
jX \ Y j

jX [ Y j
=

k

jY j
:

On the other hand,

Pr(f(X) = f(Y ))

= Pr(f(X) = f(fx1g) ^ f(Y ) = f(fx1g)) + � � �

� � �+Pr(f(X) = f(fxkg) ^ f(Y ) = f(fxkg))

= Pr(f(X) = f(fx1g) j f(Y ) = f(fx1g))Pr(f(Y ) = f(fx1g)) + � � �

� � �+Pr(f(X) = f(fxkg) j f(Y ) = f(fxkg))Pr(f(Y ) = f(fxkg))

= Pr(f(X) = f(fx1g) j f(Y ) = f(fx1g))(1=jY j) + � � �

� � �+Pr(f(X) = f(fxkg) j f(Y ) = f(fxkg))(1=jY j):

(The last equality follows from Lemma 1.) Hence for every xi 2 X

Pr(f(X) = f(fxig)jf(Y ) = f(fxig)) = 1 ;

and therefore for every f 2 F , if f(Y ) = f(fxig) then f(X) = f(fxig) as well.
ut

Lemma 3. For any two distinct elements x1; x2 2 [n] and each f 2 F .

f(fx1g) 6= f(fx2g) :



Proof. By hypothesis Pr(f(fx1g) = f(fx2g)) = 0. ut

Returning to the proof of the Theorem, we show now how to construct for
each f 2 F a permutation �f such that for every nonempty set X

f(X) = f
�n

��1f (minf�f (X)g)
o�

: (8)

Note that the family P given by the �f above are clearly min-wise independent
by Lemma 1.

Fix f and let g : ff(fx1g); : : : ; f(fxng)g ! [n] be the function de�ned by
g(f(fxig)) = xi. In view of Lemma 3 g is well-de�ned. Now de�ne a sequence
y1; y2; : : : ; yn as follows:

y1 = g(f([n]))

y2 = g(f([n] n fy1g))

y3 = g(f([n] n fy1; y2g))

...

In view of Corollary 1 g is correctly used and we have

f([n]) = f(fy1g)

f([n] n fy1g)) = f(fy2g)

f([n] n fy1; y2g)) = f(fy3g)

...

Furthermore y1; y2; : : : ; yn is a permutation of [n]. Finally we take �f to be the
inverse of the permutation determined by the yi; that is, �f maps y1 to 1, y2 to
2, etc. We need to show that f satis�es equation (8) for every nonempty set X .

Fix X and consider the sets Y1 = [n], Y2 = [n] n fy1g, Y3 = [n] n fy1; y2g, . . . ,
Yn = fyng. Let k be the largest index such that Yk still includes X . This implies
that

(a) yk 2 X since otherwise we could have taken Yk+1.
(b) fy1; y2; : : : ; yk�1g \X = ; since none of these elements belong to Yk.

By de�nition f(Yk) = f(fykg). But yk 2 X � Yk and therefore Lemma 2 implies
that f(X) = f(fykg) as well. On the other hand property (a) above implies that
minf�f (X)g � k and property (b) implies that minf�f (X)g > k � 1. Hence
minf�f (X)g = k and ��1f (minf�f (X)g) = yk as required. ut

3 Rank Uniformity for MWI-Families

In this section, we show that any min-wise independent family actually has the
property that every item in any �xed set is equally likely to have any rank in



the image of the set { not just the minimum rank as required by de�nition.
Our analysis is based on the following lemma, proven in [12]. (Alternatively, the
\only if" part follows also from Theorem 6 of [4] and the \if" part follows from
the proof of Theorem 2 below.)

Lemma 4. A family of permutations P is min-wise independent if and only if

for any set X � [n] of size k and any element x 2 [n] nX

Pr (�(X) = [k] ^ �(x) = k + 1) =
1�

n
k

�
(n� k)

;

when � is chosen at random in P.

In other words, if we �x a set X of size k and an extra element x, the probability
that x maps to k + 1 and X maps to f1; : : : ; kg in some arbitrary order is
exactly what \it should be" if we were sampling uniformly from the entire set
of permutations Sn.

Theorem 2. If P is min-wise independent, and � is chosen at random from P,

then

Pr
�
rank(�(x); �(X)) = r

�
=

1

jX j
: (9)

Proof. We sum over all the possible ways such that rank(�(x); �(X)) = r and
�(x) = s and consider which elements map to [s � 1]. Note that we must
have r � s � n � (jX j � r). There must be r � 1 other elements of X , call

them fx1; x2; : : : ; xr�1g, such that �(xi) 2 [s � 1], and there are
�
jXj
r�1

�
ways

to choose them. Similarly, there must be s � r elements of [n] n X , call them

fy1; y2; : : : ; yn�rg, such that �(yi) 2 [s�1] and there are
�
n�jXj
s�r

�
ways to choose

these elements. For each possible combination of choices, we have from Lemma 4
that the probability that these elements are mapped to [s� 1] and x is mapped
to s is

1�
n

s�1

�
(n� s+ 1)

:

Hence

Pr
�
rank(�(x); �(X)) = r

�
=

n�jXj+rX
s=r

�
jXj�1
r�1

��
n�jXj
s�r

�
�

n
s�1

�
(n� s+ 1)

=
1

jX j
�
n
jXj

�
n�jXj+rX

s=r

�
s� 1

r � 1

��
n� s

jX j � r

�

=
1

jX j
�
n
jXj

�
�
n

jX j

�
=

1

jX j
:

(The second equality is obtained by expanding binomials into factorials and
regrouping. The third equality is obtained by counting the ways of choosing jX j
elements out of [n] by summing over all possible values s for the r'th largest
element among those chosen.) ut



4 Robust Families

We now consider robust families. As described in the introduction, robustness
is an extension of min-wise independence. Formally, a family P is robust if for
every possible permutation �, when � is chosen at random in P

Pr
�
minf�

�
�(X)

�
g = �

�
�(x)

��
=

1

jX j
: (10)

Trivially, Sn is a robust family. We �rst demonstrate that there exist non-
trivial robust families. To this end, we extend the condition for min-wise indepen-
dent families given in Lemma 4 to the equivalent condition for robust families.
Since robust families are min-wise independent under any order � we obtain the
following:

Lemma 5. A family of permutations P is robust if and only if for any set

X � [n] of size k and any element x 2 [n] nX, and any other set A � [n] of size
also k and any element a 2 [n] nA

Pr
�
�(X) = A ^ �(x) = a

�
=

1�
n
k

�
(n� k)

: (11)

Theorem 3. There exist biased robust families of size at most

n2
�
2(n� 1)

n� 1

�
:

Proof. Following an idea used in [4], we establish a linear program for determin-
ing a robust family of the required size. There are n! variables x�i

, one for each
possible permutation �i. The variable x�i

represent the probability that �i is
chosen within our family; if x�i

= 0, we may exclude �i from the family.
Our linear program is based on Lemma 5. We set up an equation for each pair

(a;A) and (x;X) with jAj = jX j, with each equation representing the constraint
that (a;A) maps to (x;X) with the required probability. Hence there are

n�1X
i=0

n2
�
n� 1

i

�2

= n2
�
2(n� 1)

n� 1

�

equations. We know there exists a solution to the linear program, since if each
permutation is chosen with probability 1=n! we have a robust family. Hence

there must be a basic feasible solution with at most n2
�
2(n�1)
n�1

�
variables taking

non-zero values. This solution yields a biased robust family. ut

It is also worthwhile to ask if there are any non-trivial unbiased robust fam-
ilies. We demonstrate that in fact there are non-trivial families for n � 4.

Recall that the permutations Sn can be split into two groups, each of size
n!=2, as follows: a permutation is called even if it can be obtained by an even
number of transpositions from the identity, and odd odd otherwise.



Theorem 4. For n � 4, the even permutations and the odd permutations of [n]
both yield robust families.

Proof. We use Lemma 5. That is, we must show that for each pair (x;X) with
x 2 [n], X � [n], x =2 X , the probability that �(x) = a and �(X) = A is correct
for every (a;A) with a 2 [n], A � [n], jAj = jX j, and a =2 A.

Equivalently, since the odd permutations and even permutations divide the
set of all permutations into two equal-sized families, it su�ces to show that
the number of even permutations mapping (x;X) into (a;A) is the same as the
number of odd permutations that do so. Note that as n � 4, either jX j � 2 or
j[n]�X �fxgj � 2. In the �rst case, we can determine a one-to-one mapping of
even permutations to odd permutations that map (x;X) into (a;A) by choosing
two particular elements of X (say the two smallest) and transposing them. In the
second case, we may do the same by transposing two elements of [n]�X �fxg.

ut

From the lower bound in [4], we know that unbiased min-wise indepen-
dent families (and hence robust families) have size at least lcm(1; : : : ; n). As
lcm(1; : : : ; n) = n!=2 for n = 4 and n = 5, the result of Theorem 4 is optimal for
these cases. We suspect that Theorem 4 is in fact optimal for all n � 4; that is,
there is no unbiased robust family of size less than n!=2. While we cannot yet
show this, we can show that for n = 6, there is no unbiased robust family of size
lcm(1; : : : ; n) = 60.

Theorem 5. All the unbiased robust families of permutations of f1; 2; 3; 4; 5; 6g
have size greater than 60.

Proof. The proof uses an exhaustive search, where the search for a robust family
is reduced by using symmetry and Lemma 5. Details will appear in the full paper.

ut

Given the development of approximate min-wise independent families of per-
mutations developed in [4], it is natural to ask about approximate robust families
of permutations as well. A family of permutations is said to be approximately

robust with relative error � if and only if for every permutation order �,����Pr�minf�
�
�(X)

�
g = �

�
�(x)

��
�

1

jX j

���� � �

jX j
: (12)

That is, regardless of �, the probability over the choice of � that an element x is
the minimum of a set jX j is within a factor of (1� �) of the natural probability
1
jXj . It is straightforward to show that there must be small approximate robust

families.

Theorem 6. There are approximate robust families of size O(n2 log(n)=�).

Proof. The proof follows Theorem 3 of [4]. We simply choose a random set of
permutations of the appropriate size, and show that with some probability, we
obtain an unbiased approximate robust family. Details will appear in the full
paper. ut
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