
Estimating Resemblance of MIDI Documents

Michael Mitzenmacher? and Sean Owen ??

Abstract. Search engines often employ techniques for determining syn-
tactic similarity of Web pages. Such a tool allows them to avoid returning
multiple copies of essentially the same page when a user makes a query.
Here we describe our experience extending these techniques to MIDI mu-
sic �les. The music domain requires modi�cation to cope with problems
introduced in the musical setting, such as polyphony. Our experience
suggests that when used properly these techniques prove useful for de-
termining duplicates and clustering databases in the musical setting as
well.

1 Introduction

The extension of digital libraries into new domains such as music requires re-
thinking techniques designed for text to determine if they can be appropri-
ately extended. As an example of recent work in the area, Francu and Nevill-
Manning describe designing an inverted index structure for indexing and per-
forming queries on MIDI music �les [8]. Their results suggest that by using
additional techniques such as pitch tracking, quantization, and well-designed
musical distance functions, organizing and querying a large music database can
be made e�cient.

In this paper, we describe our experience extending hashing-based techniques
designed for �nding near-duplicate HTML Web documents to the problem of
�nding near-duplicate MIDI music �les. These techniques are currently used by
the AltaVista search engine to, for example, determine if an HTML page to be
indexed is nearly identical to another page already in the index [6]; they have also
been used to cluster Web documents according to similarity [7]. Our goal is to
determine if these techniques can be e�ective in the setting of musical databases.
This follows a trend in other recent work in the area of musical databases in
trying to extend text-based techniques to musical settings [4, 8].

As an example of related work, the Humdrum Toolkit [1] provides a suite of
tools that may be used to estimate musical resemblance and manipulate musical
structures in other ways. Indeed, the techniques we describe could be imple-
mented in Humdrum, and we believe they may prove a useful addition to the
toolkit. We note that Humdrum uses its own proprietary format (although trans-
lations to and from MIDI are possible). Theme�nder [2] implements a musical

? Computer Science Department, Harvard University. E-mail:
michaelm@eecs.harvard.edu. Supported in part by an Alfred P. Sloan Research
Fellowship, NSF CAREER Grant CCR-9983832, and an equipment grant from
Compaq Computer Corporation.

?? E-mail: srowen@eecs.harvard.edu. Supported in part by a grant from the Harvard
Committee for Faculty Research Support.

database search tool using the same format as Humdrum and allows searches on
a melody line. We instead allow comparison between entire pieces of music.

Our results suggest that �nding near-duplicates or similar MIDI pieces can be
done e�ciently using these hashing techniques, after introducing modi�cations to
cope with the additional challenges imposed by the musical setting. In particular
we address the problem of polyphony, whereas other work on musical similarity
has largely restricted itself to single, monophonic melody lines. Applications for
these techniques are similar to those for Web pages, as described in [7]. We
focus on the most natural applications of clustering and on-the-y resemblance
computation.

To begin, we review important aspects of the MIDI �le format and recall the
basic framework of these hashing techniques in the context of text documents.
We then discuss the di�culties in transferring this approach to the musical
domain and suggest approaches for mitigating these di�culties. We conclude
with results from our current implementation.

1.1 Review: MIDI

The MIDI (Musical Instrument Digital Interface) 1.0 speci�cation [3] de�nes a
protocol for describing music as a series of discrete note-on and note-o� events.
Other information, such as the force with which a note is released, volume
changes, and vibrato can also be described by the protocol. A MIDI �le pro-
vides a sequence of events, where each event is preceded by timing information,
describing when the event occurs relative to the previous event. MIDI �les there-
fore describe music at the level that sheet music does. Because of its simplicity
and extensibility, MIDI has become a popular standard for communication of
musical data, especially classical music.

1.2 Review: Hashing techniques for text similarity

We review previously known techniques based on hashing for determining when
text documents are syntactically similar. Here we follow the work of Broder [6],
although there are other similar treatments [9, 10].

Each document may be considered as a sequence of words in a canonical
form (stripped of formatting, HTML, capitalization, punctuation, etc.). A con-
tiguous subsequence of words is called a shingle, and speci�cally a contiguous
subsequence of w words is a w-shingle. For a document A and a �xed w there
is a set S(A;w) corresponding to all w-shingles in the document. For example,
the set of 4-shingles S(A; 4) of the phrase \one two three one two three one two
three" is:

f(one, two, three, one), (two, three, one, two), (three, one two, three)g

(We could include multiplicity, but here we just view the shingles as a set.)
One measure of the resemblance of two text �lesA andB is the resemblance of

their corresponding sets of shingles. We therefore de�ne the resemblance r(A;B)
as:

2

r(A;B) =
jS(A;w) \ S(B;w)j

jS(A;w) [S(B;w)j

The resemblance r(A;B) is implicitly dependent on w, which is generally a
pre-chosen �xed parameter. The resemblance is a number between 0 and 1, with
a value of 1 meaning that the two documents have the same set of w-shingles.
Small changes in a large document can only a�ect the resemblance slightly, since
each word change can a�ect at most w distinct shingles. Similarly, resemblance
is resilient to changes such as swapping the order of paragraphs.

An advantage of this de�nition of resemblance is that it is easily approxi-
mated via hashing (or �ngerprinting) techniques. We may hash each w-shingle
into a number with a �xed number of bits, using for example Rabin's �nger-
printing function [5]. From now on, when using the term shingle, we refer to the
hashed value derived from the underlying words. For each document, we store
only shingles that are 0 modulo p for some suitable prime p. Let L(A) be the set
of shingles that are 0 modulo p for the document A. Then the estimated value
of the resemblance re is given by:

re(A;B) =
jL(A) \ L(B)j

jL(A) [L(B)j

This is an unbiased estimator for the actual resemblance r(A;B). By choosing
p appropriately, we can reduce the amount of storage for L(A), at the expense
of obtaining possibly less accurate estimates of the resemblance. As L(A) is a
smaller set of shingles derived from the original set, we call it a sketch of the
document A.

Similarly, we may de�ne the containment of A by B, or c(A;B), by:

c(A;B) =
jS(A;w) \ S(B;w)j

jS(A;w)j

Again, containment is a value between 0 and 1, with value near 1 meaning
that most of the shingles of A are also shingles of B. In the text setting, a
containment score near 1 suggests that the text of A is somewhere contained in
the text of B. We may estimate containment by:

ce(A;B) =
jL(A) \ L(B)j

jL(A)j

Again this is an unbiased estimator.

2 Challenges in Adapting Hashing Techniques to Music

2.1 Polyphony

The greatest challenge in adapting hashing techniques similar to those for text
described above is that while text is naturally represented as a sequence of bytes,

3

musical notes occur logically in parallel, not serially. Thus musical data formats
like MIDI must arbitrarily atten this data into a serial stream of note events.
This creates several potential problems related to polyphony, or the playing of
several notes concurrently, so that directly converting the MIDI representation
into a text �le and applying the above techniques is not su�cient. Much of
the work in musical resemblance has obviated this problem by considering only
monophonic sequences of notes like a simple melody. We attempt to deal with
music in its entirety.

Fig. 1. Excerpt from J.S. Bach's \Jesu, Joy of Man's Desiring"

For example, Figure 1 shows three measures of J.S. Bach's \Jesu, Joy of
Man's Desiring" in roll-bar notation. A sequence of note events representing this
excerpt might begin as follows:

G1 On, G2 On, G3 On, G3 O�, A3 On, G1 O�, G2 O�, A3 O�, D2 On,
G2 On...

The events representing the bass notes are boldfaced; they are interspersed
among the melody note events, although intuitively the two are logically separate
sequences. As this example demonstrates, a logical group of notes such as the
melody usually is not represented contiguously in a MIDI �le, because note
events occurring in other parts come in between.

This situation confounds attempts to derive meaningful resemblance esti-
mates from direct application of text resemblance techniques. For example, if
one used the natural text representation of a MIDI �le to compute the resem-
blance or containment of some MIDI �le and another MIDI �le containing only
the melody of the same piece, one could not expect to correctly identify the
similarity between the �les. Adjacent events in a MIDI �le may not have any

4

logical relationship, so grouping them into shingles is no longer meaningful in
the context of a MIDI �le.

2.2 Timing and Other Information

Since MIDI records event timing with �ne resolution, the timing of note events in
two MIDI representations of the same music could di�er, but to an imperceptible
degree. Such insigni�cant variations can potentially have a signi�cant impact on
a resemblance estimate. MIDI �les may also record a variety of musical meta-
information and machine-speci�c controls not directly related to the music.

3 Solutions

3.1 Pitch by Pitch

Our basic strategy for adapting to musical data is to separate out notes from
each pitch, and �ngerprint the sequences of start times for notes of each pitch
independently. That is, a separate sketch is produced for each of the 128 possible
note pitches in a MIDI �le. Contiguous subsequences of note start times in each
pitch are grouped into shingles, and so forth as in the text resemblance compu-
tation described above. So, the resemblance of C3 note events in document A
with C3 note events in document B is computed by direct application of the text
resemblance computation, and likewise for all 128 possible pitches. A weighted
average of these 128 resemblance computations then gives the resemblance be-
tween A and B.

This helps mitigate the problems of polyphony in both resemblance and
containment computations. The notes in one pitch are more likely to belong to
one logical group of notes, therefore it is reasonable to group notes of the same
pitch together. At the level of a single pitch, the text resemblance computation
is again meaningful and we can take advantage of this established technique. We
may eliminate the problem of arbitrary ordering of simultaneous events; when
considering one pitch, simultaneous events are exact duplicates, and one can be
ignored.

One may ask why we do not group notes from two or three adjacent pitches
together, or group notes across all 128 pitches together into a single sequence.
Our initial experimental results indicate that this hurts performance, and indeed
grouping all pitches together yields extremely poor performance. While this ap-
proach may be worth further study, we believe the advantages of the pitch by
pitch approach in the face of polyphony are quite strong.

3.2 Extension to Transpositions and Inversions

The pitch by pitch approach also allows us to consider musical transpositions.
Consider a musical piece in the key of C in MIDI �le A, and the same piece in
the key of C# in �le B. As given, this resemblance computation would return
a very low resemblance between A and B, though musically they are all but
identical. C3 notes in A are compared to C3 notes in B, but this group of notes
really corresponds to C#3 notes in B.

5

If we were to account for this by comparing C#3 notes in B to C3 notes
in A, and so forth, we would correctly get a resemblance of 1.0. This is trivial
using pitch by pitch sketches; we may try all possible transpositions and take
the maximum resemblance as the resemblance between two MIDI �les. While
this certainly solves the problem, it slows the computation substantially. (There
are up to 128 transpositions to try.) In practice we may try the few most likely
transpositions, using information such as the number of shingles per pitch to
determine the most likely transpositions.

Grouping by pitch into 128 sequences is not the only possibility. For example,
another possibility is to ignore the octave of each pitch entirely; all C pitches
would be considered identical and all C note events would be grouped, altogether
producing 12 sequences. Doing so potentially creates the same interference e�ects
between parts that we try to avoid, however.

On the positive side, ignoring the octave helps cope with harmonic inversions.
For example, the pitches C, E, and G played together are called a C major chord,
regardless of their relative order. That is, C3-E3-G3 is a C major chord, as is
E3-G3-C4, though the latter is said to be \in inversion." All such inversions have
the same subjective harmonic quality as the original (\root position") chord.

If one made some or all the C3 notes in a piece into C4 notes (moving them all
up by one octave), the resulting piece would be subjectively similar, yet these two
pieces would be deemed di�erent by the computation described above. Ignoring
octaves clearly resolves this problem.

These examples demonstrate the di�culty involved in both adequately de�n-
ing and calculating musical similarity at a syntactic level. In our experimental
setup, we choose not to account for transpositions or harmonic inversions. Our
domain of consideration is classical MIDI �les on the web, and such variations
are generally uncommon; that is, one does not �nd renditions of Beethoven's
\Moonlight Sonata" transposed to any key but its original C# minor. However
one could imagine other domains where such considerations would be important.

3.3 Timing

In text, the word is the natural base for computation. In music, the natural base
is the note. In particular, we have chosen the relative timings of the notes as the
natural structure, corresponding to the order of words for text documents.

We have found that using only the start time, instead of start time and
duration, to represent a note is the most e�ective. The duration, or length of
time a note lingers, can vary somewhat according to the style of the musician,
as well as other factors; hence it is less valuable information and we ignore it.
Even focusing only on start times, various preprocessing steps can make the
computation more e�ective.

MIDI �les represent time in \ticks," a quantity whose duration is typically
1/120th of a quarter-note, but may be rede�ned by MIDI events. We scale all
time values in a MIDI �le as a preprocessing step so that one tick is 1/120th of
a quarter-note. Given this and the fact that we ignore MIDI Tempo events, the
same music with a di�erent tempo should appear similar using our metric.

6

All times are quantized to the nearest multiple of 60 ticks, the duration of an
eighth-note (typically between 150 and 400 milliseconds) in order to �lter out
small, unimportant variations in timing.

Recall that note start times are given relative to previous notes. Musically
speaking, a time di�erence corresponding to four measures is in a sense the
same as forty measures, in that they are both a long period of time, probably
separating what would be considered two distinct blocks of notes (\phrases").
We therefore cap time di�erences at 1,920 ticks, which corresponds to 4 measures
of 4/4 time (about 8 seconds), and do not record any shingle containing a time
di�erence larger than this. Another option is to cap start times at 1,920 ticks
but not discard any shingles.

3.4 Extraneous Information

MIDI �les may contain a great deal of information besides the note-on and note-
o� events, all of which we consider irrelevant to the resemblance computation.
This is analogous to ignoring capitalization and punctuation in the text domain;
note that we could include this additional information, but we choose to ignore
it for overall performance.

For example, we ignore information about the instruments used and the
author and title of the piece, and base the computation solely on the music. In
practice such information could be used for indexing or classifying music, see e.g.
[4]. We note here that one could certainly use this information in conjunction
with our techniques, although it implies that one trusts the agents generating
this information.

Similarly we ignore track and channel numbers. MIDI �les may be subdi-
vided into multiple tracks, each of which typically contains the events describing
one musical part (one instrument, possibly) in a complex musical piece. Track
divisions are ignored because they have no intrinsic musical meaning and are
not employed consistently. Notes from all tracks in a multi-track MIDI �le are
merged into a single track as a preprocessing step. Also, MIDI events are associ-
ated with one of 16 channels to allow for directed communication on a network;
this channel number also has no musical meaning and is ignored.

Musically, we ignore di�erences in tempo, volume, and note velocity, focusing
on the timing aspects as described above.

3.5 The Algorithm

Fingerprinting. For each pitch z, the note events in pitch z in a MIDI �le
are extracted and viewed as a sequence of numbers (start times). Times are
normalized, and recall that start times are recorded as the time since the last
event. Each subsequence of four start times is viewed as a shingle; any shingle
containing a start time larger than 1,920 ticks is discarded. Each shingle is hashed
using Rabin �ngerprints [5] into a 16-bit number; those shingles whose hash is
0 modulo 19 are kept in the sketch of pitch z for the �le.

7

Note that increasing the number of start times per shingle decreases the
likelihood of false matches but magni�es the e�ect of small variations on the re-
semblance score. We have found experimentally that four start times per shingle
is a reasonable compromise, although the choice is somewhat arbitrary. Three
start times per shingle gives poorer results, but �ve and even six start times per
shingle yield performance quite similar to that of four.

The modulus 19 may be varied to taste; smaller values can increase accuracy
of resemblance estimates at the cost of additional storage, and vice versa.

A 16-bit hash value economizes storage yet yields a somewhat small hash
space. Since an average MIDI �le produces only about 1,200 shingles to be
hashed, the probability of collision is small enough to justify the storage sav-
ings. Note that using 20-bit or 24-bit hash values introduces substantial pro-
gramming complications that will slow computation; therefore 16 bits appears
the best practical choice, because using a full 32-bit hash value would substan-
tially increase memory requirements.

Resemblance and Containment. Let Az be the sketch (set of shingles) for
pitch z in a �le A. Given sketches for two �les A and B, for each z we compute
the resemblance

rz =
jAz \Bz j

jAz [Bz j
;

just as in the text resemblance computation. A weighted average of these 128
values gives the resemblance between A and B, where rz's weight is (jAz j+ jBzj).
Other scaling factors are possible; this scaling factor is intuitively appealing
in that it weights the per pitch resemblance the total number of shingles. In
particular, this approach gives more weight to pitches with many matching notes,
which is useful in cases where one �le may only contain certain pitches (such as
only the melody). We have found this performs well in practice, and in particular
it performs better than using an unweighted average.

Containment is de�ned analogously; the containment score for pitch z is
instead weighted by jAzj.

4 Experimental Results

4.1 Test Data

To our knowledge there is no large, publicly available standard corpus of MIDI
�les. Instead we developed our own corpus using �ve sites o�ering MIDI �les on
the Internet. We downloaded 14,137 MIDI �les (11,198 of which were unique) for
testing purposes. Many sites limit downloads to 100 per user per day, so custom
robot programs were developed to obtain the MIDI �les while respecting usage
restrictions.

4.2 Behavior of the Resemblance Score

A musical resemblance computation is only useful insofar as it corresponds well
to some intuitive notion of resemblance. That is, an estimated resemblance
should allow reliable conclusions about the relationship between two MIDI �les.

8

Fig. 2. Percent of note events altered vs. estimated resemblance

Our proposed computation corresponds to the notion that two �les resemble
each other when they have a high proportion of note events in common. Other
notions of resemblance are possible, but this is probably the most natural and
is also the notion captured by the text resemblance computation.

To test the accuracy of this computation, we took 25 MIDI �les from the web
and generated 100 altered MIDI �les from each of them. Each note event was
changed with probability q=100, so roughly a percentage q of the note events
were slightly altered at random. If a note was changed, then:

{ with probability 1/4 its pitch was changed, either up or down by one pitch,
at random.

{ with probability 1/4 it was deleted.
{ with probability 1/2 it was given a new start time, chosen uniformly at
random between the original start time and the time of either the last event
or an implicit event 120 ticks before, whichever was more recent.

Although these changes do not correspond to a speci�c model of how di�erences
in MIDI �les might arise, we feel it provides a reasonable test of the system's
performance.

The resemblance of each of the 2,500 instances was computed with the orig-
inal. The distribution of the resulting resemblance scores versus q is shown in
Figure 2. There is a reasonable and fairly reliable relationship between q and the
resulting resemblance score.

To view the results in a di�erent way, we also consider a small test set con-
sisting of �ve familiar pieces. The pieces are Beethoven's \Moonlight Sonata,"
First Movement; Saint-Sa�ens's \Aquarium" from \Carnival of the Animals;"
Rimsky-Korsakov's \Flight of the Bumblebee;" Wagner's \Bridal Chorus from
Lohengrin;" and Schumann's \Traumerei." Variations on each of these �ve �les
were constructed, with 3%, 6%, and 9% of all notes altered. Also, �les consisting
of only the treble parts of the songs were created. As Table 1 shows, there can
be signi�cant variance in the results depending on the piece.

9

Moonlight Aquarium Flight Lohengrin Traumerei

Treble 0.9375 0.4968 0.7739 0.8000 0.6667
3% 0.9179 0.8850 0.8657 1.0000 1.0000
6% 0.7050 0.7529 0.7087 0.8793 0.8571
9% 0.6463 0.7412 0.5474 0.7829 0.4583

Table 1. Sample resemblance computations

4.3 Simple Clustering

This resemblance computation's most compelling application may be determin-
ing when two MIDI �les represent the same piece of music. We clustered our
corpus of documents in the following way: any pair of �les A and B for which
r(A;B) exceeded some threshold t were put into the same cluster.

We �nd that high thresholds (t > 0:45) all but eliminate false matches; the
contents of nearly every cluster correspond to the same piece of music, though
all renditions of one piece may fail to cluster together. It is very interesting
that variations of the same piece of music can have a fairly low resemblance
score. (See the discussion for Table 2.) This appears to be a major di�erence
between the musical setting and the text setting; there appears to be a wide
variation in what constitutes the same musical piece, while for text the syntactic
di�erences among what is considered similar is much less. It may also reect a
partial problem with the pitch by pitch approach: a delay in one note can a�ect
the relative timing of multiple pitches, so changes can have an e�ect on a larger
number of shingles.

At low thresholds (t < 0:15), with high accuracy all renditions of a piece
of music cluster together, but di�erent musical pieces often cluster together
also. For instance, many (distinct) Bach fugues tend to end up the same cluster
because of their strong structural and harmonic similarities. For such values of t
we �nd that a few undesirably large clusters of several hundred �les form; many
small clusters aggregate because of a few uke resemblances above the threshold,
and snowball into a meaningless crowd of �les.

To gain further insight into the importance of the threshold, we did pairwise
resemblance comparisons for all the �les in our corpus. In Figure 3 we show
the number of pairs with a given resemblance; this is a histogram with the
resemblance scores rounded to the nearest thousandth. (Notice the y-axis is on
a logarithmic scale.) The graph naturally shows that most documents will have
low resemblance; even moderate resemblance scores may be signi�cant.

We chose a compromise value of t = 0:35, for which we �nd that clusters tend
to correspond well to distinct pieces of music with very few false matches; we
present some of the results of a clustering with this threshold. Table 2 shows the
site's descriptive information for the contents of some representative clusters.
Identical renditions (by the same sequencer), as well as renditions from di�erent
sequencers cluster together consistently.

Such a clustering might help the Classical MIDI Connection (CMC) learn
that their \Prelude No. IV in C# min" is from The Well-Tempered Clavier, or

10

Fig. 3. Relative frequency of resemblance scores from our corpus.

point out that the attribution of \Schubert-Liszt Serenade" to Liszt is possibly
incorrect. This might also help a performer or MIDI site determine who else has
posted (perhaps illegitimately) their own MIDI �les on the web. As an example
of the importance of the choice of threshold, consider the cluster corresponding
to the variations of \The Four Seasons." The pairwise resemblances of its mem-
bers are shown in Table 3. The two variations by the sequencer Dikmen appear
identical, so we consider the �rst four from the same source but from di�erent
sequencers. As can be seen, the same piece of music can yield very di�erent
shingles from di�erent sequencers.

Naturally, more sophisticated clustering techniques could improve perfor-
mance. For example, we have also tried incrementally building clusters, putting
clusters for A and B together only when the average resemblance of A with all
members of B's cluster, and vice versa, exceeds some threshold. We �nd that this
eliminates the problematic large clusters described above, but otherwise yields
nearly identical clusters, and that a lower threshold of t = 0:2 performs well.

4.4 Performance

Source code, written in C, was compiled and run on a Compaq AlphaServer
DS20 with a 500 MHz CPU, four gigabytes of RAM, a 64 KB on chip cache and
a 4 MB on board cache.

Our implementation can �ngerprint MIDI data at a rate of approximately 7.8
megabytes per second (of user time). If a typical MIDI �le is around 45 kilobytes
in size, then this amounts to producing sketches for about 174 MIDI �les per
second. A typical MIDI �le's sketch requires about 128 bytes of storage, not
counting bookkeeping information such as the �le's URL. Approximately 3,096
resemblances can be computed per second; this may be sped up by faster I/O,
by sampling fewer shingles (that is, increasing p), or by searching in parallel.
We expect that performance could also be improved by rewriting our prototype
code.

11

File Description Sequencer Source

Prelude No. 4 from The Well-Tempered Clavier, (unknown) CMC
Book I (Bach)

Prelude No. IV in C# min (Bach) (unknown) CMC
Prelude No. 4 in C# min from The Well-Tempered M. Reyto prs.net

Clavier, Book I (Bach)

Variations on a Theme by Haydn (Brahms) J. Kaufman CMC
Variations for Orchestra on a Theme from Haydn's J. Kaufman prs.net

St. Anthony's Chorale (Brahms)

The Four Seasons, No. 2 - 'Summer' in G-, Allegro M. Dikmen prs.net
non molto (Vivaldi)

The Four Seasons, No. 2 - L'Estate (Summer) in G-, M. Reyto prs.net
1. Allegro non molto (Vivaldi)

The Four Seasons, No. 2 - 'Summer' in G-, 2. Estate A. Zammarrelli prs.net
(Vivaldi)

The Four Seasons, No. 2 - 'Summer' in G-, Allegro N. Sheldon Sr. prs.net
non molto (Vivaldi)

Summer from the Four Seasons M. Dikmen Classical MIDI

Symphony No. 3 in D (Op. 29), 2nd Mov't (Tchaikovsky) S. Zurieh CMC
Symphony No. 3, 2nd Mov't (Tchaikovsky) S. Zurieh prs.net
Symphony No. 3 Op. 29, Movt. 2 (Tchaikovsky) S. Zurieh sciortino.net

Schwanengesang, 4. Serenade (Schubert) F. Raborn prs.net
Schubert-Liszt Serenade (Liszt) (unknown) Classical MIDI
Serenade (Schubert) F. Raborn Classical MIDI

Symphony No. 94 in G `Surprise,' 4. Allegro molto J. Urban prs.net
(Haydn)

Symphony No. 94 in G `Surprise,' 4. Finale: L. Jones prs.net
Allegro molto (Haydn)

Table 2. Contents of some representative clusters

Source URL

CMC http://www.midiworld.com/cmc/

prs.net http://www.prs.net/midi.html
Classical MIDI http://www.classical.btinternet.co.uk/page7.htm

sciortino.net http://www.sciortino.net/music/

12

Dikmen Reyto Zammarrelli Sheldon

Dikmen 0.4636 0.3233 0.3680

Reyto 0.4636 0.3612 0.5901

Zammarrelli 0.3233 0.3612 0.2932

Sheldon 0.3680 0.5901 0.2932
Table 3. Similarity scores from a cluster.

5 Conclusions

We believe that this musical resemblance computation represents an e�ective
adaptation of established text resemblance techniques to the domain of MIDI
�les. The pitch by pitch �ngerprinting approach provides a useful and sound
framework for this adaptation, and can be easily extended to tackle more com-
plex musical issues like transpositions and inversions. Our experiments suggest
that computation can be used to discover near-duplicate MIDI �les with a high
degree of accuracy. Further engineering and tuning work would be useful to
optimize this approach.

We believe this approach may be useful in conjunction with other techniques
for organizing and searching musical databases. An important open question is
how these techniques can be applied to other musical formats, such as MP3.

References

1. The HumdrumToolkit. Available at http://www.lib.virginia.edu/dmmc/Music/Humdrum/.
2. Theme�nder. Available at http://www.theme�nder.org.
3. MIDI Manufacturers Association. The complete detailed MIDI 1.0 speci�cation,

1996.
4. D. Bainbridge, C. G. Nevill-Manning, I. H. Witten, L. A. Smith, and R. J. McNab.

Towards a digital library of popular music. In Proceedings od Digital Libraries '99,
pages 161-169, 1999.

5. A. Z. Broder. Some applications of Rabin's �ngerprinting method. In R. Capocelli,
A. De Santis, and U. Vaccaro, editors, Sequences II: Methods in Communications,
Security, and Computer Science, pages 143{152. Springer-Verlag, 1993.

6. A. Z. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences (SEQUENCES '97), pages 21{29. IEEE Computer
Society, 1998.

7. A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the
Web. In Proceedings of the Sixth International World Wide Web Conference, pages
391{404, 1997.

8. C. Francu and C. G. Nevill-Manning. Distance metrics and indexing strategies
for a digital library of popular music. In Proceedings of the IEEE International
Conference on Multimedia and Expo, 2000.

9. U. Manber. Finding similar �les in a large �le system. In Proceeding of the Usenix
1994 Winter Technical Conference, pages 1{10, January 1994.

10. N. Shivakumar and H. Garcia-Molina. SCAM: A copy detection mechanism for
digital documents. In Proceeding of the 2nd International Conference in the Theory
and Practice of Digital Libraries (DL '95), 1995.

13

