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Abstract

We examine generalizations of the classical balls and
bins models, where the probability a ball lands in a
bin is proportional to the number of balls already in
the bin raised to some exponent p. Such systems
exhibit positive or negative feedback, depending on the
exponent p, with a phase transition occurring at p = 1.
Similar models have proven useful in economics and
chemistry; for example, systems with positive feedback
(p > 1) tend naturally toward monopoly. We provide
several results and useful heuristics for these models,
including showing a bound on the time to achieve
monopoly with high probability.

1 Introduction
There have been several recent instances in technology
where a small number of companies compete in a market
until one obtains a non-negligible advantage in the
market share, at which point its share rapidly grows
to a monopoly or near-monopoly. Economists have
described this tendency toward monopoly in terms of
positive feedback [12]. One loose explanation for this
principle, commonly referred to as Metcalfe’s Law, is
that the inherent potential value of a system grows
super-linearly in the number of existing users. For
example, in a system with n users, there are

(
n
2

)
possible

pairwise connections, and this may more accurately
reflect the value of the system than the number of users.

The video recording battle between VHS and Beta
formats is often cited as a classic example of the power
of positive feedback; VHS won out thanks to early user
adoption, even though Beta was argued to be technically
superior. In the Microsoft anti-trust trial, economists
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argued about the relationship of positive feedback and
Microsoft’s operating systems monopoly. Even the long-
lasting dominance of the QWERTY keyboard has been
ascribed to positive feedback [1, 12].

Similarly, there are situations where negative feed-
back occurs, so that a competitor with a larger market
share has difficulty keeping its advantage. When large
competitors suffer from inefficiencies, negative feedback
is likely to occur [12].

In this paper, we provide a simple mathematical
model that elucidates the power of positive and negative
feedback. Our model is a non-linear generalization of
classical balls and bins models. While we developed this
model independently, we have found since that these
variations on standard balls and bins models have been
known and applied by economists [1]. For example, it
has previously been shown that under certain conditions
positive feedback provably leads to monopoly in the
limit [2]. From these limiting results, however, it is
unclear how quickly monopoly will occur.

In this paper, we follow a more concrete approach,
examining a specific family of models: the probability
that a ball lands in a bin with x balls is proportional
to xp. We call p the exponent of the model. In the case
where p = 0, this is just the standard model of throwing
balls into bins independently and uniformly at random.
In the case where p = 1, this is equivalent to the Pólya–
Eggenberger model [8].

In economic terms, the model captures the effect
of positive feedback in competitive situations. For
example, suppose that there are two instant messaging
services that do not interoperate well from which to
choose. There is strong incentive to choose the service
with more current users, as it offers more potential
interactions. Of course this does not necessarily mean
that all new users flock to a single system. We model the
effect here as a probabilistic one, where new users are
more likely to sign up to more popular services, and the



strength of this feedback is governed by the exponent p.
We focus our analysis on the case of two bins. This

is most interesting in practice; generally two companies
are fighting to attract users for their competing systems
[12]. Moreover, a simple union bound argument in
Section 4 demonstrates that the problem of two bins
encapsulates the significant behaviors.

It is well known in the case of p = 1 that if we
start with two bins, each with one ball, the resulting
distribution when there are n balls in the system is
uniform; the probability of ending with k balls in the
first bin is 1/(n−1). More generally, it is clear that if one
bin has a fraction q of the balls, it tends to maintain a
fraction q of the balls in the future [7]. Positive feedback
occurs when the exponent p is greater than 1. To see
the difference in behavior when p > 1, note that if we
start with one ball in each bin, the probability that a
specific bin obtains all the balls is

∞∏
x=1

(
1 − 1

1 + xp

)
,

which for p > 1 is a constant depending on p. We
demonstrate that for any constant exponent p > 1, any
constant ε > 0, and a sufficiently large number n of balls
thrown, the probability that neither of the bins obtains
a 1 − ε fraction of the balls is inversely polynomial
in n. The exact polynomial depends on ε and p.
An interpretation of this statement is that monopoly
occurs quickly with high probability. Similarly, negative
feedback occurs when the exponent p is less than 1.
For any constant p < 1, any constant ε > 0, and
a sufficiently large number of balls thrown n, the
probability a bin obtains more than a 1/2 + ε fraction
of the balls is inversely polynomial in n. This result
emphasizes the phase transition in this model at p = 1.

Our belief is that these non-linear balls and bins
models, which naturally arise in economic, chemical,
and biological systems, may also be useful for describing
phenomena in computer science. As an example, we
suggest how we may generalize random Web graph
models using similar non-linear models. We also provide
heuristics and calculation methods that may prove
useful for analyzing such systems.

We wish to note that after submitting this paper,
we learned of other work being done on this problem
by Spencer and Wormald. They provide an elegant
framework for the problem that gives many additional
insights into the behavior of these types of systems,
particularly in the case of many bins [13].

2 The case p > 1
We begin with some useful definitions.

Definition 2.1. If there are n balls divided among m
bins, we say that one bin has an ε-advantage if it has at
least a 1/m + ε fraction of the balls. Similarly, a bin is
all-but-ε-dominant if it has at least a 1 − ε fraction of
the balls.

Consider a fixed p > 1. In this section we cover
the case of two bins. We will prove that when a ball
lands in a bin with x balls with probability proportional
to xp, and we start with one ball in each bin, one bin
becomes all-but-δ-dominant with probability q after n
balls, where n is polynomial in q and 1/δ. We note
that the starting point is chosen for convenience, and
in Section 4 we use a simple union bound argument to
extend the result to m > 2 bins.

Our proof follows a sequence of steps. We first
show that one bin obtains an ε0-advantage for some
ε0. From here, we show that the separation grows.
Roughly, if we double the number of balls in the
system, we increase the advantage by a constant factor
(with high probability). We then show that if one
bin becomes all-but-ε1-dominant for a sufficiently small
ε1, the dominance improves (that is ε1 shrinks) by a
constant factor when we double the number of balls in
the system. Putting it all together gives our result. We
note that in what follows, we make no efforts to optimize
the various constants used in the theorems.

2.1 Initial separation
We first show that if p > 1, the probability that neither
of the bins gains an ε0-advantage is inversely polynomial
in the number of balls thrown for some constant ε0.
While this can be proven regardless of the initial state,
for convenience we start with one ball in each bin.

Theorem 2.1. Consider a system with exponent p and
two bins B0 and B1 that begin with one ball each. Then
there exist constants ε0 > 0 and γ > 0 such that after n
steps, the probability that the two bins fail to ε0-separate
is at most O(n−γ).

Proof. See the Appendix.

2.2 Increasing advantage
Assume that B0 (w.l.o.g.) has a constant ε-advantage
over B1 after n balls have been thrown into the system.
Let x(t) and y(t) be the loads of B0 and B1 respectively
when there are t balls in the system. We would like to
say that as we continue throwing balls into the system,
the probability of a ball going into B0 is

x(n)p

x(n)p + y(n)p
,

and use this to show that the advantage grows. This
is not quite the case, however, since a new ball may go



into B1, in which case the probability the next ball falls
into B0 sinks below x(n)p

x(n)p+y(n)p .
To circumvent this issue, we consider throwing balls

in waves of εn/k, for some k ≥ 1. If we throw in εn/k
balls k/ε times, then the number of balls in the system
doubles. Consider the first wave. Let X be the number
of new balls that land in B0 and Y the number of new
balls than land in B1. We underestimate the probability
that a new ball lands in B0 by assuming that all previous
balls in the wave have landed in B1. Even in this worst
case situation,

x(t)
y(t)

≥
(

1
2 + ε

1
2 − k−1

k ε

)p

for all t in [n, n + εn/k]. Hence, by use of Chernoff
bounds, we find that with all but exponentially small
probability,

X

Y
≥
(

1
2 + ε

1
2 − k−1

k ε

)p

− ε′

for some constant ε′. For n sufficiently large, we may
take k large enough and ε′ small enough so that the
difference between X

Y and
( 1

2+ε
1
2−ε

)p

is an arbitrarily small
constant. Note that this implies that B0 will continue
to have an ε advantage over the next wave.

Suppose we show that
(

1/2+ε
1/2−ε

)p

> 1/2+βε
1/2−βε , for some

β > 1. Then

x(2n)
y(2n)

>

(
1
2 + ε

)
n +

(
1
2 + βε

)
n(

1
2 − ε

)
n +

(
1
2 − βε

)
n

=
1
2 + 1+β

2 ε
1
2 − 1+β

2 ε
.

(Note that the arbitrarily small constant between X
Y

and
( 1

2+ε
1
2−ε

)p

will get absorbed.) Hence our ε-advantage

increases to 1+β
2 ε once we double the number of balls,

with high probability.

Theorem 2.2. Suppose that B0 has an ε ≥ ε0 advan-
tage over B1 when n balls are in the system. If we throw
n more balls into the system then with high probability
B0’s advantage increases by a factor of 1 + (p−1)(1−2ε)

1+2ε(p−1) .

Proof.(
1/2 + ε

1/2− ε

)p

=
(
1 +

4ε
1 − 2ε

)p

> 1 +
4pε

1 − 2ε
=

1/2 + α

1/2− α

where

α =
(
1 +

(p − 1)(1 − 2ε)
1 + 2ε(p− 1)

)
ε.

So if for example, ε < 0.4, the advantage, with high
probability, increases by a factor of at least 1+ p−1

5+4(p−1) .

2.3 To Complete Dominance
By Theorem 2.2, the advantage increases until one bin is
all-but-0.1-dominant. At this point, a similar argument
shows the dominance improves (that is, the initial 0.1
shrinks) geometrically.

Theorem 2.3. If B0 is all-but-ε1-dominant for ε1 ≤
0.2, then when we double the number of balls in the
system, B0 becomes all-but-p+1

2p ε1-dominant with high
probability.

Proof. As before, by breaking the next group of balls
into suitable blocks, we obtain that X

Y can be made

arbitrarily close to
(

1−ε1
ε1

)p

with high probability. Now

if
(

1−ε
ε

)p − 1−ε/p
ε/p > 0, then with high probability

x(2n)
y(2n)

>
(1 − ε1)n + (1 − ε1/p)n

ε1n + ε1n/p
=

1 − ε1
p+1
2p

ε1
p+1
2p

,

proving the lemma.
Let g(ε, p) =

(
1−ε

ε

)p − 1−ε/p
ε/p . To show g(ε, p) > 0

for p > 1 and 0 < ε ≤ 0.2, we consider the function

φp(ε) =
ε(1 − ε)p

(p − ε)εp
.

We need to show that φp(ε) > 1 for ε < 0.2. Now

φp(0.2) =
4p

5p − 1
> 1

and taking logarithms and differentiating gives

φ′
p(ε)

φp(ε)
= −p − 1

ε
− p

1 − ε
+

1
p − ε

< 0.

Hence φp(ε) > 1 for 0 < ε ≤ 0.2.

2.4 Wrapping up
The following lemma estimates the number of balls in
the system when B0’s advantage is arbitrarily close to
1, or in other words, when B0 is all-but-δ-dominant for
an arbitrarily small constant δ. Suppose we start with
B0 having an ε0-advantage and n0 balls in the system,
as given in Theorem 2.1.

Theorem 2.4. Assume that we throw balls into the
system until B0 is all-but-δ-dominant for some δ > 0.
Then, if p > 1, with probability 1− eΩ(n0), B0 is all-but-
δ-dominant when the system has 2x+z · n0 balls, where
x = log1+ p−1

5+4(p−1)

0.4
ε0

and z = log 2p
p+1

0.1
δ .



Proof. Recall that in each doubling stage, we succeed
with all but exponentially small probability in the
number of balls in the system, which is greater than
n0. Each time we double the number of balls in the
system, the initial advantage ε0 increases by a factor of
at least 1 + p−1

5+4(p−1) until it becomes 0.4; this requires
x = log1+ p−1

5+4(p−1)

0.4
ε0

doubling stages. From then on, B0

goes from all-but-0.1-dominant to all-but-δ-dominant,
shrinking the fraction of balls not in B0 by a factor
of p+1

2p with each doubling stage. Hence, we need
z = log 2p

p+1

0.1
δ doubling stages until B0 is all-but-δ-

dominant.

Essentially, our argument shows that once we
achieve a little separation, the separation continues to
grow with very high probability. In fact, the only reason
our probability bounds are polynomial in the number of
balls is because of the need to establish an initial gap in
Theorem 2.1.

3 The case p < 1
In the case where p < 1, we have similar results, except
that in this case the system tends to converge toward
an equal number of balls in each bin. That is, we have
negative feedback. For convenience, we consider only
the case where 0 < p < 1. (The case where p ≤ 0 is
trivial.)

Consider a fixed exponent p < 1 in a system with
two bins, B0 and B1. Suppose that n balls are in the
system and B0 (w.l.o.g.) has an ε0-advantage. We show
that the advantage shrinks. We first show that if ε0
is at least 1/

√
2(p + 1)(p + 2), the corresponding all-

but-δ-dominance for B0 increases. Once its advantage
becomes sufficiently small, it decreases by a constant
factor by throwing n more balls in the system.

Theorem 3.1. Suppose that B0 has an ε-advantage.
If we throw n more balls in the system and ε ≤
1/
√

2(p + 1)(p + 2), B0’s advantage decreases by a fac-
tor of (3 + p)/4 with high probability. Otherwise, sup-
pose B0 is an all-but-ε-dominant, where 0 < ε ≤ 1

2 −
1√

2(p+1)(p+2)
. If we throw n more balls in the system

then B0 becomes all-but-p+1
2p ε-dominant with high prob-

ability.

Proof. The proof is similar to Theorem 2.2. We first
consider when the advantage shrinks by the constant
factor (3 + p)/4. Using the idea of throwing balls
in waves and Chernoff bounds as in Theorem 2.2, we
see that the argument boils down to showing that the
probability a ball lands in the most full bin, or

(
1/2+ε
1/2−ε

)p

,

is bounded above by 1/2+(1+p)ε/2
1/2−(1+p)ε/2 . Therefore it suffices

to determine where q(ε, p) = 1−(1+p)ε
1+(1+p)ε ·

(
1/2+ε
1/2−ε

)p

< 1.
Note q(0, p) = 1.

We first show qp(ε) is decreasing in ε. It is eas-
ier to look at log qp(ε), which decreases when qp(ε)
does. The derivative of log qp(ε) with respect to ε is

4p
1−4ε2 − 2(1+p)

1−(1+p)2ε2 . It is straightforward to check that

qp(ε) is decreasing for ε < 1/
√

2(p + 1)(p + 2) and in-
creasing past that point. Hence qp(ε) < 1 in the range
(0, 1/

√
2(p + 1)(p + 2)], and the advantage shrinks by a

constant factor when we double the number of balls in
the system for ε ≤ 1/

√
2(p + 1)(p + 2).

Now suppose B0 ia all-but-ε-dominant. Here we
follow Theorem 2.3. Let g(ε, p) =

(
1−ε

ε

)p − 1−ε/p
ε/p . We

study g(ε, p) for 0 < p < 1 and ε ∈ (0, 1
2 − 1√

2(p+1)(p+2)
].

It is easy to check that g(ε, p) is increasing in ε and (by
use of Maple) that g(1

2 − 1√
2(p+1)(p+2)

, p) < 0, for all

0 < p < 1, so the lemma is proved.

Theorem 3.1 can be used to show that from any
non-trivial starting state, even if one bin has a large
advantage, when p < 1 the system will quickly return
to a near-equal state.

4 From Two to Many

We use the results for the case of two bins to obtain
similar results for the case of many bins using standard
union bounds. A key point is that if we look at a pair
of bins from a system with many bins, the evolution of
this pair of bins is just that of a system with exponent p.
That is because when we condition on a ball landing in
the pair of bins, the probability that it falls into a bin
with x balls is still proportional to xp. The following
simple proof avoids any conditioning issues, and applies
when p > 1.

Lemma 4.1. Suppose that when n balls are thrown into
a pair of bins, the probability that neither is all-but-ε-
dominant is upper bounded by p(n, ε). Here we assume
p(n, ε) is non-increasing in n. Then when 1 + mn/2
balls are thrown into m bins, the probability that none
is all-but-γ-dominant is at most

(
m
2

)
p(n, ε) for γ =

ε/(ε + (1 − ε)/(m − 1)).

Proof. Consider the two bins with the most balls, B0

and B1, with B0 having more balls. The two bins
together have at least n balls since 1+mn/2 total balls
are thrown. If B0 is not all-but-γ-dominant over all the
bins, then it has less than a 1 − γ fraction of the balls
and B1 has at least a γ/(m − 1) fraction of the balls.
For the value of γ stated,

1 − γ

γ/(m − 1)
=

1 − ε

ε
.



Hence in this case B0 is not all-but-ε-dominant when
considering the pair of bins B0 and B1. But the
probability that there is a pair of bins where neither
is all-but-ε-dominant is bounded above by

(
m
2

)
p(n, ε).

Essentially this lemma says that going from two
bins to m bins increases the number of balls thrown by
a factor and the probability that all-but-ε-dominance
does not occur by polynomial factors in m. Hence
the probability one bin fails to all-but-ε-dominate is
inversely proportional to a polynomial in the number
of balls thrown, the number of bins, and 1/ε.

A similar lemma applies for the case p < 1.

Lemma 4.2. Suppose that when n balls are thrown into
a pair of bins, the probability that one obtains an ε-
advantage is upper bounded by p(n, ε). Here we assume
p(n, ε) is non-increasing in n. Then when 1 + mn
balls are thrown into m bins, the probability that one
bin has a γ-advantage is at most

(
m
2

)
p(n, ε) for γ =

4ε(m − 1)/(m(m − 2(m − 2)ε)).

Proof. Consider the bin with the most balls, B0, and
the bin with the fewest balls, B1. The bin B0 has at
least n balls since 1 + mn total balls are thrown. If B0

has γ-advantage, then it has at least a 1/m+ γ fraction
of the balls, and B1 has at most a 1/m − γ/(m − 1)
fraction of the balls. For the value of γ stated,

1/m + γ

1/m− γ/(m − 1)
=

1/2 + ε

1/2− ε
.

Hence in this case B0 has an ε-advantage when consider-
ing the pair of bins B0 and B1. But the probability that
there is a pair of bins where one bin has an ε-advantage
over the other is bounded above by

(
m
2

)
p(n, ε).

5 Relation to Web models

Our original motivation for studying this problem arose
when we considered related dynamic Web graph models.
Several recently proposed dynamic Web models are
similar to balls and bins models, with the pages being
bins and the links being balls. The difference for Web
graph models is that new pages and links both enter the
system; hence, new bins arise as new balls are thrown.
Proposed Web models have all been linear; for example,
in most models the probability a new page links to an
extant page is proportional to its indegree [3, 5, 10, 11].

Recent Web models, while capturing certain prop-
erties of the Web graph, do not appear completely ac-
curate. For example, recent studies suggest that the
Web has many long, stringy pieces [4]. Also, certain
Web sites contain central pages, that everything links
to. Let us consider a dynamic Web graph model where

a new page with one outedge links to an extant page
with probability proportional to the indegree to the pth
power. The limiting cases for this model are interest-
ing: when p → ∞, essentially all edges point to a single
node, and when p → −∞, the graph is essentially a sin-
gle path. It is possible that some areas of the Web may
be similar to this more general model with properly cho-
sen parameters. Further discussion of this issue is given
in [6, 9]; however, it suggests that non-linear systems
provide interesting variations of Web graph models.

6 A Useful Heuristic

In this section, we consider a heuristic that may prove
useful in applications. Suppose we have two bins, whose
load we denote by x(t) and y(t), where the time t
denotes the number of balls in the system. As before
the probability that the new ball thrown at time t falls
in the bins with x(t) balls is (x(t))p

(x(t))p+(y(t))p . Then the
expected change in x(t), or ∆x(t), satisfies

∆x(t) = E[x(t + 1) − x(t)] =
(x(t))p

(x(t))p + (y(t))p
,

and similarly for y(t). Using the heuristic approxima-
tion

∆y(t)
∆x(t)

=
dy

dx

and dropping the t from the notation where the meaning
is clear, we obtain the following approximation for the
expected behavior of the system:

dy

dx
=

yp

xp
.

This heuristic demonstrates the different types of be-
havior to be expected when p < 1, p = 1, and p > 1.
When p = 1, the solution has the form y = cx. Other-
wise, the solution has the form y1−p = x1−p + c. When
p < 1, regardless of the initial values of x and y the
limiting ratio of y/x goes to 1; in the long run, the two
bins each contain roughly half of the balls. When p > 1,
the limiting ratio of y/x goes to 0 or infinity.

This heuristic is appealing in that it allows us to
approximate the behavior when p > 1 of the bins that
are dominated. Specifically, let us consider more closely
the case where the initial loads of the bins are x(t0)
and y(t0) (with y(t0) > x(t0)) and p > 1. Then the
solution has the form y1−p = x1−p+y(t0)1−p−x(t0)1−p.
As y → ∞, our heuristic suggests that x approaches(
x(t0)1−p − y(t0)1−p

)1/(1−p). For example, consider the
case where x(300) = 100, y(300) = 200, and p = 2.
The heuristic suggests that even as the number of balls
thrown grows to infinity, the expected value of x(t) will
only grow to about 200.



We point out that this heuristic is (at this point)
just a heuristic. While in some cases differential equa-
tions can properly be used to determine the behavior of
a system, the utility in this case is less clear. For ex-
ample, from any starting point, there is some constant
(though perhaps small) probability that the smaller bin
will overtake the larger. From smaller starting points
(say x(3) = 1 and y(3) = 2) there is more variation.
Hence this heuristic is really valuable for determining
the limiting behavior only when one bin dominates an-
other sufficiently so that the probability that it is over-
taken can essentially be dismissed.

We consider the performance of the heuristic with
some examples. When x(300) = 100, y(300) = 200, and
p = 2, the solution of the resulting differential equation
is

1
y

=
1
x
− 1

200
.

When there are 10,000 balls in the system, the differen-
tial equations predict x(10,000) = 196. Exact calcula-
tions show that the mean value of x(10,000) is actually
just above 197, although the mode is 190. More visu-
ally, Figure 1 shows the distribution for x(10,000) is very
concentrated; it looks close to a normal distribution, al-
though it is asymmetric with a small probability of large
values. Larger numbers of balls show similar behavior;
for x(100,000) and x(1,000,000), which have essentially
the same distribution, the mean is 201 though the dis-
tribution peaks at 195.

Figure 1 displays similar results for p = 1.5. The
differential equations predict x(10, 000) should be about
637, which also is very acccurate. They also predict
that as the number of balls grows to infinity, x(t)
should converge to approximately 1,165, which is close
to x(1,000,000).

Note this heuristic approach can easily be extended
to the case of more than two bins. It would be
interesting to develop a more formal statement in terms
of probabilistic bounds based on this heuristic.

7 Examples of Reaching Monopoly

We present some examples in order to demonstrate
typical behavior for the p > 1 case, giving exact results
determined by extensive numerical calculations with the
appropriate recurrence. Specifically, if w(x, y) is the
probability of having x balls in B0 and y balls in B1

when there are x + y balls in the system, then

w(x, y)=w(x−1, y)
(x−1)p

(x−1)p + yp
+w(x, y−1)

(y−1)p

xp + (y−1)p
.

The reason for showing these examples is to suggest that
the number of balls necessary to converge to monopoly
can be extremely large, especially for smaller values of
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Figure 1: Density functions, starting with 100 balls in
one bin and 200 in the other, p = 2.0 and p = 1.5.

p. This provides some evidence that the character of
our result, namely that monopoly fails to happen with
probability inversely polynomial in the number of balls
in the system (and moreover with a small exponent), is
correct. We point out that we do not currently have any
bound that demonstrates that this probability could not
fall exponentially with the number of balls; this remains
an open question.

In Figure 2, we present the cumulative distribution
for the number of balls in a bin when we begin with one
ball in each bin, and place balls until 1,000,000 balls are
in the system, using p = 1.1. While there is significant
bias towards the periphery, there is still a reasonable
probability that one bin will not completely overwhelm
the other. For example, the probability that one bin
contains over 80% of the balls is less than 80%.

In contrast, consider the case of just 1,000 balls
when p = 2 in Figure 3. Here almost all the weight
lies in the area where one bin has almost all of the
balls. The probability that one bin contains five or fewer
balls is 0.864. This concentration, however, is a function
of the dramatic effect of inequality at the beginning of
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Figure 2: Cumulative distribution function, starting
with 1 ball in each bin, p = 1.1 and 1,000,000 total
balls.
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Figure 3: Cumulative distribution function, starting
with 1 ball in each bin, p = 2.0 and 1,000 total balls.

the process; leading two or three balls to one is a huge
advantage. If we begin with 1,000 balls in each bin, and
place balls until there are 1,000,000 in the system, we
see that while there is clear tendency toward monopoly,
it appears more similar to the p = 1.1 case.

8 Conclusion
We have analyzed simple non-linear balls and bins mod-
els, where the probability of a new ball going to a bin
with x balls is proportional to xp. We have demon-
strated a phase transition at p = 1; fast convergence
to monopoly for p > 1; and fast convergence toward
equality when p < 1.

We suggest a few problems worthy of future study
that this framework introduces. First, it seems likely
that our current arguments can be improved and sim-
plified. In particular, a better understanding of the ini-
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Figure 4: Cumulative distribution function, starting
with 1,000 balls in each bin, p = 2.0 and 1,000,000 total
balls.

tial separation stage and a tighter argument for more
than two bins might be helpful. Second, the impact of
the initial conditions should be clarified. When two bins
begin with nearly the same number of balls, how does
the difference affect the probability that each will end
up dominating the system? What is the distribution of
the final state of the other bin? While we have heuristic
approaches to this problem, rigorous bounds would be
useful. Third, consideration of other natural families of
functions besides xp may be useful for real systems. In a
similar vein, understanding systems where the function
determining the probability that a ball goes in a bin may
vary according to time may allow more realistic models.
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Appendix

Theorem 1 Consider a system with exponent p and
two bins B0 and B1 that begin with one ball each. Then
there exist constants ε0 > 0 and γ > 0 such that after
n steps, the probability that the two bins fail to ε0-
separate is at most O(n−γ).

Proof. We sketch the proof, which follows the same
outline as Theorems 2.2 and 2.4. First, recall that
when p = 1 and we begin with one ball in each bin,
the resulting distribution after n balls are thrown is
uniform. A simple coupling argument shows that when
p > 1 the distribution of the number of balls in a bin
has more weight at the extremes. Hence for any n0 the
probability that after n0 balls are thrown neither bin
has at least 1/2 + n

3/4
0 balls is O(n−1/4

0 ).
We build on this small advantage using a repeated

doubling argument. Suppose that when we have n1 ≥
n0 balls in the system and we throw n1 more balls, the
advantage grows by a constant factor with probability
e−na

1 for some constant a > 0. Then choose any
suitable constant ε0, say ε0 = 1/100p. Then after
O(log n0) doublings, we obtain a constant ε0 advantage
with probability O(n−1/4

0 ), and we have a polynomial
in n0 number of balls in the system.

We must take a bit more care in the Chernoff
bounds to obtain the high probability result in the
doubling stages. However, if we start a doubling phase
with n1 balls in the system and one bin having 1

2n1 + x

balls, where x ≥ n
3/4
1 , it suffices to throw the next n1

balls in blocks of size n
5/8
1 . The probability a ball lands

in the bin with more balls is at least

z =

(
1
2n1 + x

)p(
1
2n1 − x + n

5/8
1

)p

+
(

1
2n1 + x

)p .

For n0 sufficiently large, the n
5/8
1 term above does

not affect that we expect the advantage to grow by a
constant factor over the next n1 balls, as in Theorem 2.2.

Moreover, by Chernoff’s bounds, inductively over
each block of size n

5/8
1 , if X is the number of balls that

go into the bin with more balls,

Pr[X ≤ zn
5/8
1 − n

1/2
1 ] ≤ exp(−Ω(n3/8

1 )).

The n
1/2
1 term does not affect that the advantage grows

by a constant factor with high probability for suitably
large n0, and hence the theorem holds.


