
Parallel Randomized Load Balancing
(Preliminary Version)

Micah Adler� Soumen Chakrabartiy Michael Mitzenmacherz Lars Rasmussenx

Computer Science Division

University of California, Berkeley, CA 94720

fmicah,soumen,mitzen,larsrg@cs.berkeley.edu

Abstract

It is well known that after placing n balls independently
and uniformly at random into n bins, the fullest bin holds
�(log n= log log n) balls with high probability. Recently,
Azar et al. analyzed the following: randomly choose d
bins for each ball, and then sequentially place each ball in
the least full of its chosen bins [2]. They show that the
fullest bin contains only log log n= log d + �(1) balls with
high probability. We explore extensions of this result to
parallel and distributed settings.

Our results focus on the tradeo� between the amount
of communication and the �nal load. Given r rounds of
communication, we provide lower bounds on the maximum
load of
(r

p
log n= log log n) for a wide class of strategies.

Our results extend to the case where the number of rounds
is allowed to grow with n.

We then demonstrate parallelizations of the sequential
strategy presented in Azar et al. that achieve loads within
a constant factor of the lower bound for two communication
rounds and almost match the sequential strategy given
log log n= log d + O(d) rounds of communication. We also
examine a parallel threshold strategy based on rethrowing
balls placed in heavily loaded bins. This strategy achieves
loads within a constant factor of the lower bound for
a constant number of rounds, and it achieves a �nal
load of at most O(log log n) given
(log log n) rounds of
communication. The algorithm also works in asynchronous
environments.

�Supported by a Schlumberger Foundation graduate fellowship.
ySupported in part by ARPA under contract DABT63-92-C-0026,

by NSF (numbers CCR-9210260and CDA-8722788), and by Lawrence

Livermore National Laboratory.
zSupported by the O�ce of Naval Research.
xSupported by a fellowship from U.C. Berkeley.

1 Introduction

When n balls are thrown independently and uniformly at
random into n bins, it is known that with high probability
(by which we shall mean 1�O(1=n)) the maximum number
of balls received by any bin is �(log n

log log n). (In this paper log
is used for log2.) Occupancy results such as this have a long
history in the mathematical literature [7, 10] with numerous
applications in hashing [2, 5, 9], PRAM simulation [9, 11]
and load balancing [2, 5].

Recently, an important extension of this result was
proven by Azar et al. [2]. Suppose we adopt the following
strategy: we place the balls sequentially, one at a time; for
each ball, we choose two bins independenly and uniformly
at random, and place the ball in the less full bin. When
all the balls have been placed, the fullest bin contains
only �(log log n) balls with high probability, an exponential
improvement over the simple randomized approach.

Unfortunately, the new method requires the resting
place of the balls to be determined sequentially. This
limits its applicability in parallel and distributed settings, a
major drawback when compared to the simple randomized
approach. In this paper, we examine the potential
of parallelizing the above procedure, as well as other
possible strategies for reaching a small maximum load in a
distributed environment. We focus on the tradeo� between
the number of communication rounds and the �nal load one
can achieve using simple, randomized strategies.

We �rst show lower bounds that hold for a wide class of
load balancing strategies, including natural parallelizations
of the method of Azar et al. (Following [2], we shall hereafter
refer to their algorithm as greedy.) We demonstrate a
parallelization of greedy for two communication rounds
that matches the lower bounds to within a constant factor,
and we examine alternative parallelizations of greedy that
are e�ective when the number of communication rounds is
approximately equal to the maximum load. We also examine
an idea used in [9] and [11] based on setting a threshold at
each bin: balls that attempt to enter a bin that is already
above its threshold for that round must be rethrown. This
strategy matches the lower bounds up to a constant factor
for any constant number of rounds. Our results show that
thresholding strategies can achieve a useful tradeo� between

communication cost and the maximum load achieved.

1.1 The model

We �rst describe our model in terms of balls and bins. Each
of m balls is to be placed in one of n bins. (For simplicity,
we shall concentrate on the case m = n. Extension to
general values will appear in the full paper.) Each ball
begins by choosing d bins as prospective destinations, each
choice being made independently and uniformly at random
(with replacement) from all possible bins. The balls decide
on their �nal destinations using r rounds of communication,
where each round consists of two stages. In the �rst stage
each ball is able to send, in parallel, messages to any
prospective bin, and in the second stage each bin is able
to send, in parallel, messages to any ball from which it has
ever received a message. In the �nal round, the balls commit
to one of the prospective bins and the process terminates.
Messages are assumed to be of size polylog(n;m). The goal
is to minimize the maximum load, which is de�ned to be the
maximum number of balls in any bin upon completion.

This model is motivated by the following realistic sce-
nario: modern computer networks often have decentralized
compute-servers (bins) and client workstations issuing jobs
(balls). A distributed load-balancing strategy has to assign
jobs to servers. Clients are ignorant of the intention of
other clients to submit jobs; contention is known only from
server load. Servers are ignorant of jobs from clients that
have not communicated with them. It is also prohibitively
expensive for clients to globally coordinate job submissions.
The primary objectives are to minimize the maximum load
achieved as well as the number of communication rounds
required. Reducing the number of rounds is an important
goal since, in a network setting, the time to complete a round
is determined by network latency, which is generally orders
of magnitude higher than CPU cycle times.

We examine a class of simple strategies that include
many of the standard algorithms presented in the literature.
The strategies we restrict our attention to are non-adaptive,
in that the possible destinations are chosen before any
communication takes place. We will also restrict our
discussion to strategies that are symmetric, in the sense that
all balls and bins perform the same underlying algorithm
and all possible destinations are chosen independently and
uniformly at random. We believe that these restrictions have
practical merit, as an algorithm with these properties would
be easier to implement and modify even as the underlying
system changes.

Informally, we shall say that an algorithm functions
asynchronously if a ball (or bin) has to wait only for
messages addressed to it (as opposed to messages destined
elsewhere). That is, balls and bins are not required
to wait for a round to complete before continuing. An
algorithm requires synchronous rounds if there must exist
a synchronization barrier between some pair of rounds;
that is, a ball or bin must explicitly wait for an entire
previous round to complete before sending a message. In
many distributed settings, the ability of an algorithm to
function asynchronously can be a signi�cant advantage;

an algorithm with synchronous rounds needs some notion
of global time to maintain coordination. Note that the
algorithm of Azar et al. achieves �nal load no worse than
O(log log n), but requires
(n) synchronous rounds. Also,
the obvious strategy of having the balls choose random I.D.
numbers and applying standard sorting methods requires

(log n) rounds in this model, as well as more sophisticated
communication.

We remark that many of our algorithms can perform
asynchronously. In these versions of our algorithms any ball
sends or receives at most d messages per round, whereas
a bin may receive or send up to O(log n

log log n) messages per
round. It seems unlikely that this latter number could be
made smaller while insisting on a small (O(log n)) number
of rounds. During some round at least
(n

log n) messages
from balls that have not previously communicated must
be handled. If these messages are distributed randomly,
some bin will receive at least
(log n

log log n) of them. We can
avoid this complication if we modify the algorithms to use
synchronous rounds and assume a time limit for each round.
In most of our algorithms, a bin must explicitly acknowledge
each message and send a negative response to all but a
constant number of balls in each round. If these negative
responses need not be sent explicitly, and instead a lack of
response is interpreted as a negative reply, then the bins
need only acknowledge and respond to a constant number
of messages per round. The remaining messages can be
discarded.

1.2 Our results

In x2, we provide a general lower bound for non-adaptive
and symmetric strategies that include parallel variations of
greedy [2] and threshold methods [9, 11]. For any �xed
number r of rounds of communication and any �xed number
d of choices for each ball, we show that with constant

probability the maximum load is at least

�

r

q
log n

log log n

�
.

The lower bounds are proved by reducing the balls and bins
scenario to an edge orientation problem on random graphs.

The rest of the paper deals with upper bounds. Our
analysis exploits a basic tool, based on results of Gonnet [6].
In analyzing complex random processes, the use of heuristic
approximations through normal or Poisson distributions
is common. We apply this notion systematically to the
scenario of a number of balls being thrown independently
and uniformly at random into some number of bins. Apart
from enabling us to prove our bounds, the tool may be of
independent interest.

In x4 we describe an asynchronous parallelization of
greedy for two rounds that matches the lower bound to
within a constant factor for any �xed d. We also describe a
more complicated extension of greedy in which the number
of rounds is allowed to grow with n. We show that this
extension achieves a �nal load no worse than log log n

log d +2d+

O(1) with high probability if we allow log log n
log d + 2d + O(1)

synchronous rounds.

In x5 we explore an entirely di�erent paradigm based
on thresholds, which were also used in [5, 9, 11].

We demonstrate algorithms based on thresholds that
asymptotically match the lower bounds for any �xed number
of rounds r up to a constant factor; that is, the �nal load is

O
�

r

q
log n

log log n

�
with high probability. However, if r and d

are allowed to grow with n, we show that the thresholding
method (with threshold one) is inferior to the parallel
greedy approach: while the latter achieves a maximum load
of O(log log n

log log log n) with O(log log n
log log log n) rounds, thresholding

achieves a maximum load of
(log log n) with log log n+O(1)
rounds. Nevertheless, thresholding has the advantage of
functioning asynchronously and o�ering a continuous trade-
o� between rounds used and �nal load achieved.

Finally, we also present results obtained by simulating
our algorithms. As one might expect, our parallel strategies
lead to a �nal load close to that obtained by greedy,
and much better than that achieved by choosing one bin
randomly for each ball.

2 Lower bounds using edge orientation

We �rst develop a general model for lower bounds that
captures a class of non-adaptive, symmetric load balancing
strategies. Recall that for non-adaptive, symmetric
strategies, the destinations are chosen independently and
uniformly at random before communication begins. Our
lower bounds are based on the number of rounds of
communication, r, and the number of choices available to
each ball, d. In x2.1, we will focus on the case where d = 2
and r = 2, extending the results to arbitrary values of r and
d in x2.2.

For our bounds, we will rephrase the balls and bins
problem in terms of a graph orientation problem similar to
that found in [1]. We temporarily restrict ourselves to the
case of d = 2. Associate with each bin a vertex of a graph.
Each ball can be represented by an undirected edge in this
graph, where the vertices of the edge correspond to the two
bins chosen by the ball1 . Choosing a �nal destination is
equivalent to choosing an orientation for the edge. The goal
of the algorithm is to minimize the maximum indegree over
all vertices of the graph. In the case where there are n
balls and n bins, the corresponding graph is a random graph
from Gn;n, the set of all graphs with n vertices and n edges.
Following standard terminology, we de�ne the neighbors of
an edge e, denoted byN(e), to be the set of all edges incident
to an endpoint of e. For a set S of edges, we write N(S) for
[e2SN(e). The neighbors of a vertex v, denoted by N(v),
is the set of all edges incident to v.

De�nition 2.1 The r-neighborhood of an edge e, denoted

by Nr(e), is de�ned inductively by: N1(e) = N(e), Nr(e) =
N(Nr�1(e)).

De�nition 2.2 The (r; x)-neighborhood of an edge e =
(x; y), denoted by Nr;x(e), is de�ned inductively by:

N1;x(e) = N(x)� feg, Nr;x(e) = N(Nr�1;x(e))� feg.
1For convenience, we assume here that balls choose distinct bins;

that is, the graph has no self-loops. The analysis is similar if self-loops
are allowed.

Intuitively, for each round of communication, a ball
discovers a little more about the graph. Speci�cally, since
we are working towards lower bounds, we may assume that
the bins transport all available information about the balls
whenever possible. Consider an r round protocol for the
balls and bins problem where balls commit to their �nal
choice in the rth round. In this case, we may assume a ball
knows everything about the balls in its (r�1)-neighborhood,
and no more, before it must commit to a bin; this follows
from a simple induction argument.

We now describe an assumption that we use to show
that the �nal load is high with constant probability. The r-
neighborhood of a ball e = (x;y) splits into two subgraphs
corresponding to Nr;x(e) and Nr;y(e); these are the parts of
the neighborhood the ball discovers from each bin. Suppose
that these two subgraphs of the ball's r-neighborhood are
isomorphic rooted trees, with the roots being x and y. In
this case we say the ball has a symmetric r-neighborhood.
Then the ball has no reason to prefer one bin over another,
and must essentially choose randomly. For the moment, we
explicitly assume that in this situation the ball chooses a
bin randomly with probability 1/2; we shall expand on this
shortly.

Assumption 2.3 If a ball has a symmetric (r � 1)-
neighborhood, then in any protocol of r rounds it chooses

a destination bin with a fair coin ip.

2.1 The d = 2, r = 2 case

We now show that, with constant probability, there exists a

vertex with at least T =

�q

log n
log log n

�
incident edges such

that each incident edge has a symmetric one-neighborhood.
Thus, with at least constant probability, at least T=2 of
these edges orient themselves to the vertex, and hence with
constant probability, any two-round parallel algorithm for
balancing balls and bins in this model must end with a �nal

load at least

�q

log n
log log n

�
. The vertex in question will be

the root of a speci�c tree component in the graph.

De�nition 2.4 A (T; r) tree is a depth r tree, each of whose
internal vertices has degree T and each of whose leaves is at
depth r. A (T; r) tree is said to be isolated in a graph G if

it is a connected component of G.

Lemma 2.5 If there is an isolated (T; 2) tree in the graph
determined by randomly throwing balls into bins, then the

probability that each ball incident to the root directs itself to
the root is 1/2.

Proof. This follows since each edge incident to the root of
the (T; 2) tree has a symmetric one-neighborhood.

Theorem 2.6 There exists a T =

�q

log n
log log n

�
such that

with constant probability, a random graph from Gn;n contains

an isolated (T; 2) tree.

We restrict ourselves to isolated trees in order to simplify
the proof. Note that it would be su�cient for the graph
to contain a (T; r) tree with further edges adjacent to the
leaves; restricting ourselves to isolated trees, however, only
a�ects lower order terms in the analysis.

Proof. Let ~v = (v0; v1; : : : ; vT2) be a vector of T 2 + 1
vertices. Let X~v be an indicator variable that is 1 if v0
is the root of an isolated (T; r) tree, v1; : : : ; vT are the nodes
of depth 1, vT+1; : : : ; v2T�1 are the children of v1, and so
on, and let X =

P
~v
X~v. We show that X > 0 with at

least constant probability by determining the expectation
and variance of X and applying the simple bound (from [4],
equation (3) of I.1):

Pr(X = 0) � 1� E[X]2

E[X2]
:

The multinomial coe�cient
�

n
1;T ;T�1;:::;T�1

�
represents the

number of possible choices for ~v; we must �rst choose the
root, and then the T children of the root, and then the
T � 1 children for each child. We now choose a speci�c ~v
and determine the probability that X~v is 1. If X~v is 1, there
must be T 2 edges corresponding to the (T; r) tree connecting
the vertices of ~v and no other edges incident to these vertices.
Routine calculations give the probability of this event as:�

n�(T2+1)
2

�n�T2�
n
T2

�
(T 2)!�

n
2

�n
Using linearity of expectation, we have

E[X] =

�
n

1;T ;T�1;:::;T�1
��

n�(T2+1)
2

�n�T2�
n
T2

�
(T 2)!�

n
2

�n :

This unwieldy expression can be simpli�ed by canceling
appropriately and noting that we will choose T small enough
so that many terms are o(1). For example,�

n�(T2+1)
2

�n�T2

�
n
2

�n�T2
= e�2(T

2+1)(1 + o(1)):

We thus obtain:

E[X] =
n2T

2

(1 + o(1))

T !e2(T2+1)((T � 1)!)T
:

We now examine how to compute E[X2]. Note that, because
we are considering only isolated (T; r) trees, if ~v 6= ~w, then
X~v and X~w can both equal 1 if and only if ~v and ~w consist
of disjoint sets of vertices or are equal. This simpli�es the
calculation of E[X2] considerably. Since

E[X2] = E[X] +
X
~v 6=~w

E[XvXw]

it su�ces then to compute the second term. The calculation
is similar to that for E[X]. Thus, with essentially the same
argument as above, one �nds that

X
~v6=~w

E[XvXw] =
n222T

2

(1 + o(1))

(T !)2e4T2+4((T � 1)!)2T
:

We thus have that E[X2] = E[X] + E[X]2(1 + o(1)). It now
su�ces to choose a T such that E[X] is bounded below by a
constant. One can thus check that there exists a (T; 2) tree

with T = (
p
2� o(1))

q
log n

log log n with constant probability.

Corollary 2.7 Any non-adaptive, symmetric load distri-

bution strategy for the balls and bins problem satisfying
Assumption 2.3, where d = 2 and r = 2, has a �nal

load at least (
p
2=2 � o(1))

q
log n

log log n with at least constant

probability.

Although it may at �rst seem unreasonable to insist
that balls with symmetric r-neighborhoods choose a bin
randomly, obvious tie-breaking schemes do not a�ect the
lower bound. For instance, if the balls are ordered at
the bins, either by random I.D. numbers or by a random
permutation, and then choose a bin according to their rank,
the balls are essentially choosing a bin at random. The
proof can easily be modi�ed for the case where the balls are
ranked at the bins by some �xed ordering as well by using the
symmetry of the destination choices of the balls. Similarly,
if bins are numbered and given a preferred ordering in case
of ties, then with constant probability there is still a (T; r)
tree whose root has the given �nal load.

2.2 The general case

One can extend the proof to the case where d > 2 and r > 2;
in fact, the extension applies if r and d grow su�ciently
slowly with n as well.

When r > 2, the balls and bins scenario can again be
reduced to a graph orientation problem; instead of showing
the existence of a (T; 2) tree, one needs to the existence of
a (T; r) tree. The proof that such a tree exists is similar to
that of Theorem 2.6.

When d > 2 we must consider hypergraphs instead of
graphs. In this reduction, balls correspond to hyperedges of
d distinct vertices in the hypergraph. The degree of a vertex
is the number of incident hyperedges. A tree of hyperedges
is simply a connected acyclic hypergraph, and the depth of
a tree is the the number of hyperedges in the longest path
from the root to a leaf.

De�nition 2.8 A (T; r; d) tree is a depth r tree of
hyperedges of size d, each of whose internal vertices has

degree T and each of whose leaves is at depth r. A (T; r; d)
tree is said to be isolated in a hypergraph G if G contains

a subgraph that is a (T; r; d) tree and there are no other
hyperedges incident to the (T; r; d) tree in the hypergraph.

The r-neighborhood and (r; x)-neighborhood of a ball
can be de�ned for hypergraphs similar to De�nitions 2.1 and
2.2. As in Assumption 2.3, we will assume that if a ball has
a symmetric r�1 neighborhood, it chooses one of the d bins
uniformly at random at the end of an r round algorithm;
for convenience, we still call this Assumption 2.3. Thus the
root of an isolated (T; r; d) tree will end with T=d balls with

at least constant probability. The important feature in our
calculations is essentially the size of the (T; r; d) tree. As
long as the tree size is approximately log n

log log n , a suitable
(T; r; d) tree will exist.

Theorem 2.9 For any �xed r and d, there exists a T =

�

r

q
log n

log log n

�
such that with constant probability, a random

graph with n vertices and n edges of size d contains an
isolated (T; r; d) tree.

Proof. The proof will appear in the full version of the
paper; it requires a combinatorial calculation entirely similar
to that of Theorem 2.6.

Corollary 2.10 Any non-adaptive, symmetric load distri-

bution strategy for the balls and bins problem satisfying
Assumption 2.3 where d and r are constants has a �nal load

at least
(r
q

log n
log log n) with constant probability.

The constants in the lower bound (for r and d �xed)
are dependent on d. The theorem can also be used when d

grows with n; with constant probability the �nal load is T=d
if there is a (T; r; d) tree in the corresponding hypergraph.
Similarly, if there is a (T; r; d) tree in the corresponding
hypergraph, then with probability d�T the �nal load is T ;
this can be used to give negative results by showing that no
non-adaptive, symmetric load distribution strategy achieves
load T with high probability when dT = o(n).

3 The Poisson approximation

We now derive a tool that will be useful in developing
upper bounds. After throwing m balls independently and
uniformly at random into n bins, the distribution of the
number of balls in a given bin is approximately Poisson
with mean m

n
. We formalize this relationship by adapting

an argument used by Gonnet [6] to determine the expected
maximum number of balls in a bin. While useful tail
bounds on the distributions of balls in bins can be found
with other methods, most notably martingales [8, 9], our
method appears to be more general, and in some cases easier
to apply. Although tighter probability bounds for speci�c
problems can often be obtained with more detailed analyses,
as can be seen for example in [3], for our purposes this simple
approach is quite e�ective. As mentioned in [4], similar ideas
have been used in the study of random graphs to relate the
setting where each edge is included independently with some
probability and the setting where a graph with a certain
number of edges is chosen randomly.

Theorem 3.1 Suppose m balls are thrown into n bins

independently and uniformly at random, and let Xi be the
number of balls in the ith bin, where 1 � i � n. Let
Y1; : : : ; Yn be independent Poisson random variables with

mean m
n
, and let f(x1; : : : ; xn) be a non-negative function.

Then

E[f(X1; : : : ;Xn)] � p
2�emE[f(Y1; : : : ; Yn)]: (1)

Further, if E[f(X1; : : : ;Xn)] is monotonically increasing or
decreasing with m, then

E[f(X1; : : : ;Xn)] � cE[f(Y1; : : : ; Yn)] (2)

for some constant c.

Proof. We have that

E[f(Y1; : : : ; Yn)]

=

1X
k=0

E

h
f(Y1; : : : ; Yn)

���PYi = k
i
Pr[
P

Yi = k]

� E

h
f(Y1; : : : ; Yn)

���PYi = m
i
Pr[
P

Yi =m]

= E[f(X1; : : : ;Xn)]
mme�m

m!
;

where the last equality follows from the fact that the joint
distribution of the Yi given

P
Yi = m is exactly that of

the Xi, and that
P

Yi is Poisson distributed with mean m.
Using Stirling's approximation now yields equation (1).

If E [f(X1; : : : ;Xn)] increases with m, then by a similar
argument we have

E[f(Y1; : : : ; Yn)]

� E

h
f(Y1; : : : ; Yn)

���PYi = m
i
Pr[
P

Yi � m]

= E [f(X1; : : : ;Xn)]Pr
�P

Yi �m
�

Since Pr
�P

Yi � m
�
can be bounded above by a constant,

equation (2) follows. The case where E [f(X1; : : : ;Xn)]
decreases with m is similar.

From this theorem, we derive a corollary that will be
central to most of our proofs. Let us call the scenario in
which bin loads are taken to be independent Poisson random
variables with mean m

n
the Poisson case, and the scenario

where m balls are thrown into n bins independently and
uniformly at random the exact case. Also, let a load based

event be an event that depends solely on the loads of the
bins.

Corollary 3.2 A load based event that takes place with
probability p in the Poisson case takes place with probability

at most p
p
2�em in the exact case. If the probability of the

event is monotonically increasing or decreasing with the total

number of balls, then the probability of the event is at most
cp in the exact case for some constant c.

Proof. Let f be the indicator function of the load based
event. In this case E[f] is just the probability that the
event occurs, and the result follows immediately from
Theorem 3.1.

To demonstrate the utility of this corollary, we provide a
simple representative example that will prove useful later.

Lemma 3.3 Suppose m < n
log n , and suppose m balls are

thrown independently and uniformly at random into n bins.

Then, with high probability, the maximum load is at least

(log n

log n

m

) and at most O(log n
log n

m

).

Proof. By Corollary 3.2 it is su�cient to prove that the
bounds hold in the Poisson case. Let p be the probability
that any particular bin contains T or more balls.

For the lower bound, note that

p � (mn)
T e�m=n

T !
;

as the right hand side is simply the probability that a bin
has exactly T balls. The probability that no bin has T or
more balls is thus at most (1� p)n � e�pn, and we need to
show that e�pn � 1

n when T =
(log n
log n

m

). Taking logarithms

twice yields the following su�cient condition:

log T ! + T log(n
m
) � log n �O(log log n): (3)

It is now simple to check that choosing T = a log n
log n

m

for any

constant a < 1
2 su�ces.

For the upper bound, note that

p � 2(m
n
)T e�m=n

T !
; (4)

as can be found by bounding the probability that a bin has
T or more balls by a geometric series. It is easy to show
that when T � 2 log n

log n

m

, this probability is less than 1
n2
, and

thus no bin contains 2 log n
log n

m

or more balls with probability at

least 1 �O(1=n) in the exact case.

Corollary 3.2 will also prove useful to us because in
the Poisson case all bin loads are independent. This
independence allows us to use various forms of Cherno�
bounds (such as those in [4], section I.3) in the Poisson case,
and then transfer the result to the exact case.

4 Parallel GREEDY

The lower bounds in the previous section show that if the
number of communication rounds and possible destinations
for a ball are �xed, the log log n= log d + O(1) maximum
load bound of [2] no longer applies. We therefore seek
ways to parallelize the greedy strategy and gauge their
performance. We �rst deal with the case of two rounds in
x4.1, and then consider multiple rounds in x4.2.

4.1 A two-round parallelization of GREEDY

We note that in the greedy strategy, all balls can choose
their random bins e�ciently in parallel, but the rest of the
protocol is sequential. In this section, we consider strategies
that allow for the entire protocol to be performed e�ciently
in parallel. We �rst consider the case where a ball makes
only two destination choices, i.e. d = 2. We begin with a
description of greedy. Each ball a will at some point in the
algorithm independently choose two destination bins i1(a)
and i2(a). We may assume that these choices are made in
parallel as the �rst step in the algorithm; this assumption
clari�es that greedy is non-adaptive. Next, each ball a
decides, solely by communicating with i1(a) and i2(a), to

which of the two bins it shall commit. Once a ball has
committed to a bin, its decision cannot be reversed. We note
that ties in this and other algorithms are broken arbitrarily
unless stated otherwise.

CHOOSE(2):
in parallel: each ball a
chooses u.a.r. two bins i1(a) and i2(a)

GREEDY:
call CHOOSE(2)
sequentially: each ball a
queries bins i1(a) and i2(a) for current load
commits to bin with smaller load

We �rst attempt to break the sequentiality of greedy by
letting the balls choose between i1(a) and i2(a) according to
the selections made by the other balls in the initial stage of
the process. Let all the balls inform i1(a) and i2(a) of their
choices by sending them both a request. We shall refer to
the two requests as siblings.

Each bin then creates a list of the requests it has received.
The bins may order the list arbitrarily. However, if they
handle requests in the order they arrive, the algorithm may
function asynchronously. Notice that we make no claim that
the requests arrive at the bins in any particular order.

The height of a request is its position in the request list
it belongs to. The bins now send back the heights of their
requests to the balls. Finally, each ball commits to the bin
in which its request had the smaller height. This allows the
entire process to �nish in only two rounds:

PGREEDY:
call CHOOSE(2)
in parallel: each ball a
sends requests to bins i1(a) and i2(a)

in parallel: each bin i

creates list of received requests
sends heights to requesting balls

in parallel: each ball a
commits to bin with smaller height

Note that Corollary 2.7 provides a lower bound for the
pgreedy strategy. We now prove an upper bound on the
maximum load achieved by pgreedy.

Theorem 4.1 The maximum load achieved by pgreedy is

at most (4 + o(1))
q

log n
log log n with high probability.

Proof. We bound the probability that a speci�c bin i
receives more than 2T balls, where T is to be determined.
Consider a bin i with more than T requests. The probability
that more than 3 balls sent both requests to i or that the
total number of requests received by i is more than log n is

at most O(1
n2
), so we condition on the event that neither

is the case. The set R of requests sent to a bin other than
i are distributed in the remaining n� 1 bins independently
and uniformly.

Consider a request in i of height at least T whose sibling
lies outside i. Let S � R be the set of siblings of such
requests. We prove that, with su�ciently high probability,
fewer than T requests in S have height T or more.

Consider the subprocess of requests R arriving to
the bins other than i. We can imagine these requests
arriving sequentially at the bins according to some arbitrary
ordering. Let time t be the instant immediately after the t'th
such request arrives.

We now use an innovation from [2]. Let N = n2T

eT ! and
Et be the event that, at time t, no more than N bins have
received more than T requests from R. Also, let the random
variable Xt equal 1 if the height of the t'th request is greater
than T , and 0 otherwise. Finally, let the random variable
Yt equal 1 if Xt = 1 and Et occurs, and 0 otherwise.

We de�ne E to be the event that Et is true for all t.
Conditioned on E, we have thatP

t2S Yt is an upper bound
on the number of balls of height at least T that choose bin
i as their �nal destination.

Note that Pr[Yt = 1 j Y1; : : : ; Yt�1] < N
n
. It follows that

the sum of a subset of the Yi is stochastically dominated
by the sum of the same number of independent Bernoulli
variables with parameter N

n . Therefore, using the Cherno�

bound, we have for T = (2 + o(1))
q

log n
log log n :

Pr

"X
t2S

Yt � T

#
�

�
2T log n

T � T !

�T

� O(
1

n2
):

We can bound Pr[:E] since R consists of at most 2n � T
requests uniformly distributed over n � 1 bins. It is easy
to show Pr[:E] = O(1

n2
) by Corollary 3.2 and Cherno�'s

bound. Thus

Pr
�P

t2S Yt � T
W :E

�
= O(1

n2
):

It follows that for each bin i, the probability that T balls
of height greater than T choose bin i is O(1

n2
). Hence with

high probability all bins must �nish with at most 2T balls.

The proof can be easily modi�ed to the case where balls
have more than two siblings as well; for �xed d, the �nal

load will still be O
�q

log n
log log n

�
, but the constant factor

in the O-expression is 4p
d�1 + o(1). In practice, however,

for reasonable values of n, increasing d does not improve
the �nal load. Informally, each ball receives more pieces of
information, but each piece is less valuable since the height
becomes a less accurate estimate of the �nal position. Also,
the constant factor is dictated by our attempt to have the
probability of failure be at most O(1

n
); if one is willing to

accept slightly larger error probabilities one can improve the
constant factor slightly.

4.2 Multiple round strategies

Our lower bounds suggest that with more rounds of
communication, one might achieve a better load balance.
We thus suggest an alternative parallelization of greedy
called mpgreedy that makes use of more rounds. We �rst
examine the case where d = 2.

The algorithm proceeds in a number of rounds, until
every ball has committed. In every round, each bin will
allow at most one of its requesting balls to commit to it. If a
ball receives that privilege from two bins, the ball commits
to the bin with the lesser current load. Once a ball has
committed, the bin holding the other request is informed
that it may discard that request:

MPGREEDY:
call CHOOSE(2)
in parallel: each ball a
chooses a random I.D. number
sends requests with I.D. to bins i1(a) and i2(a)

in parallel: each bin i

sorts requests by I.D. number
sequentially: repeat until all balls have committed
in parallel: each bin i

sends current load to �rst uncommitted ball on request list
in parallel: each ball a
if received at least one message
commits to the bin with smaller current load
tells bin holding other request to discard

One can imagine the algorithm by picturing a scanline
moving level by level through the request lists of the bins.
When the scanline moves up to a new level, bins send
messages to all the balls that the scanline has just passed
through. When bins receive responses, they delete the
corresponding balls in the request list above the scanline.
The algorithm terminates when every request has either
been passed through or deleted.

One disadvantage of this algorithm is that it requires
synchronous rounds; the discards for each round must
complete before the next round can begin. We also require
a partial order on the balls, given in this case by randomly
chosen I.D. numbers (chosen from a suitably large set to
ensure uniqueness with high probability), to instill some
notion of sequentiality. However, a signi�cant advantage is
that all the communication paths required are determined
by the initial choices of two bins made by the balls. This may
be useful in practice in cases where there is a cost associated
with modifying the communication pattern during the
course of the algorithm, as in distributed networks.

Clearly, the maximum number of balls in any bin upon
completion is bounded above by the number of rounds taken
to �nish. We analyze the latter.

Theorem 4.2 With high probability mpgreedy �nishes in

at most log log n+O(1) rounds.

In order to prove the above statement, we consider the
following variation of greedy (for any d): if there is a tie
for the least loaded bin, then a copy of the ball is placed in
each bin with the minimal load. We call this scheme greedy
with ties.

Lemma 4.3 The number of communication rounds used by

mpgreedy is one more than the maximum load given by
greedy with ties when the balls are thrown in the order

given by the I.D. numbers and the bin choices made by the
balls are the same for both trials.

Proof. Consider a modi�cation of mpgreedy where the
ball commits to all bins from which it receives a message.
The number of communication rounds used by this modi�ed
version of mpgreedy is the same as for the original. With
a little thought one can see that this scheme exactly mimics
the greedy with ties scheme, and hence the two methods
give the same �nal distribution of the balls. Since the height
of the scanline moves up one level each round, the number
of communication rounds used by mpgreedy is hence one
more than the maximum load of greedy with ties.

We now suggest a modi�cation of the proof given in Azar
et al. to handle the case where there may be ties. The
following statement is su�cient:

Theorem 4.4 The maximum load achieved by greedy
with ties when n balls are thrown into n bins is at most
log log n
log d + 2d+O(1) with high probability. In particular, for

any �xed d the maximum load is log log n
log d +O(1).

Proof. The proof is almost entirely the same as Theorem 4
of [2]. The main di�erence is that for each ball placed in
the system up to d copies can be placed if ties remain.
This problem can be handled by taking some care in the
base cases. In the notation of Theorem 4 of [2], one can
set �6d2 = n=2de; for d > 8, one can show by Cherno�'s
bounds that setting �2d = n=2de works with su�ciently
high probability for the argument to follow.

Theorem 4.2 follows immediately. Moreover, an
extension to the case where d grows with n is interesting.

Corollary 4.5 When mpgreedy is run with d = log log n
log log log n+

O(1), the number of rounds and maximum load are at most
O(log log n

log log log n) with high probability.

Theorem 4.4 demonstrates that one can match the
performance of greedy at the expense of log log n

log d +2d+O(1)
rounds of communication. As we shall see, Corollary 4.5
also implies that, in the case where d = log log n

log log log n
+ O(1),

mpgreedy performs better than the threshold strategy
discussed in the next section.

It is open whether one can extend mpgreedy to avoid
the partial order on the balls or the synchronous rounds
while achieving similar results.

5 Threshold strategy

We now examine another strategy, previously exploited in
[5, 9, 11] in similar contexts, to achieve good load balancing.
Given a threshold T , we imagine throwing the balls over r
rounds. If more than T balls enter a bin during a round,
the excess balls are rethrown. We wish to set T as small as
possible while ensuring that with high probability at most
T balls are thrown into any bin in the rth round. Then after
the r rounds the fullest bin will contain at most rT balls.
Note that a ball can choose its bins for all r rounds before
any messages are sent, so this scheme falls into the general
model of Section 2 for which our lower bounds apply.

There are several advantages this method has over the
pgreedy strategy already presented. First, this method can
work in completely asynchronous environments. As long as
a request includes the number of its current round as part of
the message, messages from distinct rounds can be handled
simultaneously. Secondly, balls send and receive at most
one message per round. Finally, we shall show that this
method demonstrates a potentially useful tradeo� between
the maximum load and the number of rounds.

THRESHOLD(T):
while there exists a ball that has not been accepted
in parallel: each unaccepted ball a
chooses u.a.r. a bin i(a)
sends a request to i(a)

in parallel: each bin i

chooses up to T requests from current round
sends these balls acceptances
sends other balls in this round rejections

The question is how to set the parameter T so that
the procedure terminates with high probability within some
speci�ed number of rounds. In x5.1, we show how to set
T for any constant number of rethrowing rounds. We then
show in x5.2 that when T = 1 threshold(T) takes at most
O(log log n) rounds and has maximum load
(log log n) with
high probability. Our proofs demonstrate the essential
techniques to derive the relationship between T and r for
any values of T and r.

A variation on this strategy would allow a bin to hold up
to kT balls after k rounds for all k, instead of limiting the
bin to T balls per round. We choose to analyze the latter
approach because the proofs appear more straightforward.
We also remark that we could show that the bounds
we present hold with very high probability; that is, the
probability of failure is bounded above by 1=f(n) where f(n)
is a superpolynomial function. This requires more attention
to the Cherno� bounds, and the results will appear in the
full version.

5.1 Thresholds with a �xed number of rounds

Theorem 5.1 For T = r

q
(2r+o(1)) log n

log log n threshold(T)

terminates after r rounds with high probability.

Proof. We begin with the proof when r = 2. We bound the
number of rethrows after the �rst round by using the Poisson
case. The probability that a bin contains more than T balls
is at most 2

eT !
, as can be seen by bounding the probability

by a suitable geometric series. Thus, with high probability,
the number of bins with more than T balls is at most 2n

T ! . We
also have that with probability exponentially close to 1 that
no bin contains more than log n balls. We now assume that
this is the case; formally, we can condition the event that no
bin has more than log n balls, and all previous statements
still hold. Thus the total number of rethrows in the Poisson
case is at most 2n log n

T ! with high probability, and the same
holds in the exact case by Corollary 3.2, as the expected
number of rethrows is an increasing function in the number
of balls thrown.

Now consider the second round. Using equation (4) from
the proof of Lemma 3.3, we have the probability that a
speci�c bin receives more than T balls in the second round
is at most 2(2 log n)T =(T !)T+1 in the Poisson case. This
expression is O(1=n2) for the given value of T and as in
Lemma 3.3 the result follows.

We now consider when r > 2. We have shown that after
one round the number of balls that need to be rethrown is
certainly less than 4n log n

T ! . Let ki be the number of balls
that have to be rethrown after i rounds. Following entirely
the same argument, one can show inductively that

ki � n
�
4 log n

T !

�T
i�1

T�1

with high probability for any �xed i and large enough n.
Now consider the �nal round. By equation (4) of the proof
of Lemma 3.3, the probability that a bin receives more than
T balls on the rth round is at most 2(kr�1=n)T =(T !), which
is O(1=n2) for the given value of T . The result follows.

The theorem suggests that using the threshold strategy,
one can successfully trade load balance for communication
time in a well-de�ned manner. We note that one can also

directly show that for T = r

q
(r�o(1)) log n

log log n , threshold(T)

requires more than r rounds with high probability in a
similar matter.

5.2 The case of T = 1

We can extend our argument to the case where r grows with
n with a bit more care. We consider the case where T = 1.
The following results are similar to those in [9] and [11], but
the simple proofs below are appealing.

Theorem 5.2 threshold(1) terminates after at most

log log n +O(1) stages with high probability.

Proof. Again let ki be the number of balls to be thrown
after stage i. We �rst claim that, as long as ki+1 is
at least 4

p
n log n, ki+1 � ek2i =n with probability 1 �

O(1=n2). For convenience we assume the balls arrive in
some arbitrary order, with the �rst ball that arrives at a
bin being accepted. Let Xj be the event that the jth ball

falls into a non-empty bin, where 1 � j � ki. Note that
Pr[Xj = 1 jX1; : : : ;Xj�1] � ki=n. It follows that the sum
of the ki random variables Xj is stochastically dominated by
the sum of ki independent Bernoulli random variables with
parameter ki=n. Using Cherno� bounds the claim follows.
We thus have:

ki � e(2
i�1)

n2i�1
k0

2i :

By picking k0 = n=2e, r = log log n rounds will su�ce to
cut down kr to below 4

p
n log n with high probability. By

using the Poisson case to bound the number of bins that
receive more than one ball, one can show that only O(1)
more rounds will be needed after this point. It is simple
to show by Cherno� bounds that only a constant number
of rounds are required before only k0 balls remain to be
thrown, and the result follows.

Theorem 5.3 The maximum load of threshold(1) is at

least
(log log n) with high probability.

Proof. As before, let ki be the number of balls thrown in
round i, but let k0 = n. We can determine the number of
balls thrown in the ith round by considering the number
of bins that receive two or more balls in the ith round.
Using the Poisson case and Cherno� bounds, we �nd that
as long as ki > 10

p
n log n, then with probability at least

1�O(1=n2),

ki+1 �
�

1

4en

�2i�1
k2

i

0 =
4en

(4e)2
i
:

It is easy to check that we need i =
(log log n) before
ki < 10

p
n log n. We now show that with high probability,

there will be at least one bin that receives a ball in each of
the �rst
(log log n) rounds. Say that a bin survives up to
round i if it gets a ball in each of rounds 0; : : : ; i, and let si
be the number of bins that survive up to round i. Then

Pr

h
bin survives up to i+ 1

��� it survives up to i
i

= 1�
�
1� 1

n

�ki
� ki

2n

where the last inequality holds since ki � n. Applying
Cherno�'s bound tells us that the fraction of bins that
survived round i that also survive round i+ 1 is at least ki

4n

with probability over 1� O(1
n2
) as long as si is su�ciently

large. Therefore, after the i + 1-st round, with high
probability the number of surviving bins is at least

si+1 � n� k0
4n

� � � � � ki
4n

>
n

4i+1 (4e)2i

It remains to be checked that for i =
(log log n) all the
Cherno� bounds will hold, and thus with high probability
there is still a surviving bin.

The strategy threshold(1) achieves a maximum load that
is essentially the same as greedy, but uses only O(log log n)
asynchronous rounds instead of O(n) synchronous rounds.

Balls Simple greedy pgreedy threshold(T)
n Random d = 2 d = 3 d = 5 d = 2 d = 3 d = 5 2 rounds 3 rounds 5 rounds

106 8{11 4 3 2{3 5{6 5{6 5{6 5{6 4{5 4

5 � 106 9{12 4 3 3 5{6 5{6 6{7 5{6 4{5 4

107 9{12 4 3 3 5{6 5{6 6{7 5{6 4{5 4

5 � 107 9{12 4 3 3 5{6 5{6 6{7 6 5 4

Table 1: Simulation results.

6 Simulation Results

An important feature of these load balancing schemes is that
the maximum load, even using the simplest randomization,
is very small compared to the total number of bins. Thus,
even though one may be able to show that asymptotically
one strategy performs better than another, it is worthwhile
to test actual performance. We thus briey describe some
simulation results.

We here consider only the case where the numbers of
balls and bins are equal. As usual, d represents the number
of bins to which each ball sends requests. The numbers
given in the table represent the ranges for the maximum
load found after between �fty and one hundred trials for
each strategy.

As expected, both pgreedy and threshold(T) perform
somewhere between simple random selection and greedy.
Notice that for pgreedy when d = 3 the maximum load
is the same as when d = 2, and that the maximum load
increases when d = 5; this is not completely surprising given
our previous analysis. Also, we note that the thresholds
were not optimized for the threshold strategy; in practice
one might want to take care to optimize the threshold for a
given number of balls.

7 Conclusion

We have demonstrated lower bounds for simple parallel
load distribution strategies in a distributed setting, and also
found simple strategies that match the lower bounds within
a constant factor. Our results show the tradeo� between
the �nal load and the number of rounds of communication
required. Directions for future work include looking at the
case where each ball has an associated weight, and the goal
is to minimize the maximum weight over all the bins after
distribution. Also, it would be interesting to see how useful
the general paradigms we employ are in the case where
the underlying communication network is restricted, so that
balls can only communicate with certain processors.

Acknowledgments

We would like to thank the numerous people at U.C.
Berkeley and the International Computer Science Institute
who o�ered suggestions and improvements to previous drafts
of the paper. We thank Michael Luby and Alistair Sinclair
for many helpful suggestions, and Claire Kenyon and Orli
Waarts for leading us to examine the graph model.

References

[1] Miklos Atjai, James Aspnes, Moni Naor, Yuval Rabani,
Leonard J. Schulman, and Orli Waarts. Fairness in
scheduling. In Proceedings of the Sixth Annual ACM-
SIAM Symposium on Discrete Algortihms, pages 477{
485, 1995.

[2] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced
allocations. In Proceedings of the 26th ACM Symposium
on Theory of Computing, pages 593{602, 1994.

[3] A.D Barbour, Lars Holst, and Svante Janson. Poisson
Approximation. Oxford Science Publications, 1992.

[4] B. Bollob�as. Random Graphs. Academic Press, London,
1985.

[5] A. Broder and A. Karlin. Multi-level adaptive hashing.
In Proceedings of the 1st ACM/SIAM Symposium on
Discrete Algortihms, pages 43{53, 1990.

[6] G. Gonnet. Expected length of the longest probe
sequence in hash code searching. Journal of the ACM,
28(2):289{304, April 1991.

[7] N. Johnson and S. Kotz. Urn Models and Their
Application. John Wiley and Sons, 1977.

[8] A. Kamath, R. Motwani, K. Palem, and P. Spirakis.
Tail bounds for occupancy and the satis�ability
threshold conjecture. In Proceedings of the 24th IEEE
Symposium on Foundations of Computer Science, pages
592{603, 1994.

[9] R. Karp, M. Luby, and F. Meyer auf der Heide. E�cient
pram simulation on a distributed memory machine. In
Proceedings of the 24th ACM Symposium on Theory of

Computing, pages 318{326, 1992.

[10] V. F. Kolchin, B. A. Sevsat'yanov, and V. P.
Chistyakov. Random Allocations. V.H. Winston &
Sons, 1978.

[11] P.D. MacKenzie, C.G. Plaxton, and R. Rajaraman.
On contention resolution protocols and associated
probabilistic phenomena. Department of Computer
Science Technial Report TR-94-06, University of Texas
at Austin,, April 1994.

