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We consider the following balls and bins model, as described in [2, 4]. Balls are
sequentially thrown into bins so that the probability that a bin with x balls obtains
the next ball is proportional to xp for some constant p > 1. Speci�cally, we consider
the case of two bins, in which case the state (x; y) denotes that bin 1 has x balls and
bin 2 has y balls. In this case, the probability that the next ball lands in bin 1 is xp

xp+yp
.

This model is motivated by the phenomenon of positive feedback. In economics,
positive feedback refers to the situation where a small number of companies compete
in a market until one obtains a non-negligible advantage in the market share, at which
point its share rapidly grows to a monopoly or near-monopoly. One loose explanation
for this principle, commonly referred to as Metcalfe's Law, is that the inherent potential
value of a system grows super-linearly in the number of existing users. Positive feedback
also occurs in chemical and biological processes; for more information, see e.g. [1].
Here we consider positive feedback between two competitors, with the strength of the
feedback modeled by the paramter p. Our methods can also be applied to similar
problems with more competitors.

It is known that for the model above that when p > 1 eventually one bin obtains a
monopoly in the following sense: as the total number of balls n goes to in�nity, one bin
obtains n� o(n) balls with probability 1 [2, 4]. Indeed, with probability 1 there exists
a time after which all subsequent balls fall into just one of the bins [4]. Given this
limiting behavior, we now ask what is the probability that bin 1 will eventually obtain
the monopoly starting from state (x; y). We provide an asymptotic analysis, based
an examining the appropriate scaling of the system. This approach is reminiscent of
techniques used to study phase transitions in random graphs, as well as other similar
phenomena.

Let a = (x + y)=2. We show that when x = a + �
p
a that in the limit as a grows

large, the probability that x obtains the monopoly converges to �(�
p
4p� 2), where

� is the cumulative distribution function for the normal distribution with mean 0 and
variance 1.

Theorem 1 For the balls and bins theorem described above, from the state (x; y), the
probability that bin 1 obtains the eventual monopoly is �(�

p
4p� 2) +O(1=

p
a).
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Proof: We follow the approach developed in [4]. We adopt a useful but non-intuitive
notion of time; a bin with z balls at time t receives its next ball at a time t+Tz, where
Tz is a random variable exponentially distributed with mean z�p. From the properties
of the exponential distribution, we can deduce that this maintains the property that
the probability that the next ball lands in a bin with x balls is proportional to xp.
Speci�cally, the probability that the minimum of two exponentially distributed ran-
dom variables Tx with mean x�p and Ty with mean y�p is Tx with probability xp

xp+yp
.

Moreover, from the memorylessness of the exponential distribution, when a ball arrives
at bin 1 (respectively, bin 2) the time Tx (Ty) until the next ball arrives at bin 2 (bin
1) is still exponentially distributed with the same mean.

The explosion time for a bin is the time under this framework when a bin receives
an in�nite number of balls. If we begin at time 0, the explosion time Fx for bin 1
satis�es

Fx =
1X
j=x

Tj =
1X

j=a+�
p
a

Tj

and similarly for bin 2. Note that E[Fx] and E[Fy] are �nite; indeed, the explosion
time for each bin is �nite with probability 1. It is therefore evident that the bin with
the smaller explosion time at some point obtains all balls thrown past some point, as
proven formally in [4].

We �rst demonstrate that for suÆciently large a, Fx and Fy are approximately
normally distributed. This would follow immediately from the Central Limit Theorem
(speci�cally, the variation where random variables are independent but not necessarily
identically distributed) if the sum of the variances of the random variables Tj grew to
in�nity. Unfortunately,

1X
j=x

Var[Tj] =
1X
j=x

j�2p <1;

and hence standard forms of the Central Limit Theorem do not apply.
Fortunately, we may apply Esseen's inequality, a generalization of the Central Limit

Theorem, which can be found in, for example, [3][Theorem 5.4].

Lemma 1 (Esseen's inequality) Let X1; X2; : : : ; Xn be independent random vari-

ables with E[Xj] = 0, Var[Xj] = �2j , and E[jXjj3] < 1 for j = 1; : : : ; n. Let

Bn =
Pn

i=0 �
2
j , F (x) = Pr(B

�1=2
n

Pn
j=1Xj < x), and L = B

�3=2
n

Pn
j=1E[jXjj3]: Then

sup
x
jF (x)� �(x)j � cL

for some universal constant c.

In our setting, let Xj = Tx+j�1� (x+ j� 1)�p. We note that there are no problems
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applying Esseen's theorem to the in�nite summations of our problem. Consider

F x(z) = Pr

0
@
P1

j=x(Tj � j�p)qP1
j=x j

�2p
< z

1
A :

That is, F x(z) is the probability that Fx, appropriately normalized to match a standard
normal of mean 0 and variance 1, is less than or equal to z. Then we have

sup
z
jF x(z)� �(z)j � O

�
1p
x

�
:

Hence F x(z) approaches a normal distribution as x grows large.
We also have

E[Fx] =
1X
j=x

E[Tj] =
1X
j=x

1

jp
=

Z 1

j=x

1

jp
dj +O

�
1

xp

�
=

x1�p

p� 1
+O(x�p);

and

Var[Fx] =
1X
j=x

Var[Tj] =
1X
j=x

1

j2p
=

Z 1

j=x

1

j2p
dj +O

�
1

x2p

�
=

x1�2p

2p� 1
+O(x�2p):

We wish to determine the probability that Fx � Fy < 0. Now Fx � Fy is (approxi-
mately) normally distributed with mean � where

� = E[Fx]� E[Fy] =
(a+ �

p
a)1�p

p� 1
� (a� �

p
a)1�p

p� 1
+O(x�p) +O(y�p)

=
1

p� 1

(a� �
p
a)p�1 � (a + �

p
a)p�1

(a2 � �2a)p�1
+O(a�p)

= �2�a1=2�p +O(a�p)

and variance �2 where

�2 = Var[Fx] + Var[Fy] =
(a+ �

p
a)1�2p

2p� 1
+

(a� �
p
a)1�2p

2p� 1
+O(x�2p) +O(y�2p)

=
1

2p� 1

(a� �
p
a)2p�1 + (a+ �

p
a)2p�1

(a2 � �2a)2p�1
+O(a�2p)

=
2

2p� 1
a1�2p +O(a�2p)

Hence the probability that Fx � Fy < 0 is �(�
p
4p� 2 +O(1=

p
a)) +O(1=

p
a), which

is just �(�
p
4p� 2) +O(1=

p
a). 2
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We also present a heuristic argument, which yields the same result. While this
argument does not (yet) provide a formal proof, we believe that variations of this
heuristic approach may be useful for studying similar questions.

Let G(�; a) be the probability that bin 1 achieves monopoly when x = a + �
p
a

and y = a � �
p
a. From state (x; y), after the next is ball thrown, the new average

a0 equals a0 + 1=2 and we have a new values x0 and �0 so that x0 = a0 + �0
p
a0. With

probability
(a+�

p
a)

p

(a+�
p
a)

p

+(a��
p
a)

p , x0 = x + 1, and hence

a0 + �0
p
a0 = a+ 1 + �

p
a

�0 =
1=2 + �

p
ap

a+ 1=2
:

Similarly, with probability
(a��

p
a)

p

(a+�
p
a)

p

+(a��
p
a)

p , we have

�0 =
�1=2 + �

p
ap

a+ 1=2
:

Hence,

G(�; a) =

�
1

2
+ �1

�
G(�+�2 ��3; a+ 1=2) +

�
1

2
��1

�
G(���2 ��3; a+ 1=2)

for �1 =
(a+�

p
a)

p

(a+�
p
a)

p

+(a��
p
a)

p � 1

2
, �2 = 1=2

p
a+ 1=2, and �3 = �

p
a=
p
a + 1=2� �.

Suppose that there exists a continuous and twice di�erentiable function F (�) such
that F (�) = lima!1G(�; a). So

F (�) =

�
1

2
+ �1

�
F (�+�2 ��3) +

�
1

2
��1

�
F (���2 ��3):

Now in the limit as �1;�2; and �3 go to 0 as a grows large, with �3 = o(�2)

0 =
F (�+�2 ��3)� F (�)

2
� F (�)� F (���2 ��3)

2
+ �1(F (�+�2 ��3)� F (���2 ��3))

=
F 0(�)(�2 ��3)

2
� F 0(���2 ��3)(�2 +�3)

2
+ �1(F (�+�2 ��3)� F (���3) + F (���3)� F (���2 ��3))

=
(�2 +�3)

2

2
F 00(���2 ��3)��3F

0(�) + �1�2(F
0(���3) + F 0(���2 ��3)):

Hence we have the limiting equation

F 00(�) +

�
4�1

�2

� 2�3

�2
2

�
F 0(�) = 0:
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As a grows large, 4�1=�2 converges to 4p� and 2�3=�
2
2 converges to 2�. So we

require

F 00(�) + (4p� 2)�F 0(�) = 0:

Substituting H(�) = F 0(�), it is easy to solve to �nd

F (�) = �(�
p
4p� 2);

which is indeed the correct limiting result.
We provide an example demonstrating the accuracy of Theorem 1 in Table 1. We

consider initial states with 200 balls in the system, with the �rst bin containing be-
tween 101 and 110 balls (so � ranges from 0.1 to 1). We calculate the exact distribution
when there are 160,000 balls in the system for the case p = 2, using methods described
in [2]. With this data, we make the very accurate approximation bin 1 eventually
achieves monopoly if it has 53% of the balls at this point. We also apply symmetry;
if at this point bin 1 has k balls with probability p1 and bin 2 has k balls with prob-
ability p2 < p1, then bin 1 reaches monopoly at least p2 out of this p1 + p2 fraction of
the time. This approach is suÆcent to accurately determine the probability that the
�rst bin eventually reaches monopoly to four decimal places. Comparing these results
demonstrates the accuracy of the normal estimate. Table 2 shows similar results for
the case of p = 1:5; here we calculate the distribution with 640,000 balls in the system
and use a 52% cuto� to estimate the probability of monopoly, and the numbers are
correct to four decimal places. Again, the normal estimate provides a great deal of
accuracy.
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x 101 102 103 104 105
Calc. 0.5955 0.6870 0.7682 0.8361 0.8896

�(�
p
4p� 2) 0.5970 0.6883 0.7693 0.8370 0.8902

x 106 107 108 109 110
Calc. 0.9292 0.9569 0.9751 0.9863 0.9929

�(�
p
4p� 2) 0.9297 0.9572 0.9753 0.9865 0.9930

Table 1: A calculation vs. the asymptotic estimate of our theorem when a = 100 and
p = 2.

x 101 102 103 104 105
Calc. 0.5794 0.6557 0.7261 0.7886 0.8419

�(�
p
4p� 2) 0.5793 0.6554 0.7257 0.7881 0.8413

x 106 107 108 109 110
Calc. 0.8854 0.9197 0.9456 0.9644 0.9775

�(�
p
4p� 2) 0.8849 0.9192 0.9452 0.9641 0.9772

Table 2: A calculation vs. the asymptotic estimate of our theorem when a = 100 and
p = 1:5.
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