
Analyses of Load Stealing Models Based on Differential Equations

Michael Mitzenmacher

Digital Systems Research Center

130 Lytton Ave.

Palo Alto, CA 94301

michaelm@pa.dec.com

Abstract

In this paper we develop models for and analyze several
randomized work stealing algorithms in a dynamic setting.
Our models represent the limiting behavior of systems as
the number of processors grows to infinity using differen-
tial equations. The advantages of this approach include the
ability to model a large variety of systems and to provide
accurate numerical approximations of system behavior even
when the number of processors is relatively small. We show
how this approach can yield significant intuition about the
behavior of work stealing algorithms in realistic settings.

1 Introduction

Work stealing is a natural paradigm for distributing work-
load in a parallel system in which underutilized processors
seek out work from other processors. In contrast, in the work
sharing paradigm overloaded processors attempt to pass on
some of their work elsewhere in the system. In many cases
work stealing can be a more effective means of balancing
load than work sharing, especially in terms of communica-
tion efficiency: when all processors are busy, no attempts are
made to migrate work across processors. Work stealing has
therefore been a popular strategy for multithreaded compu-
tation. Several systems using the work-stealing idea have
been implemented (see [4, p.6]), including the Cilk system
[6, 8].

In this paper we analyze several simple randomized work
stealing algorithms in a dynamic setting using simple Marko-
vian models and an approach that has similarly been used
to study work sharing algorithms [28, 29, 30, 37, 38]. Pri-
marily we study variations of the WS algorithm described
by Blumofe and Leiserson [8]. We focus on the dynamic

model where tasks enter the system over time according to a
Poisson arrival process and require exponentially distributed
service times. This model proves simplest for our analysis;
however, as we explain, we can also use this technique to
analyze other arrival and service distributions.

Our models capture the limiting behavior of work stealing
systems as the number of processors grows to infinity, repre-
senting their behavior by differential equations. The advan-
tages of this approach include the ability to model a large
variety of systems and to provide accurate numerical ap-
proximations of system behavior even when the number of
processors is relatively small.

The goals of this paper are to both demonstrate the effective-
ness of this modeling technique for work stealing algorithms
and to develop insight into work stealing algorithms based
upon these models. We demonstrate the effectiveness of this
technique by showing how a number of variations of work
stealing algorithms and different system parameters can be
modeled and by comparing the results of these models with
simulation results for systems with a small number of pro-
cessors.

1.1 Previous Work

Work stealing has been treated extensively in a series of
papers by Blumofe, Leiserson, and others [5, 6, 7, 8], who
use work stealing in their Cilk system for parallel process-
ing. Their models, which include not only computation time
but also memory usage and communication costs, demon-
strate that their work-stealing algorithms are optimal up to
a constant factor in terms of execution time, and existen-
tially optimal up to constant factors in terms of space and
communication. Their experiments further show that their
algorithms work well in practice. Other work stealing algo-
rithms have also been developed and analyzed by Rudolph,
Slivkin-Allalouf, and Upfal [34] and Karp and Zhang [15].

Work stealing has also been the subject of attention in the
queueing theory literature, most notably in the early work
by Eager, Lazwowska, and Zahorjan [9] and the later work
by Mirchandaney, Towsley, and Stankovic [24, 25]. Our work
is similar to theirs, although both our approach and our
focus are different.

The approach of using differential equations to study lim-
iting versions of load balancing processes has been applied
previously in several cases [2, 11, 22, 29, 37, 38]. Techni-

cally, the relationship between the limiting system consist-
ing of a family of differential equations and systems with a
finite number of processors can be derived using the theory
of large deviations; see, for instance, the body of work of
Kurtz [10, 17, 18, 19, 20], or a more modern treatment by
Shwartz and Weiss [35]. The use of this approach in the
study of algorithms dates back to work by Karp and Sipser
[13], and has since been used to analyze several other al-
gorithms, for example in [1, 11, 14, 21, 31, 32, 39]. Note
that here we focus on how to use the technique and what
insight it, in conjunction with simulations, gives us about
work stealing algorithms, rather than on the technical rela-
tionship between the limiting and finite systems.

The rest of the paper is organized as follows. In Section 2,
we describe the basic model used in our analysis. We then
derive a family of equations describing the performance of
a basic work stealing algorithm in this setting. We also
demonstrate how to modify our analysis for simple varia-
tions of the work stealing algorithm. In Section 3, we con-
sider how to extend our analysis to more complex and real-
istic models, including for example models where the service
time is constant (instead of exponentially distributed) and
where there is a transfer time associated with moving a task
from one processor to another. Convergence issues are dis-
cussed in Section 4.

2 Simple Work Stealing Systems

In this section, we consider variations of the WS algorithm
described by Blumofe and Leiserson [8] in a dynamic set-
ting. These variations share an interesting property: in the
limiting model, the fraction of processors with load at least
i decreases geometrically for sufficiently large i.

2.1 A Dynamic Model

We describe our initial model of a work stealing system. The
system has n processors that execute dynamically generated
tasks, generated at each processor as a Poisson process of
rate λ < 1. Tasks require an amount of service that is
exponentially distributed with mean 1 before completing.
The service times required by the tasks are not known to the
processors. Tasks are served according to a First In First
Out (FIFO) policy. The load of a processor is the number
of tasks at that processor.

At certain times, a processor may attempt to steal a task
from another processor. Following the terminology of [8], we
call a processor attempting to steal a thief, and say that it
attempts to steal from a victim processor. We assume that
stealing is accomplished instantaneously, so that the stolen
task joins the queue of the thief immediately. Tasks will be
stolen from the end of the victim’s queue.

We now provide a representation of the system useful for
our analysis. We define ni(t) to be the number of processors
with exactly i tasks at time t; mi(t) to be the number of pro-
cessors with at least i tasks at time t; pi(t) = ni(t)/n to be
the fraction of processors of size i; and si(t) =

∑∞
k=i

pi(t) =
mi(t)/n to be the tails of the pi(t). We drop the reference
to t in the notation where the meaning is clear. As we shall

see, the si prove much more convenient to work with than
the pi. Note that s0 = 1 always, and that the si are non-
increasing as si−1 − si = pi. For the well-behaved systems
we will be considering, we also have that limi→∞ si = 0.

The state of the system at any given time can be represented
by an infinite dimensional vector
s = (s0, s1, s2, . . .). Note
that our state only includes information regarding the num-
ber of processors of each size. Since we are not making use
of locality, the processors are indistinguishable, and this is
all the information we require. Also, under the assumption
that service times are exponential and arrivals are Poisson,
the entire system is Markovian: the future of the system
depends only on its present state, and not on the past that
brought it to that state.

2.2 A Simple WS algorithm

We initially study a variation of the WS algorithm described
by Blumofe and Leiserson [8]. When a processor finds itself
empty, it attempts to steal a task from a processor chosen
uniformly at random. If a task is available – that is, the
victim processor has more than one task – a task is stolen.
For any n, it is easy to show that a system using this al-
gorithm in our model is stable, in that its expected queue
length is bounded as the time t → ∞, by a straightforward
comparison with a system without stealing.

To gain insight into how to set up the appropriate limiting
system, let us first consider a system without load stealing.
Let dmi represent the expected change in mi over a small
interval of time dt. We think of dt as being a small enough
interval of time so that only one event (an arrival or depar-
ture) can happen at each processor in the interval. Let us
first consider arrivals; an arrival increases mi if it occurs at
a processor with load i− 1. Since we have a Poisson arrival
process of rate λ at each processor, the probability an arrival
occurs at each processor with i tasks is λdt. Hence the ex-
pected change in mi due to arrivals is just λ(mi−1 −mi)dt.
Similarly, the expected change in mi due to departures is
(mi −mi+1)dt. Hence, the expected behavior of the system
over short intervals is given by

dmi

dt
= λ(mi−1 − mi)− (mi − mi+1).

Canceling the factor of n permeating the equations we find:

dsi

dt
= λ(si−1 − si)− (si − si+1). (1)

Note that the system of differential equations (1) are in-
dependent of n, the number of processors in the system.
Instead, the are determined by densities of processors with
a certain size. Further, the differential equations no longer
describe a random process, but a deterministic one: given an
initial condition, the solution of the system can be shown to
be unique. Again, these differential equations describe the
expected behavior of the system over small periods of time.

When a family of Markov processes has transition rates in-
dependent of n, the system size, and dependent only on
the densities, it is called a density dependent jump Markov
process. Kurtz’s work demonstrates that, as n → ∞, the

behavior of the Markov process converges to that of the de-
terministic process given by the corresponding differential
equations (subject to certain conditions). That the system
behaves according to its expectation in the limit is hardly
surprising; essentially, it is a variation of the law of large
numbers for density dependent Markov processes. Rather
than focus on the technical details of this convergence, we
explore how to use this methodology. The details of the the-
ory behind this convergence can be found in many sources,
including [10, 29, 37, 38, 39].

Let us now consider how to modify the above equations in
the case of load stealing. A processor that completes its
final task attempts to find a victim, thereby reducing the
rate at which it actually empties. The probability of success
is just s2, the probability of choosing a victim processor
that contains at least two tasks. Hence, to the processor,
it appears as though it loses its final task only at the rate
1− s2, instead of at the rate 1. The corresponding modified
equation is given by

ds1

dt
= λ(s0 − s1)− (s1 − s2)(1− s2). (2)

For i > 1, si decreases whenever a processor with load i
completes a task, or when a task is stolen. The rate at
which thieves steal tasks is just (s1 − s2), the rate at which
processors complete their final task, yielding

dsi

dt
=λ(si−1−si)−(si−si+1)−(si−si+1)(s1−s2), i ≥ 2.(3)

Notice that we maintain the property that our system of
equations is density dependent (independent of n). To un-
derstand the long term behavior of the system, we find a
fixed point for the system of equations given by (2) and (3).
A fixed point is a state at which dsi/dt = 0 for all i; if the
system reaches its fixed point, it remains there. Most well-
behaved processes follow trajectories that converge to their
fixed points.

To determine the fixed point, we note the following facts:

• s0 = 1 for all time.

• The rate at which tasks complete is s1n, the number
of busy processors.

• The rate at which tasks are introduced is λn.

• At the fixed point, the rate at which tasks complete
and the rate at which they are introduced must be
equal.

Let us denote the fixed point by the vector (π0, π1, . . .).
Then the above facts tell us that π0 = 1 and π1 = λ. From
equation (2), and using the fact that ds1/dt = 0 at the fixed
point, we solve for π2. We find

π2 =
1 + λ −

√
1 + 2λ − 3λ2

2
.

Using induction, equation (3), and the fact that dsi/dt = 0
at the fixed point, we find that for i > 2,

πi = π2

(
λ

1 + λ − π2

)i−2

.

Hence, for i ≥ 2, the πi decrease geometrically. Let us
contrast this result with the case of no stealing, where the
fixed point is πi = λi, as can be verified by equation (1).
In both cases, the fraction of processors with load at least
i decreases geometrically, but with load stealing the tails
decrease faster. It is as though the service rate has increased
due to the stealing.

There is a useful interpretation for this phenomenon. Stan-
dard queueing theory yields that in a system with no steal-
ing, arrival rate λ, and service rate µ, the tails of the load
decrease geometrically with a ratio λ/µ between successive
terms. (Recall that we have scaled so that µ = 1 for the
equation (1), and thus the tails of the loads decrease geo-
metrically as πi = λi.) From the point of view of a processor
with at least two customers in the work stealing system, the
apparent service rate µ′ is the standard service rate 1 plus
the rate at which a task is stolen, which is π1 −π2 = λ−π2.
Hence we expect the tails to decrease geometrically at rate
λ/µ′ = λ/(1 + λ − π2), and this intuition is verified by the
derivation of the fixed point.

We briefly demonstrate the accuracy of the limiting ap-
proach by comparing the predicted results for the expected
time each task spends in the system with simulations for
this simple WS model in Table 1. All simulation results are
based on the average of 10 simulations of 100,000 seconds
each, with the first 10,000 seconds thrown out to mitigate
the impact of starting with an empty system. The table
demonstrates several important features:

• The prediction improves with the number of proces-
sors.

• The prediction improves as the arrival rate decreases.

• Even at only 128 processors, the predictions are ex-
tremely accurate, particularly at smaller arrival rates.

We now demonstrate the ease with which one can construct
systems of differential equations describing variations of the
basic model we have considered above.

2.3 Threshold Stealing

It is perhaps more realistic to suppose that thieves will steal
only from processors whose load is at least some threshold T ,
in order to improve the chances that the cost of transferring
the job is worthwhile. In this case, the probability that
a steal fails to occur when a processor finishes all pending
tasks is 1 − sT , and hence the limiting system behavior is
described by the following set of differential equations:

ds1

dt
= λ(s0 − s1)− (s1 − s2)(1− sT) (4)

dsi

dt
= λ(si−1 − si)− (si − si+1) , 2 ≤ i ≤ T − 1 (5)

dsi

dt
= λ(si−1 − si)− (si − si+1) (6)

− (si − si+1)(s1 − s2) , i ≥ T

λ Sim(16) Sim(32) Sim(64) Sim(128) Estimate Rel Error (%)
0.50 1.631 1.626 1.622 1.620 1.618 0.15
0.70 2.153 2.133 2.119 2.114 2.107 0.30
0.80 2.678 2.617 2.586 2.576 2.562 0.56
0.90 3.905 3.711 3.624 3.586 3.541 1.24
0.95 5.936 5.368 5.138 5.000 4.887 2.25
0.99 17.863 14.368 12.183 11.306 10.462 7.46

Table 1: Simulations vs. estimates for the simplest WS model. The relative error is between the simulatins with 128 processors
and the estimate based on the fixed point calculation.

Again, we seek a fixed point, beginning with π0 = 1 and
π1 = λ. From equation (4) we obtain

π2 =
λ2 − λπT

1− πT
.

To find the value of πT , we use a recurrence obtained from
equation (5):

πi+1 = πi − λ(πi−1 − πi).

This yields

πT =
λT − λπT

1− πT
,

which allows us to solve for πT :

πT =
1 + λ −

√
(1 + λ)2 − 4λT

2
.

By equation (6) and the fact that the dsi/dt are zero at the
fixed point, we have for i ≥ T that

πi+1 = πi −
λ(πi−1 − πi)

1 + π1 − π2
. (7)

We will show that πT =
λπT−1

1+π1−π2
; then a simple induction

using equation (7) yields

πi = πT

(
λ

1 + λ − π2

)i−T

.

Hence for i > T the πi again decrease geometrically at a
faster rate than a system without load stealing. This equa-
tion also matches the intuition develop in Section 2.2; for
queues with load at least T , the apparent service rate µ′ is
again the standard service rate 1 plus the rate at which a
task is stolen, which is π1 − π2 = λ − π2.

To show πT =
λπT−1

1+π1−π2
we use the fact that

∑T−1

i=1
dsi
dt = 0

at the fixed point. Most of the terms in this summation
cancel (that is, we have telescoping sums), yielding

λ(π0 − πT−1)− (π1 − πT) + πT (π1 − π2) = 0.

Using π0 = 1 and π1 = λ, the relation for πT easily follows.

2.4 Preemptive stealing

Instead of waiting until the task queue is empty, a thief
processor may wish to begin attempting to steal work when
the number of tasks it has left is sufficiently small. In such a

system we have two parameters: B, the number of tasks at
which a processor begins steal attempts, and T , a threshold
such that a processor with i tasks will only steal from a
processor with at least i+T tasks. The limiting system has
the following form:

dsi

dt
= λ(si−1 − si)− (si − si+1)(1− si+T−1), 1 ≤ i ≤ B + 1

dsi

dt
= λ(si−1 − si)− (si − si+1), B + 2 ≤ i ≤ T − 1

dsi

dt
= λ(si−1 − si)− (si − si+1)

− (si − si+1)(s1 − smin(B+2,i−T+2)) , i ≥ T

In this case, for i > B + T , the tails decrease geometrically
according to

πi = πB+T

(
λ

1 + λ − πB+2

)i−(B+T)

.

This formula can be derived using intuition of Section 2.2, or
by an inductive argument from the equivalent of equation (7)
for this model.

2.5 Repeated Steal Attempts

In the WS algorithm as described in [8], if the thief fails to
find a suitable victim on the first attempt, further attempts
are made to find a suitable victim. We can model this behav-
ior by allowing empty processors to repeatedly make steal
attempts at a certain rate, say r per unit time. To fit with
our standard model, we assume that the time between steal
attempts is exponentially distributed. If there is a threshold
T so that a victim must have at least T tasks, the equations
describing the limiting system become:

ds1

dt
= λ(s0 − s1) + r(s0 − s1)sT − (s1 − s2)(1− sT)

dsi

dt
= λ(si−1 − si)− (si − si+1) , 2 ≤ i ≤ T − 1

dsi

dt
= λ(si−1 − si)− (si − si+1)− (s1 − s2)(si − si+1)

− r(s0 − s1)(si − si+1) , i ≥ T

Again, in this system at the fixed point
π the πi decrease

λ Sim(16) Sim(32) Sim(64) Sim(128) c = 10 c = 20
0.50 1.382 1.380 1.378 1.378 1.405 1.391
0.70 1.724 1.713 1.709 1.706 1.749 1.727
0.80 2.050 2.030 2.017 2.013 2.070 2.039
0.90 2.811 2.729 2.696 2.677 2.759 2.709
0.95 3.978 3.774 3.655 3.594 3.701 3.625
0.99 11.010 8.992 7.934 7.542 7.581 7.399

Table 2: Simulations vs. Estimates for the Constant Time Model (T = 2): Simulations for 16, 32, 64, and 128 processors are
compared with the estimates using 10 and 20 stage approximations of constant time.

geometrically for i > T , according to the formula

πi = πT

(
λ

1 + r(1− λ) + λ − π2

)i−T

.

Note that, in the limit as r goes to infinity, πT goes to 0. This
stands to reason, since in the limiting system a processor
with load T tasks will have a task stolen immediately.

3 More Complex Variations

In this section, we examine more complex extensions to the
basic models we have described. In particular, many of our
extensions are motivated by the goal of making the models
more realistic. For convenience, we consider each modifica-
tion separately, although it should be clear from the presen-
tation that the extensions can be combined as desired (albeit
by making the corresponding systems of differential equa-
tions more complicated and hence more difficult to solve).

3.1 Varying service and arrival distributions

The need for exponential service and Poisson arrivals ap-
pears to limit the usefulness of this approach. However, one
can approximate other service times and arrival distribu-
tions using mixtures of these simple distributions. The ap-
proach, generally known as Erlang’s method of stages, is ex-
plained more fully in [16][Sections 4.2 and 4.3]. We demon-
strate the method here by considering the case of constant
service times. We replace the constant service time with
a collection of c stages of services; each stage of service is
exponentially distributed with mean 1/c. A service distri-
bution of this type is a gamma distribution. As c goes to
infinity, the expected time spent in these c stages of service
remains 1 and the variance approaches zero; that is, the ser-
vice appears like a constant random variable. In practice,
computing the fixed point requires limiting c to a reason-
ably small finite number, since the number of terms in the
fixed point grows proportionally with c. Even for reasonably
small c, however, the predictions become very accurate.

The state will again be represented by a vector
s = (s0, s1, s2, . . .),
but here si represents the fraction of processors with at least
i stages left to complete. Note that, when a steal occurs,
the values from s1 up to sc all change. For the case where
T = 2, that is, if we steal whenever possible, the resulting
equations are:

ds1

dt
= λ(s0 − s1)− c(s1 − s2)(1− sc+1)

dsi

dt
= λ(s0 − si) + c(s1 − s2)si+c

− c(si − si+1) , 2 ≤ i ≤ c

dsi

dt
= λ(si−c − si)− c(si − si+1)

− c(si − si+c)(s1 − s2) , i ≥ c+ 1

In principle, this approach could be used to develop deter-
ministic differential equations that approximate the behav-
ior of any service time distribution or arrival distribution
to any desired accuracy. This is because the distribution
function of any positive random variable can be approxi-
mated arbitrarily closely by a mixture of countably many
gamma distributions. We can thus develop a suitable state
space for a Markov process that approximates the underly-
ing non-Markovian process. There is a tradeoff, however,
in that the better the approximation we obtain, the larger
the state space, and hence the more calculation required to
numerically evaluate the fixed point.

The simulations presented in Table 2 demonstrate that for
constant service times, taking c = 20 provides good approx-
imations for actual systems. These results also show that
systems with constant service times perform significantly
better than systems with exponentially distributed service
times, in terms of the average time spent in the system. We
do not have a proof that this holds in general; it would be
interesting to prove such a result either using the fixed point
(see [29, Section 4.3]) or other techniques (see, for example,
[12, 26, 27, 33, 36]).

3.2 Transfer time

Up to this point we have assumed that a job can be trans-
ferred instantaneously to another processor. More realisti-
cally moving a task from the victim to the thief will require
some time for transfer. For convenience we model the trans-
fer time as an exponentially distributed variable with mean
1/r (that is, transfers occur at rate r), although it can also
be modeled as a fixed constant, or some other distribution,
using the technique of Section 3.1.

In this model we allow a thief processor to only steal one
task at a time; that is, as long as there is a task on the
way from another processor, it will not attempt to steal
again. We expand our state space to explicitly distinguish
thief processors who are awaiting a stolen task from other
processors. Our state space will hence consist of two infinite
dimensional vectors: (s0, s1, . . .) will record the fraction of
processors not awaiting a stolen task, where as usual si refers
to the fraction of such processors with at least i tasks. A
second vector, (w0, w1, . . .) will similarly record the fraction

λ T = 3 T = 3 T = 4 T = 4 T = 5 T = 5 T = 6 T = 6
Sim(128) Est. Sim(128) Est. Sim(128) Est. Sim(128) Est.

0.50 1.986 1.985 1.950 1.950 1.955 1.954 1.967 1.967
0.70 2.973 2.971 2.939 2.938 2.963 2.961 3.011 3.008
0.80 4.038 4.030 4.003 3.996 4.025 4.020 4.082 4.079
0.90 7.099 7.076 7.056 7.015 7.025 7.001 7.045 7.026
0.95 13.162 13.106 13.089 13.016 13.048 12.956 13.067 12.925

Table 3: The expected time with transfer times, where r = 0.25, according to simulations and estimates from the fixed point
of the differential equations. The best threshold is T = 4 = 1/r for small arrival rates, but is larger at higher arrival rates.

of processors awaiting a stolen task. The variable wi refers
to the fraction of such processors currently with at least i
tasks.

We note this change in state space calls for changes in the
fixed point conditions. For example, we now have that s0+
w0 = 1 for all time. Also, s1 + w1 = λ at the fixed point,
as the rate at which tasks are served must equal the rate at
which tasks enter the system. Finally, the expected number
of tasks per queue in the system is

∑
i≥1

si +
∑

i≥0
wi; this

summation accounts for the extra tasks in transit between
processors.

The equations below describe this process when a steal is at-
tempted only when a processor empties and a steal happens
only when the victim processor has at least T tasks:

ds0

dt
= rw0 − (s1 − s2)(sT + wT)

ds1

dt
= λ(s0 − s1) + rw0 − (s1 − s2)

dsi

dt
= λ(si−1 − si) + rwi−1 − (si − si+1) , 2 ≤ i ≤ T − 1

dsi

dt
= λ(si−1 − si) + rwi−1 − (si − si+1)

− (si − si+1)(s1 − s2) , i ≥ T

dw0

dt
= −rw0 + (s1 − s2)(sT +wT)

dwi

dt
= λ(wi−1 − wi)− rwi − (wi − wi+1) , 1 ≤ i ≤ T − 1

dwi

dt
= λ(wi−1 − wi)− rwi − (wi − wi+1)−

(wi − wi+1)(s1 − s2) , i ≥ T

Note that we allow tasks to be stolen from a processor that
is waiting for a task. We might expect that a thief should
not attempt to steal a task unless in so doing it reduces the
expected time that task will remain in the system. Such a
rule would suggest that the best threshold T must satisfy
T ≈ (1/r) + 1. To minimize the expected time for all tasks,
however, this simple rule is only a rough approximation.
As seen in the example for r = 0.25 presented in Table 3,
the fixed point solutions to the differential equations can be
used correctly determine the best threshold value for various
arrival rates.

3.3 Multiple choices

In load sharing algorithms, systems that have some choice
of where to place new jobs has proven to have different per-
formance characteristics than systems where jobs are placed
randomly [3, 29, 37]. For example, suppose that, upon en-
try, a task chooses two servers uniformly at random, and
queues at the one with the smaller load. There is an expo-
nential improvement in such performance measures as the
average time in the system and the expected heaviest load in
the system over a system where each task queues at a ran-
dom server. This motivates examining the following work
stealing strategy: a thief chooses d random potential vic-
tims simultaneously, and then (if possible) steals load from
the most heavily loaded victim. If the victim must have
load at least T , the probability that a steal fails to occur
equals the probability that all d victims have load less than
T ; this happens with probability (1 − sT)

d. Similarly, the
probability that a victim processor with load i is found is
(1 − si+1)

d − (1 − si)
d. Hence, if we constrain d to be a

fixed constant, independent of the number of processors n,
then we can write a corresponding limiting system with the
following form:

ds1

dt
= λ(s0 − s1)− (s1 − s2)(1− sT)

d

dsi

dt
= λ(si−1 − si)− (si − si+1) , 2 ≤ i ≤ T − 1

dsi

dt
= λ(si−1 − si)− (si − si+1)

− ((1− si+1)
d − (1− si)

d)(s1 − s2) , i ≥ T

Table 4 compares a system where two potential victims are
chosen to a system where just one choice is made. Choos-
ing more victims does improve performance, especially at
higher arrival rates, but just choosing a single victim gen-
erally yields most of the gain possible. The intuition of
Section 2 offers helpful insight: using d choices makes steals
occur at most d times the usual rate for even the most heav-
ily loaded queues, and hence the best we could hope is that
the tails fall geometrically at rate λ/(1 + d(λ − π2)). Since
systems where multiple choices are made would require ad-
ditional complexity, it is by no means clear that the gain
would be worthwhile in a real system.

Table 4 also shows that again the estimate derived fixed
point is an accurate prediction for actual systems of 128
processors at reasonable arrival rates.

λ Sim(128) Sim(128) Estimate
1 choice 2 choices 2 choices

0.50 1.620 1.436 1.433
0.70 2.114 1.680 1.673
0.80 2.576 1.879 1.864
0.90 3.586 2.260 2.220
0.95 5.000 2.742 2.640
0.99 11.306 4.597 4.011

Table 4: Simulation results comparing one choice to two
(with T = 2, 128 processors) and the corresponding estimate
from the fixed point.

3.4 Multiple steals

In certain situation stealing more than one task may be ap-
propriate. For example, if the threshold T for stealing is
high, then stealing more than one process should improve
the expected time a task spends in the system. Let us con-
sider the WS algorithm where when a steal is made k ≤ T/2
tasks are taken. Note that when a steal occurs, not only
s1 increases, but s2, s3, . . . , sk do as well. Similarly, when
a steal is made, many si values decrease. Taking this into
consideration yields the following family of differential equa-
tions:

ds1

dt
= λ(s0 − s1)− (s1 − s2)(1− sT)

dsi

dt
= λ(si−1 − si)− (si − si+1) + (s1 − s2)sT , 2 ≤ i ≤ k

dsi

dt
= λ(si−1 − si)− (si − si+1) , k + 1 ≤ i ≤ T − k

dsi

dt
= λ(si−1 − si)− (si − si+1)− (s1 − s2)(sT − si+k) ,

T − k + 1 ≤ i ≤ T

dsi

dt
= λ(si−1 − si)− (si − si+1)− (s1 − s2)(si − si+k) ,

T + 1 ≤ i

Other variations for stealing multiple jobs in the WS algo-
rithm can be modeled similarly. As one might expect, in
this model (where the time for a transfer is zero) increasing
the number of jobs stolen so as to equalize the processor
loads improves performance.

More complicated algorithms that steal multiple items at a
time are also possible. For example, we consider a varia-
tion of a load balancing algorithm suggested by Rudolph,
Slivkin-Allalouf, and Upfal [34], in which a processor at cer-
tain randomly determined steps chooses another processor
uniformly at random and the two machines balance the load
between them. Here, we can model a re-balancing event
at a processor as a process that occurs at an exponential
rate r(i), perhaps depending on the number of items i at
the processor. When a re-balancing event occurs, the tasks
are balanced between this processor and another processor
chose uniformly at random. (For convenience, the proces-
sor with the larger initial load with also have the larger final
load.) Surprisingly, this system can be represented in a quite
straightforward manner: for i ≥ i,

dsi

dt
= λ(si−1 − si)− (si − si+1)

−
2i−2∑
j=i

2i−2−j∑
k=0

(r(j) + r(k))(sk − sk+1)(sj − sj+1)

+

i−1∑
k=0

∞∑
j=2i−k

(r(j) + r(k))(sk − sk+1)(sj − sj+1)

3.5 Varying processor speeds, varying arrival rates, and
static systems

Thus far the systems studied have been homogeneous, in
that all processors run at the same rate and tasks arrive at
the system at the same rate. We note that this is not nec-
essary; we can model different processor types by keeping a
separate state vector for each type of processor. For exam-
ple, if there are two types of processors, fast and slow, then
we can represent slow processors by a vector
s = (s0, s1, s2, . . .)
and fast processors by a vector
w = (w0, w1, w2, . . .). In our
limiting model, each processor type must correspond to a
fixed fraction of the total number of processors.

We can also enhance the model by introducing the concept of
internal and external arrival rates. That is, we can replace
the arrival rate λ by λext + λint, where λext corresponds
to the rate of new tasks arriving into the system and λint

corresponds to the rate of new tasks being spawned by tasks
already at the processor.

Note λint can be made to depend on the number of tasks at
the processor if desired. In particular, by setting λext = 0
and λint = 0 when there are no tasks in the queue, we
can model a static system that starts in some initial state
and runs until all queues are empty. For sufficiently large
systems, the limiting system can give a good approximation
for the amount of time until the system completes all jobs.

4 Convergence and Stability

Thus far, when considering families of differential equations,
we have focused on finding a fixed point, with the intuition
that the system converges to that fixed point. To justify
this intuition one would hope to prove that, regardless of the
starting point, the trajectory taken by the path given by the
solution of differential equations does in fact approach the
fixed point quickly over time under some metric. That is,
we would like to show convergence of the system to its fixed
point. Such convergence results have been shown previously
for similar systems in [29, 37, 38].

In some cases where we cannot prove convergence, we can
prove a weaker result, namely the stability of the fixed point.
For our purposes, we shall say that a fixed point is stable
if the L1 distance to the fixed point is non-decreasing over
time. (This is stronger than the standard definition.) Al-
though this only shows that the trajectory does not ever
head away from the fixed point, it provides some reason to
believe that the system converges rapidly to its fixed point.
Techniques for proving stability are also described in [29,
Section 4.6]. In the work stealing setting, both stability and
convergence results prove difficult. Even for the simple sys-
tem given by equations (2) and (3), we can only prove the

stability of the fixed point for sufficiently small arrival rates
λ, as we shall show in the theorem below.

We note that, in practice, one can check for convergence to
the fixed point numerically using various starting points to
convince oneself that the system is well behaved. Devising
proofs for the convergence or better proofs for the stability of
the work stealing systems described here, however, remains
an important open question.

Theorem 1 The system given by equations (2) and (3) are
stable for λ such that π2 ≤ 1/2.

Proof: Define εi(t) = si(t) − πi. (Note ε0(t) is identically
0.) We drop the explicit dependence on t when the meaning
is clear. The L1 distance D(t) is then

∑
i≥1

|εi(t)|.

As D(t) =
∑∞

i=1
|εi(t)|, the derivative of D with respect

to t, or dD/dt, is not well defined if εi(t) = 0. We shall
explain how to cope with this problem at the end of the
proof, and we suggest the reader proceed by temporarily
assuming εi(t)
= 0.

As dεi/dt = dsi/dt, we may obtain equations for dεi/dt using
(2). It is convenient to write the derivatives dεi/dt in the
following form:

dε1
dt

= −λε1 − (ε1 − ε2)(1− s2) + ε2(π1 − π2); (8)

dεi

dt
= λ(εi−1 − εi)− (εi − εi+1)(1 + π1 − π2) (9)

− (ε1 − ε2)(si − si+1) , i > 1 ;

Note that
dD

dt
=

∞∑
i=1

d|εi|
dt

.

Using the above, we examine the terms sum of containing εi

in dD
dt , and show that the resulting expression is non-positive

for each i.

Let us first consider the case where i ≥ 3, as the cases i = 1, 2
are more difficult. There are several subcases, depending on
whether εi−1, εi, and εi+1 are positive or negative. Let us
first consider the case where they are all positive. Then the
terms containing εi in dD/dt are

εi[(−λ − 1− π1 + π2) + λ+ (1 + π1 − π2)] = 0.

Similarly, in all subcases, the sum telescopes to something
linear in εi with a coefficient that is zero or the opposite sign
from εi. Hence the sum of terms containing εi in dD/dt is
always non-positive for i ≥ 3.

For the case i = 2, there are ε2 terms in all other
d|εj |

dt

terms. However, the terms from d|ε2|
dt

dominate all others.
For example, if ε2 is positive, the corresponding terms in
d|ε2|

dt are

(−λ − (1− s2)− (π1 − π2)− s3)ε2.

Even if all other εj are set so that the coefficients of ε2 in
d|εj |

dt
are positive, the sum of the other ε2 terms is just

(λ+ (1− s2) + (π1 − π2) + s3)ε2,

and hence the sum of terms containing ε2 in dD/dt is always
non-positive.

The only difficulty lies in the case where i = 1. In this case,
if (for example) ε1 and ε2 are both positive, then the sum

of terms containing ε1 from
d|ε1|

dt and d|ε2|
dt is −(1 − s3)ε1.

If εj < 0 for j ≥ 3, however, then the sum of ε1 terms

from all other
d|εj |

dt is s3ε1. Hence the total sum of all terms
could be as much as −(1 − 2s3)ε1, which is positive when
s3 > 1/2. This case, however, requires that s3 ≤ π3, since
ε3 < 0. Hence if π3 ≤ 1/2, the coefficient of ε1 is negative
as desired.

The worst case in this instance is when ε1 and ε2 are both
negative and εj > 0 for j ≥ 3. Then the corresponding sum
of terms is (1−2s3)ε1, with the limitation that s3 ≤ s2 ≤ π2.
Hence, if we restrict λ so that π2 < 1/2, then the ε1 terms
are always non-positive, so we have stability.

We now consider the technical problem of defining dD/dt
when εi(t) = 0 for some i. Since we are interested in the
forward progress of the system, it is sufficient to consider
the upper right-hand derivatives of εi. (See, for instance,
[23, p. 16].) That is, we may define

d|εi|
dt

∣∣∣∣
t=t0

≡ lim
t→t+0

|εi(t)|
t − t0

,

and similarly for dΦ/dt. Note that this choice has the fol-

lowing property: if εi(t) = 0, then
d|εi|
dt

∣∣
t=t0

≥ 0, as it intu-
itively should be. The above proof applies unchanged with
this definition of dD/dt, with the understanding that the
case εi > 0 includes the case where εi = 0 and dεi/dt > 0,
and similarly for the case εi < 0.

In the case of threshold stealing, we have essentially the
same result.

Theorem 2 The system given by equations (4),(5), and (6)
are stable for λ such that π2 ≤ 1/2.

Proof: The proof follows the same pattern as Theorem 1,
following a case by case analysis where the only problem is
in bounding the coefficient of the terms of ε1.

We leave the reader to consider the other systems we have
described.

5 Conclusions

We have suggested an approach for analyzing load stealing
systems based on limiting models of such systems that can
be represented by families of differential equations. The ad-
vantages of this modeling technique include simplicity, gen-
erality, and the ability to accurately predict performance.
Our results provide some insight into why simple, decen-
tralized work-stealing schemes prove effective in practice.
In particular, in an idealized dynamic setting where steals
occur instantaneously, the tails of the task queues at the pro-
cessors decrease geometrically at a faster rate than without
load stealing. We expect that these models will prove useful
in designing future systems that use load stealing methods
to balance load.

References

[1] D. Achlioptas and M. Molloy. The analysis of a list-
coloring algorithm on a random graph. In Proceedings
of the 38th IEEE Symposium on Foundations of Com-
puter Science, pages 204–212, 1997.

[2] M. Alanyali and B. Hajek. Analysis of simple algo-
rithms for dynamic load balancing. In INFOCOM 95,
1995.

[3] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced
allocations. In Proceedings of the 26th ACM Symposium
on the Theory of Computing, pages 593–602, 1994.

[4] R. Blumofe. Executing Multithreaded Program Effi-
ciently. PhD thesis, Massachusetts Institute of Tech-
nology, September 1995.

[5] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and
K. Randall. An analysis of dag-consistent distributed
shared-memory algorithms. In Proceedings of the 8th
Annual ACM Syposium on Parallel Algorithms and Ar-
chitectures, 1996.

[6] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An efficient multi-
threaded runtime system. In Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, 1995.

[7] R. Blumofe and C. Leiserson. Space-efficient scheduling
of multithreaded computations. In Proceedings of the
25th Annual ACM Symposium on Theory of Comput-
ing, pages 362–371, 1993.

[8] R. Blumofe and C. Leiserson. Scheduling multithreaded
computations by work stealing. In Proceedings of the
35th Annual IEEE Conference on Foundations of Com-
puter Science, 1994.

[9] D. L. Eager, E. D. Lazokwska, and J. Zahorjan. A com-
parison of receiver-initiated and sender-initiated adap-
tive load sharing. Performance Evaluation Review,
16:53–68, March 1986.

[10] S. N. Ethier and T. G. Kurtz. Markov Processes: Char-
acterization and Convergence. John Wiley and Sons,
1986.

[11] B. Hajek. Asymptotic analysis of an assignment prob-
lem arising in a distributed communications protocol.
In Proceedings of the 27th Conference on Decision and
Control, pages 1455–1459, 1988.

[12] M. Harchol-Balter and D. Wolfe. Bounding delays in
packet-routing networks. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on the Theory of
Computing, pages 248–257, 1995.

[13] R. M. Karp and M. Sipser. Maximum matchings in
sparse random graphs. In Proceedings of the 22nd IEEE
Symposium on Foundations of Computer Science, pages
364–375, 1981.

[14] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An
optimal algorithm for on-line bipartite matching. In
Proceedings of the 22nd ACM Symposium on the Theory
of Computing, pages 352–358, 1990.

[15] R. M. Karp and Y. Zhang. A randomized parallel
branch-and-bound procedure. In Proceedings of the
20th ACM Symposium on the Theory of Computing,
pages 290–300, 1988.

[16] L. Kleinrock. Queueing Systems, Volume I: Theory.
John Wiley and Sons, 1976.

[17] T. G. Kurtz. Solutions of ordinary differential equations
as limits of pure jump Markov processes. Journal of
Applied Probability, 7:49–58, 1970.

[18] T. G. Kurtz. Limit theorems for sequences of jump
Markov processes approximating ordinary differential
processes. Journal of Applied Probability, 8:344–356,
1971.

[19] T. G. Kurtz. Strong approximation theorems for den-
sity dependent Markov chains. Stochastic Processes and
Applications, 6:223–240, 1978.

[20] T. G. Kurtz. Approximation of Population Processes.
CBMS-NSF Regional Conf. Series in Applied Math.
SIAM, 1981.

[21] M. Luby, M. Mitzenmacher, M. A. Shokrollahi,
D. Spielman, and V. Stemann. Practical loss-resilient
codes. In Proceedings of the 29th ACM Symposium on
the Theory of Computing, pages 150–159, 1997.

[22] J. Martin and Y. M. Suhov. Fast jackson networks.
available at www.statslab.cam.ac.uk/~jmb, January
1998.

[23] A. N. Michel and R. K. Miller. Qualitative Analysis of
Large Scale Dynamical Systems. Academic Press, Inc.,
1977.

[24] R. Mirchandaney, D. Towsley, and J. A. Stankovic.
Analysis of the effects of delays on load sharing. Jour-
nal of Parallel and Distributed Systems, 1513-1525:331–
346, November 1989.

[25] R. Mirchandaney, D. Towsley, and J. A. Stankovic.
Adaptive load sharing in heterogeneous systems. Jour-
nal of Parallel and Distributed Systems, 9:331–346,
1990.

[26] M. Mitzenmacher. Bounds on the greedy routing algo-
rithm for array networks. In Proceedings of the Sixth
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 248–259, 1994. To appear in the
Journal of Computer Systems and Science.

[27] M. Mitzenmacher. Constant time per edge is optimal
on rooted tree networks. In Proceedings of the Eighth
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 162–169, 1996.

[28] M. Mitzenmacher. Load balancing and density depen-
dent jump Markov processes. In Proceedings of the 37th
IEEE Symposium on Foundations of Computer Science,
pages 213–222, 1996.

[29] M. Mitzenmacher. The Power of Two Choices in Ran-
domized Load Balancing. PhD thesis, University of Cal-
ifornia at Berkeley, September 1996.

[30] M. Mitzenmacher. On the analysis of randomized load
balancing schemes. In Proceedings of the 9th Annual
Symposium on Parallel Algorithms and Architectures,
pages 292–301, 1997.

[31] M. Mitzenmacher. Tight thresholds for the pure literal
rule. Technical Report Technical Note 1997-011, Digital
Systems Research Center, June 1997.

[32] B. Pittel, J. Spencer, and N. Wormald. Sudden emer-
gence of a giant k-core in a random graph. Journal of
Combinatorial Series B, 67:111–151, 1996.

[33] R. Righter. and J. Shanthikumar. Extremal properties
of the FIFO discipline in queueing networks. Journal
of Applied Probability, 29:967–978, November 1992.

[34] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A sim-
ple load balancing scheme for task allocation in parallel
machines. In Proceedings of the 3rd Annual ACM Sy-
posium on Parallel Algorithms and Architectures, pages
237–245, 1991.

[35] A. Shwartz and A. Weiss. Large Deviations for Perfor-
mance Analysis. Chapman & Hall, 1995.

[36] G. D. Stamoulis and J. N. Tsitsiklis. The efficiency of
greedy routing in hypercubes and butterflies. IEEE
Transactions on Communications, 42(11):3051–3061,
November 1994. An early version appeared in the
Proceedings of the Second Annual ACM Symposium on
Parallel Algorithms and Architectures, p. 248-259, 1991.

[37] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpele-
vich. Queueing system with selection of the shortest of
two queues: An asymptotic approach. Problems of In-
formation Transmission, 32:15–27, 1996.

[38] N. D. Vvedenskaya and Y. M. Suhov. Dobrushin’s
mean-field approximation for a queue with dynamic
routing. Technical Report 3328, INRIA, December
1997.

[39] N. C. Wormald. Differential equations for random pro-
cesses and random graphs. Annals of Appl. Prob.,
5:1217–1235, 1995.

