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In this paper, we introduce variations on random graph
models for Web-like graphs. As a basis, we recall a model
�rst presented in [5]. We add vertices to the graph, one
per unit time, with each vertex having one outedge. With
probability � this outedge loops back to the new vertex and
with probability 1�� the end is chosen to be the same as the
end of a random extant edge. Notice that in this second case
the end of a new edge is chosen proportionally to the current
indegrees of the vertices. One feature of these graphs that
makes them Web-like is that the indegrees obey a power law;
that is, the fraction of vertices of degree i grows like 1=i,
where in this case  = 1=(1� �).

Model 1: We grow a graph to n vertices, at a rate of one
vertex per unit of time. (We may begin initially with t0
vertices in a directed cycle at time t0.) Let du be the indegree
of a vertex u extant at time t. A new vertex v has one
directed outedge, with the probability that the end vertex
is u is proportional to the weight of u, wu = du + c for a
constant c > 0. The total weight at time t is (c+1)t. One can
interpret the constant c as every vertex is given c self-loops,
although we do not require that c is an integer. We have
found while writing this work that our model is equivalent
to the following model from [4]: with probability c=(c + 1)
the end of a new edge is chosen uniformly at random from
extant vertices, and with probability 1=(c+ 1) the end is u
with probability proportional to du.

We present an argument sketching the asymptotic behav-
ior of the indegrees. (A more rigorous form of this argument
based on martingales is given in [4].) Let ni(t) be the num-
ber of vertices extant at time t with indegree i; we write ni
where the meaning is clear. Note

E[n0(t)] = E[n0(t� 1)] + 1� cn0(t� 1)

(c+ 1)t
:

The growth of n0 is well approximated by the uid limit

dn0
dt

= 1� cn0
(c+ 1)t

:

Let us assume that in the limit as n gets large that the ni(t)
converge to �xed fractions of the graph, so ni(t) = ait. By
plugging in the above we �nd a0 =

c+1
2c+1 :
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More generally, for i � 1,

dni
dt

=
(i+ c� 1)ni�1 � (i+ c)ni

(c+ 1)t
:

A simple induction yields ai = i+c�1
i+2c+1ai�1. For integral

c, this simpli�es to ai = (c+ 1)
�
2c
c�1

�
=((c+ 2)

�
2c+i+1
c+2

�
),

from which ai � i�(2+c) for large i. Alternatively, we see
ai=ai�1 = 1 � (c + 2)=(i + 2c + 1) � ((i � 1)=i)c+2, so
ai � i�(2+c) also for non-integral c. If m outedges are
produced for each new vertex, a similar argument reveals
ai � i�(2+c=m). A similar result can be found using the
scale-free analysis of [1]. Hence this simple model allows
any power-law exponent greater than 2.
Model 2: The weight of a vertex is wu = (du+c)p for some
constants c > 0 and p. The idea behind this model is that the
strength of forming a new connection may be proportional
to a nonlinear function of the indegree. The limiting cases
for this model are interesting: when p ! 1, essentially all
edges point to a single node, and when p! �1, the graph
is essentially a single path. Given recent results on the shape
of the Web, showing for example there are many long path-
like pieces [3], it is possible that some areas of the Web may
be similar to Model 2 with properly chosen parameters.
We note that the di�erential equation setup used for

Model 1 can also be used to gain insight into Model 2,
although we lack a closed form solution. Here dni

dt =
(i+c�1)pni�1�(i+c)

pni
W (t) , whereW (t) is the total weight at time

t. Assuming also W (t) converges to W � t for some con-
stant W , we have ai=ai�1 = (i + c � 1)p=(W + (i + c)p) �
1� (W + p(i+ c)p�1)=(W + (i+ c)p). For p > 1 this is ap-
proximately 1� p=i � (1� 1=i)p for large i, so the indegree
distribution again follows a power-law distribution ai � i�p.
For p < 1, however, the constant W dominates the numera-
tor, and the distribution does not follow a power-law.
Model 3: The weight of a vertex wu is proportional to
the PageRank of a vertex. The PageRank (with parameter
q) of a vertex is equivalent to the asymptotic fraction of
time a surfer that follows a random link from his current
location with probability q and jumps to a random vertex
with probability 1�q spends at a vertex. It is used by search
engines as a measure to rank pages; see [2] for more details.
The PageRank model is motivated by the fact that search

engines may be introducing feedback into how the Web de-
velops. Users are more likely to link to pages given by search
engines, corresponding to pages with high PageRank. Al-
though PageRank is similar to indegree, we expect di�er-
ences between this model and Model 1, as here new edges
have more than a local e�ect. An alternative and perhaps
better model is to have ends of new edges determined by
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choosing k vertices uniformly at random and linking to the
m vertices with highest PageRank. This potentially mimics
the interaction between a user creating a new page and a
search engine.
Experiments: We present the results of initial experiments
based on these models. More extensive experiments will be
given in the full version. Here, for all experiments, each new
node is given outdegree 1. All plots are log-log plots with the
frequency (in percent) given as a function of the indegree;
hence, a straight line plot implies a power-law distribution.
In Figure 1, we examine Model 1 with various c. We

present the results from simulating the graph-building pro-
cess for one million nodes (beginning with 5,000 nodes in a
cycle), numerically simulating the corresponding di�erential
equations, and deriving the asymptotic values. We see that
the di�erential equations accurately predict actual behav-
ior, and large graphs are required to reach the asymptotic
expressions. (100 million node graphs are much closer to the
asymptotic behavior.)
In Figure 2, we examine Model 2 with values p = 0:8

and p = 1:2. We again build graphs with one million nodes
and 5,000 initial nodes and compare to the corresponding
di�erential equations. The equations match the simulations;
moreover, the di�erence in behavior for p < 1 and p > 1 is
evident. We have observed in other experiments that for p >
1 it is possible for a single node to take on high degree early
in the process, gaining so much weight that it then becomes
the endpoint for almost all future edges. This suggests that
Model 2 with p > 1 is potentially unstable. We hope to
examine this point further in future research.
In Figure 3, we examine Model 3, the PageRank model.

Here we begin with 50,000 initial nodes in a cycle. Also,
we recompute PageRanks only after a batch of new nodes; a
batch at time t has

p
t nodes. The e�ect of batching appears

minor. For large q, too much weight is focused on the initial
nodes, causing a hump in the distribution. This suggests
that Model 3 may be potentially unstable. For smaller q
and a large initial set, the e�ect disappears.
We expect to expand on these �ndings in future work.
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Model 1, Varying c: Simulations and Equations

c = 0.5 ; Sim.
c = 1.0 ; Sim.
c = 2.0 ; Sim.
c = 0.5 ; Eqs.
c = 1.0 ; Eqs.
c = 2.0 ; Sim.

c = 0.5 ; Asym.
c = 1.0 ; Asym.
c = 2.0 ; Asym.

Figure 1: Simulations and results from the di�erential equa-
tions for Model 1.
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Model 2, Varying p: Simulations and Equations

p = 0.8 ; Sim.
p = 1.2 ; Sim.
p = 0.8 ; Eqs.
p = 1.2 ; Eqs.

Figure 2: Simulations and results from the di�erential equa-
tions for Model 2, with c = 1:0. Di�erent behaviors appear
for p < 1 and p > 1.
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Model 3: Simulations

PageRank q = 0.5 ; Sim.
PageRank q = 0.85 ; Sim.

Figure 3: Simulations for Model 3, at q = 0:5 and q = 0:85.
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