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Two Applications

• Improved Analysis of the Lossy Difference
Aggregator
– With H. Finucane (undergrad!) (Computer

Communications Review)
• Carousel: Scalable Logging for Intrusion

Prevention Systems
– With T. Lam and G. Varghese (NSDI 2010)

• Key, simple idea : Partition data into buckets
by hashing, then analyze.



Lossy Difference Aggregator

• Motivation : sampling for latency estimates.
– Packets travel from A to B : average latency.
– Must cope with occasional packet loss.
– Cannot add per packet timestamps (too much

space, packet headers already designed).
• Applications

– Interactive multimedia (games, videoconferencing)
– Trading platforms
– High-performance systems/data centers

• Proposed in [KLSV, SIGCOMM 2009]



Zero Loss Case

• Assumptions: over a time window, consistent
clocks at endpoints

• Sender sums timestamps for packets sent;
receiver sums timestamps for packets
received.
– Recall timestamps NOT sent.

• Sender sends control packet with sum.
• Receiver takes difference, divides by number

of packets to get average.
• Fails entirely once loss introduced.



Dealing with Loss : Hashing

• Hash packets into logical buckets.
– Disjoint; not all packets necessarily hashed.

• Need time accumulator + counter for each
bucket.

• Sender sums timestamps and counts packets
for each bucket; same for receiver.

• Sender sends control packet with sum/count
for each bucket.

• Each bucket with no loss gives a useful
sample for measuring latency.



Example

      120        5

      234       10

           15         2

           88         1

      180        5

      348       9

           37         2

           96         1

Sender Receiver

Sum     Ctr Sum     Ctr

      60          0

      114         1

           22          0

           8            0

Difference

Estimate = (60 + 22 + 8)/(5 + 2 + 1)



Analysis : Questions

• Optimal sampling rate per bucket given
known loss rate.
– Natural restriction :  what if sampling rates are of

form 2-j (hash on last j bits).
• Restricted sampling rates implies simpler hardware.

• What do when loss rates are unknown.
– Extended analysis based on competitive analysis.
– Single sampling rate vs. multiple sampling rate

optimization and design.
• Fewer sampling rates implies simpler hardware.



Simple Analysis

• Let n be total number of packets, l be loss
rate, z/n be sampling rate, and Z be packets
obtained by bucket.

• Expectation reaches maximum when z = 1/l,
number of packets is (1-l)/(el).

! 

Pr(Z = i) =
n

i

" 

# 
$ 
% 

& 
' 
z

n

" 

# 
$ 
% 

& 
' 

i

1(
z

n

" 

# 
$ 

% 

& 
' 

n( i

1( l( )
i

! 

E[Z] = z(1" l)(1" lz /n)
n"1
# z(1" l)e

"lz



Restrictions : Powers of 2

• Suppose instead of choosing sample rate z/n
we choose y/n, with expectations Z and Y.

• When z = 1/l, y=xz or y=2xz chosen as
nearest inverse power of 2, then ratio is

• Loss of less than 6%;  worst case when
x = ln 2.
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Unknown Loss Rates

• What to optimize for unknown loss rate?
– Lots of possibilities.

• Our suggestion : optimize competitive ratio,
over a range of possible loss rates, between
expected number of packets obtained and
optimal expected number of packets obtained
if loss rate is known.

• Gives a rigorous framework, can be extended
to other possibilities.



Single Sampling Probability

• Using previous analysis, can show:
– When range is [a,b], and r = b/a, best

competitive ratio is:

– When r < 2, a single sampling probability is
sufficient for best competitive ratio.
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Competitive Ratio



Design :
Multiple Sampling Probabilities
• Must deal with loss rates over several orders

of magnitude.
• Choose sampling probabilities to cover

geometrically spaced ranges.
– For large ranges [a,b] with ratio r = b/a, and c

sampling probabilities, split into c subranges with
ratio r1/c.

• Competitive ratio at worst reduced by factor c.
– Can do better with more analysis, but gives a good

initial rule of thumb.



Takeaways

• Can estimate delay across sender-receiver
via bucketing
– Example of “Coordinated streaming”
– Other applications?
– More general functions?

• Can be extended to find sample variance using standard
techniques.

• Analysis focuses on practical issues, design
rules
– Competitive analysis for parameter setting.



Carousel : Scalable Logging

• Millions of potentially interesting events
– Standard solutions: sampling and summarizing

• What if you want complete collection
– Remediate infected machines
– Other examples:  Listing IPv6 addresses, MAC

addresses in a LAN

Denial of Service Worm outbreak



Example : Worm Outbreak

Slammer
Witty…

signatures

Intrusion Detection System 
(IDS)

Slammer   A    Witty      BSlammer   C

A B C

Management
    Station



Abstract Model

• Challenges
– Small logging bandwidth b << arrival rate B

• e.g., b = 1 Mbps; B = 10 Gbps
– Small memory M << number of sources N

• e.g., M = 10,000; N=1 Million

• Assumption : persistent sources, keep arriving at the
logger.

Sink

N
Memory M

B b

1 LOGGER



Naïve Approach

• Just log things into memory as they
arrive.

• Problem : repeats
– Memory too small to track history.
– Consider random model -- each source is

random on [1,N].
– Repeatedly send same stuff to sink.



Naïve Approach +
Bloom Filter

• Bloom filter keeps track of a set, with
some false positives.

• Can use to track set of sent items.
• But memory too small to track all sent

items, so Bloom filter must reset
periodically.

• Same problem -- repeated sends of
same info to sink.



Carousel Solution

• Use hashing to bucketize sources.
– Want 1 bucket to fit into memory (approximately).

• Let T = M/b, time to clear memory, be 1
phase.
– Iterate over buckets, one per phase.
– Use Bloom filter within phase to prevent duplicates

entering memory/being sent.
• Increase or decrease #of buckets as needed

to avoid memory overflow.



Theoretical Results

• Carousel is “competitive” in that it can collect
almost all sources within a factor of
(1+epsilon) of optimal with the right number of
buckets.
– Simple application of Chernoff bounds -- you get

almost the right number per bucket for all buckets.
– In practice -- use last k bits of a hash for 2k

buckets, within a factor of (2+epsilon) of optimal.



Theoretical Results

• Why almost all, and not all?
• Need a Bloom filter to prevent

duplicates from overwhelming memory.
– But gives false positives.
– Some items not recorded.
– In practice:  switch hash functions each

round, number missed shrinks
exponentially with rounds.



Simulated Worm Outbreak

• N = 10,000; M = 500; b = 100 items/sec
• Logistic model of worm growth 23

Carousel is nearly ten times faster than naïve collector

Time (sec)

# logged
sources



Snort Results

24

Time (sec) Time (sec)
(a) Random traffic pattern (b) Periodic traffic pattern

180 500 18000

3 times faster with random and 100 times faster with periodic



Hardware Requirements

• Simple is good.
• Requires : hashing, Bloom filter,

counters, timers, comparisons.
• Small memory footprint very effective.
• Cheap to add in terms of space/cost.



Open Questions / Issues

• Importance of persistent source assumption?
– Carousel fails for “one-time events”.

• Most effective dynamic re-sizing?
– Using last k bits of a hash for 2k buckets leads to

fast re-sizing, at cost of optimality of bucket size.
• Tighter analysis on round times?
• De-duplication at endpoint.

– Generally easily done.
• Simplicity is often better than optimality.



Takeaways

• Simple randomized admission control
scheme.
– Bucketize with hashing.
– Use Bloom filter or similar structure to avoid

duplicates.
– Dynamically size # of buckets for performance.

• Other uses for this type of admission control?
• Importance of design for key memory/speed

bottleneck points.



Cuckoo Hashing



The Beginnings



Why Do We Care
About Cuckoo Hashing?

• Hash tables a fundamental data structure.
• Multiple-choice hashing yields tables with

– High memory utilization.
– Constant time look-ups.
– Simplicity – easily coded, parallelized.

• Cuckoo hashing expands on this, combining
multiple choices with ability to move
elements.

• Practical potential, and theoretically
interesting!



Cuckoo Hashing

• Basic scheme:  each element gets two
possible locations (uniformly at random).

• To insert x, check both locations for x.  If one
is empty, insert.

• If both are full, x kicks out an old element y.
Then y moves to its other location.

• If that location is full, y kicks out z, and so on,
until an empty slot is found.



Cuckoo Hashing Examples

A B C

E D



Cuckoo Hashing Examples

A B C

E D

F



Cuckoo Hashing Examples

A B FC

E D



Cuckoo Hashing Examples

A B FC

E D

G



Cuckoo Hashing Examples

E G B FC

A D



Cuckoo Hashing Examples

A B C

E D F

G



Good Properties of Cuckoo
Hashing

• Worst case constant lookup time.
• High memory utilizations possible.
• Simple to build, design.



Cuckoo Hashing Failures

• Bad case 1:  inserted element runs into
cycles.

• Bad case 2:  inserted element has very long
path before insertion completes.
– Could be on a long cycle.

• Bad cases occur with very small probability
when load is sufficiently low.

• Theoretical solution:  re-hash everything if a
failure occurs.



Various Representations
Buckets

Buckets

Elements
Buckets

Elements

Buckets

Elements



Basic Performance

• For 2 choices, load less than 50%, n
elements gives failure rate of Θ(1/n);
maximum insert time O(log n).

• Related to random graph representation.
– Each element is an edge, buckets are vertices.
– Edge corresponds to two random choices of an

element.
– Small load implies small acyclic or unicyclic

components, of size at most O(log n).



Natural Extensions
• More than 2 choices per element.

– Very different : hypergraphs instead of graphs.
– D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis.
– Space efficient hash tables with worst case constant

access time.
– More than 2 choices is important.
– Much higher memory utilizations;  3 choices : 90%+,

4 choices : about 97%.
• More than 1 element per bucket.

– M. Dietzfelbinger and C. Weidling.
– Balanced allocation and dictionaries with tightly

packed constant size bins.



Recent Work:
Parallel Architectures

• Multicores, Graphics Processor Units
(GPUs), other parallel architectures
possibly the next wave.

• Multiple-choice hashing and cuckoo
hashing seem naturally parallelizable.

• Theory and practice?



Related Work

• Plenty on parallel hashing/load balancing
schemes.
– PRAM emulation, related work in the 1990s.

• Technical improvements of last decade
suggest more is possible.

• In Amenta et al., we designed new
implementation for GPUs based on cuckoo
hashing.
– New theory, practical implementations possible?


