Some Uses of Hashing
in Networking Problems

Michael Mitzenmacher

Two Applications

* Improved Analysis of the Lossy Difference
Aggregator

— With H. Finucane (undergrad!) (Computer
Communications Review)

« Carousel: Scalable Logging for Intrusion
Prevention Systems
— With T. Lam and G. Varghese (NSDI 2010)

* Key, simple idea : Partition data into buckets
by hashing, then analyze.

Lossy Difference Aggregator

* Motivation : sampling for latency estimates.
— Packets travel from A to B : average latency.
— Must cope with occasional packet loss.

— Cannot add per packet timestamps (too much
space, packet headers already designed).

* Applications
— Interactive multimedia (games, videoconferencing)

— Trading platforms
— High-performance systems/data centers

* Proposed in [KLSV, SIGCOMM 2009]

Zero Loss Case

Assumptions: over a time window, consistent
clocks at endpoints

Sender sums timestamps for packets sent;
receiver sums timestamps for packets
received.

— Recall timestamps NOT sent.
Sender sends control packet with sum.

Receiver takes difference, divides by number
of packets to get average.

Fails entirely once loss introduced.

Dealing with Loss : Hashing

Hash packets into logical buckets.
— Disjoint; not all packets necessarily hashed.

Need time accumulator + counter for each
bucket.

Sender sums timestamps and counts packets
for each bucket; same for receiver.

Sender sends control packet with sum/count
for each bucket.

Each bucket with no loss gives a useful
sample for measuring latency.

Example

Sender Receiver
Sum Ctr Sum Ctr Difference
120 5 180 5 60 0
234 10 348 9) 11 1
15 2 37 2 22 0
88 1 96 1 8 0

Estimate = (60 + 22 + 8)/(5+ 2 + 1)

Analysis : Questions

* Optimal sampling rate per bucket given
known loss rate.

— Natural restriction : what if sampling rates are of
form 27 (hash on last J bits).
« Restricted sampling rates implies simpler hardware.

« \What do when loss rates are unknown.

— Extended analysis based on competitive analysis.

— Single sampling rate vs. multiple sampling rate
optimization and design.
* Fewer sampling rates implies simpler hardware.

Simple Analysis

* Let n be total number of packets, / be loss
rate, z/n be sampling rate, and Z be packets
obtained by bucket.

Pr(Z = i) = (?)(i)(l - f)n_i(l - 1)

E[Z] = Z(l — l)(l — lz/n)n_l — Z(l _ l)e—lz

« EXxpectation reaches maximum when z = 1//,
number of packets is (1-/)/(el).

Restrictions : Powers of 2

« Suppose instead of choosing sample rate z/n
we choose y/n, with expectations Z and Y.

E[Y]/E[Z] = (y/z)e'*™

« When z=1/l, y=xz or y=2xz chosen as
nearest inverse power of 2, then ratio is

. I-x 1-2x
min,,,_ _ max(xe ~,2xe ") =0.942

 Loss of less than 6%: worst case when
xX=1n 2.

Unknown Loss Rates

* What to optimize for unknown loss rate?
— Lots of possibilities.

« Our suggestion : optimize competitive ratio,
over a range of possible loss rates, between
expected number of packets obtained and
optimal expected number of packets obtained
iIf loss rate is known.

« Gives a rigorous framework, can be extended
to other possibilities.

Single Sampling Probability

« Using previous analysis, can show:

— When range is [a,b], and r = b/a, best
competitive ratio is: elnr

(r _ l)rl/(r—l)

—When r < 2, a single sampling probability is
sufficient for best competitive ratio.

1.0

0.8

0.6

0.4

0.2

0.0

Competitive Ratio

Design :
Multiple Sampling Probabillities

* Must deal with loss rates over several orders
of magnitude.

* Choose sampling probabilities to cover
geometrically spaced ranges.
— For large ranges [a,b] with ratio r = b/a, and ¢
sampling probabilities, split into ¢ subranges with
ratio r'/c.
« Competitive ratio at worst reduced by factor c.

— Can do better with more analysis, but gives a good
initial rule of thumb.

Takeaways

« Can estimate delay across sender-receiver
via bucketing
— Example of “Coordinated streaming”
— Other applications?

— More general functions?

« Can be extended to find sample variance using standard
techniques.

* Analysis focuses on practical issues, design
rules
— Competitive analysis for parameter setting.

Carousel : Scalable Logging

Denial of Service | ,. Worm outbreak

« Millions of potentially interesting events
— Standard solutions: sampling and summarizing

* What if you want complete collection
— Remediate infected machines

— Other examples: Listing IPv6 addresses, MAC
addresses in a LAN

Example : Worm Outbreak

siammer [CB

-
siammer [0

\

Slammer

signatures

N

J

Intrusion Detection System

(IDS)

Manaement
Station

L © 6 O -

Abstract Model

LOGGER

P > Sink

Memory M

« Challenges

— Small logging bandwidth b << arrival rate B
* e.g.,,b=1Mbps; B =10 Gbps
— Small memory M << number of sources N
+ e.g., M =10,000; N=1 Million
« Assumption : persistent sources, keep arriving at the
logger.

Nalve Approach

» Just log things into memory as they
arrive.

* Problem : repeats
— Memory too small to track history.

— Consider random model -- each source is
random on [1,N].

— Repeatedly send same stuff to sink.

Naive Approach +
Bloom Filter

Bloom filter keeps track of a set, with
some false positives.

Can use to track set of sent items.

But memory too small to track all sent
items, so Bloom filter must reset
periodically.

Same problem -- repeated sends of
same info to sink.

Carousel Solution

« Use hashing to bucketize sources.
— Want 1 bucket to fit into memory (approximately).
* Let T = M/b, time to clear memory, be 1
phase.

— lterate over buckets, one per phase.
— Use Bloom filter within phase to prevent duplicates
entering memory/being sent.

* Increase or decrease #of buckets as needed
to avoid memory overflow.

Theoretical Results

« Carousel is “competitive” in that it can collect
almost all sources within a factor of

(1+epsilon) of optimal with the right number of
buckets.

— Simple application of Chernoff bounds -- you get
almost the right number per bucket for all buckets.

— In practice -- use last k bits of a hash for 2%
buckets, within a factor of (2+epsilon) of optimal.

Theoretical Results

* Why almost all, and not all?

* Need a Bloom filter to prevent
duplicates from overwhelming memory.
— But gives false positives.
— Some items not recorded.

— In practice: switch hash functions each
round, number missed shrinks
exponentially with rounds.

Simulated Worm Outbreak

10000 —

1
8000

logged
sources

6000 -

4000 —

2000 —

0

e et e e a1

.’T ,‘{5’6‘

il &

£
i — Source dynamics

Carousel

1 E— [Naive logger

—= Naive logger
with Bloom filter

Time (sec)

I I I
1000 2000 3000 4000

Carousel is nearly ten times faster than naive collector

* N=10,000; M =500: b=100 items/sec
* Logistic model of worm growth 23

~ Snort

10000

Results

10000 —mp— YT ———
e P
O 7 . P
O ' == Snort instrumented o
3 7500 - — with Carousel —| 7500 +—/=*
Q == Standard Snort ':' 4
o> == Standard Snort ‘I.:' — s . ol
5000 - with Bloom filter — 5900 1y nprt Instrumente
=2 :_ with Carousel
g 4 |- Standard Snort
02500 A 2500 "= Standard Snort
= with Bloom filter
z
. 180 500 0 18000 | |
i | |
(l) 500 1000 1500 0 10000 20000 30000 40000
Time (sec) Time (sec)

(a) Random traffic pattern

(b) Periodic traffic pattern

3 times faster with random and 100 times faster with periodic

Hardware Requirements

Simple is good.
Requires : hashing, Bloom filter,
counters, timers, comparisons.

Small memory footprint very effective.
Cheap to add in terms of space/cost.

Open Questions / Issues

Importance of persistent source assumption?
— Carousel fails for “one-time events”.

Most effective dynamic re-sizing?

— Using last k bits of a hash for 2% buckets leads to
fast re-sizing, at cost of optimality of bucket size.

Tighter analysis on round times?

De-duplication at endpoint.
— Generally easily done.

Simplicity is often better than optimality.

Takeaways

Simple randomized admission control
scheme.

— Bucketize with hashing.

— Use Bloom filter or similar structure to avoid
duplicates.

— Dynamically size # of buckets for performance.
Other uses for this type of admission control?

Importance of design for key memory/speed
bottleneck points.

Cuckoo Hashing

LNCS 2161

The Beginnings

Friedhelm Meyer auf der Heide (Ed.)

Algorithms -
ESA 2001

9th Annual European Symposium
Arhus, Denmark, August 2001
Proceedings

Cuckoo Hashing

Rasmus Pagh* and Flemming Friche Rodler

BRICS**
Department of Computer Science
University of Aarhus, Denmark
{pagh,ffr}Cbrics.dk

Abstract. We present a simple and efficient dictionary with worst case
constant lookup time, equaling the theoretical performance of the clas-
sic dynamic perfect hashing scheme of Dietzfelbinger et al. The space
usage is similar to that of binary search trees, i.e., three words per key
on average. The practicality of the scheme is backed by extensive ex-
periments and comparisons with known methods, showing it to be quite
competitive also in the average case.

Why Do We Care
About Cuckoo Hashing?

Hash tables a fundamental data structure.
Multiple-choice hashing yields tables with

— High memory utilization.

— Constant time look-ups.

— Simplicity — easily coded, parallelized.

Cuckoo hashing expands on this, combining

multiple choices with ability to move
elements.

Practical potential, and theoretically
interesting!

Cuckoo Hashing

Basic scheme: each element gets two
possible locations (uniformly at random).

To insert x, check both locations for x. If one
IS empty, insert.

If both are full, x kicks out an old element y.
Then y moves to its other location.

If that location is full, y kicks out z, and so on,
until an empty slot is found.

Cuckoo Hashing Examples

Cuckoo Hashing Examples

Cuckoo Hashing Examples

Cuckoo Hashing Examples

Cuckoo Hashing Examples

Cuckoo Hashing Examples

Good Properties of Cuckoo
Hashing
 Worst case constant lookup time.

* High memory utilizations possible.
« Simple to build, design.

Cuckoo Hashing Failures

Bad case 1: inserted element runs into
cycles.

Bad case 2: inserted element has very long
path before insertion completes.
— Could be on a long cycle.

Bad cases occur with very small probability
when load is sufficiently low.

Theoretical solution: re-hash everything if a
failure occurs.

Various Representations

Buckets

Elements

Buckets

Buckets L\

Elements

Basic Performance

* For 2 choices, load less than 50%, n
elements gives failure rate of O(1/n);

maximum insert time O(log n).

* Related to random graph representation.
— Each element is an edge, buckets are vertices.

— Edge corresponds to two random choices of an
element.

— Small load implies small acyclic or unicyclic
components, of size at most O(log n).

Natural Extensions

* More than 2 choices per element.
— Very different : hypergraphs instead of graphs.
— D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis.

— Space efficient hash tables with worst case constant
access time.

— More than 2 choices is important.

— Much higher memory utilizations; 3 choices : 90%+,
4 choices : about 97%.

 More than 1 element per bucket.
— M. Dietzfelbinger and C. Weidling.

— Balanced allocation and dictionaries with tightly
packed constant size bins.

Recent Work:
Parallel Architectures

* Multicores, Graphics Processor Units
(GPUs), other parallel architectures
possibly the next wave.

* Multiple-choice hashing and cuckoo
hashing seem naturally parallelizable.

* Theory and practice?

Related Work

* Plenty on parallel hashing/load balancing
schemes.

— PRAM emulation, related work in the 1990s.

« Technical improvements of last decade
suggest more is possible.

* |In Amenta et al., we designed new
iImplementation for GPUs based on cuckoo
hashing.

— New theory, practical implementations possible?

