
Some Uses of Hashing
in Networking Problems

Michael Mitzenmacher

Two Applications

• Improved Analysis of the Lossy Difference
Aggregator
– With H. Finucane (undergrad!) (Computer

Communications Review)
• Carousel: Scalable Logging for Intrusion

Prevention Systems
– With T. Lam and G. Varghese (NSDI 2010)

• Key, simple idea : Partition data into buckets
by hashing, then analyze.

Lossy Difference Aggregator

• Motivation : sampling for latency estimates.
– Packets travel from A to B : average latency.
– Must cope with occasional packet loss.
– Cannot add per packet timestamps (too much

space, packet headers already designed).
• Applications

– Interactive multimedia (games, videoconferencing)
– Trading platforms
– High-performance systems/data centers

• Proposed in [KLSV, SIGCOMM 2009]

Zero Loss Case

• Assumptions: over a time window, consistent
clocks at endpoints

• Sender sums timestamps for packets sent;
receiver sums timestamps for packets
received.
– Recall timestamps NOT sent.

• Sender sends control packet with sum.
• Receiver takes difference, divides by number

of packets to get average.
• Fails entirely once loss introduced.

Dealing with Loss : Hashing

• Hash packets into logical buckets.
– Disjoint; not all packets necessarily hashed.

• Need time accumulator + counter for each
bucket.

• Sender sums timestamps and counts packets
for each bucket; same for receiver.

• Sender sends control packet with sum/count
for each bucket.

• Each bucket with no loss gives a useful
sample for measuring latency.

Example

 120 5

 234 10

 15 2

 88 1

 180 5

 348 9

 37 2

 96 1

Sender Receiver

Sum Ctr Sum Ctr

 60 0

 114 1

 22 0

 8 0

Difference

Estimate = (60 + 22 + 8)/(5 + 2 + 1)

Analysis : Questions

• Optimal sampling rate per bucket given
known loss rate.
– Natural restriction : what if sampling rates are of

form 2-j (hash on last j bits).
• Restricted sampling rates implies simpler hardware.

• What do when loss rates are unknown.
– Extended analysis based on competitive analysis.
– Single sampling rate vs. multiple sampling rate

optimization and design.
• Fewer sampling rates implies simpler hardware.

Simple Analysis

• Let n be total number of packets, l be loss
rate, z/n be sampling rate, and Z be packets
obtained by bucket.

• Expectation reaches maximum when z = 1/l,
number of packets is (1-l)/(el).

!

Pr(Z = i) =
n

i

"

$
%

&
'
z

n

"

$
%

&
'

i

1(
z

n

"

$

%

&
'

n(i

1(l()
i

!

E[Z] = z(1" l)(1" lz /n)
n"1
z(1" l)e

"lz

Restrictions : Powers of 2

• Suppose instead of choosing sample rate z/n
we choose y/n, with expectations Z and Y.

• When z = 1/l, y=xz or y=2xz chosen as
nearest inverse power of 2, then ratio is

• Loss of less than 6%; worst case when
x = ln 2.

!

E[Y]/E[Z]" (y /z)e
l(z#y)

!

min1/ 2<x"1max(xe
1#x
,2xe

1#2x
) $ 0.942

Unknown Loss Rates

• What to optimize for unknown loss rate?
– Lots of possibilities.

• Our suggestion : optimize competitive ratio,
over a range of possible loss rates, between
expected number of packets obtained and
optimal expected number of packets obtained
if loss rate is known.

• Gives a rigorous framework, can be extended
to other possibilities.

Single Sampling Probability

• Using previous analysis, can show:
– When range is [a,b], and r = b/a, best

competitive ratio is:

– When r < 2, a single sampling probability is
sufficient for best competitive ratio.

!

e ln r

(r "1)r
1/(r"1)

Competitive Ratio

Design :
Multiple Sampling Probabilities
• Must deal with loss rates over several orders

of magnitude.
• Choose sampling probabilities to cover

geometrically spaced ranges.
– For large ranges [a,b] with ratio r = b/a, and c

sampling probabilities, split into c subranges with
ratio r1/c.

• Competitive ratio at worst reduced by factor c.
– Can do better with more analysis, but gives a good

initial rule of thumb.

Takeaways

• Can estimate delay across sender-receiver
via bucketing
– Example of “Coordinated streaming”
– Other applications?
– More general functions?

• Can be extended to find sample variance using standard
techniques.

• Analysis focuses on practical issues, design
rules
– Competitive analysis for parameter setting.

Carousel : Scalable Logging

• Millions of potentially interesting events
– Standard solutions: sampling and summarizing

• What if you want complete collection
– Remediate infected machines
– Other examples: Listing IPv6 addresses, MAC

addresses in a LAN

Denial of Service Worm outbreak

Example : Worm Outbreak

Slammer
Witty…

signatures

Intrusion Detection System
(IDS)

Slammer A Witty BSlammer C

A B C

Management
 Station

Abstract Model

• Challenges
– Small logging bandwidth b << arrival rate B

• e.g., b = 1 Mbps; B = 10 Gbps
– Small memory M << number of sources N

• e.g., M = 10,000; N=1 Million

• Assumption : persistent sources, keep arriving at the
logger.

Sink

N
Memory M

B b

1 LOGGER

Naïve Approach

• Just log things into memory as they
arrive.

• Problem : repeats
– Memory too small to track history.
– Consider random model -- each source is

random on [1,N].
– Repeatedly send same stuff to sink.

Naïve Approach +
Bloom Filter

• Bloom filter keeps track of a set, with
some false positives.

• Can use to track set of sent items.
• But memory too small to track all sent

items, so Bloom filter must reset
periodically.

• Same problem -- repeated sends of
same info to sink.

Carousel Solution

• Use hashing to bucketize sources.
– Want 1 bucket to fit into memory (approximately).

• Let T = M/b, time to clear memory, be 1
phase.
– Iterate over buckets, one per phase.
– Use Bloom filter within phase to prevent duplicates

entering memory/being sent.
• Increase or decrease #of buckets as needed

to avoid memory overflow.

Theoretical Results

• Carousel is “competitive” in that it can collect
almost all sources within a factor of
(1+epsilon) of optimal with the right number of
buckets.
– Simple application of Chernoff bounds -- you get

almost the right number per bucket for all buckets.
– In practice -- use last k bits of a hash for 2k

buckets, within a factor of (2+epsilon) of optimal.

Theoretical Results

• Why almost all, and not all?
• Need a Bloom filter to prevent

duplicates from overwhelming memory.
– But gives false positives.
– Some items not recorded.
– In practice: switch hash functions each

round, number missed shrinks
exponentially with rounds.

Simulated Worm Outbreak

• N = 10,000; M = 500; b = 100 items/sec
• Logistic model of worm growth 23

Carousel is nearly ten times faster than naïve collector

Time (sec)

logged
sources

Snort Results

24

Time (sec) Time (sec)
(a) Random traffic pattern (b) Periodic traffic pattern

180 500 18000

3 times faster with random and 100 times faster with periodic

Hardware Requirements

• Simple is good.
• Requires : hashing, Bloom filter,

counters, timers, comparisons.
• Small memory footprint very effective.
• Cheap to add in terms of space/cost.

Open Questions / Issues

• Importance of persistent source assumption?
– Carousel fails for “one-time events”.

• Most effective dynamic re-sizing?
– Using last k bits of a hash for 2k buckets leads to

fast re-sizing, at cost of optimality of bucket size.
• Tighter analysis on round times?
• De-duplication at endpoint.

– Generally easily done.
• Simplicity is often better than optimality.

Takeaways

• Simple randomized admission control
scheme.
– Bucketize with hashing.
– Use Bloom filter or similar structure to avoid

duplicates.
– Dynamically size # of buckets for performance.

• Other uses for this type of admission control?
• Importance of design for key memory/speed

bottleneck points.

Cuckoo Hashing

The Beginnings

Why Do We Care
About Cuckoo Hashing?

• Hash tables a fundamental data structure.
• Multiple-choice hashing yields tables with

– High memory utilization.
– Constant time look-ups.
– Simplicity – easily coded, parallelized.

• Cuckoo hashing expands on this, combining
multiple choices with ability to move
elements.

• Practical potential, and theoretically
interesting!

Cuckoo Hashing

• Basic scheme: each element gets two
possible locations (uniformly at random).

• To insert x, check both locations for x. If one
is empty, insert.

• If both are full, x kicks out an old element y.
Then y moves to its other location.

• If that location is full, y kicks out z, and so on,
until an empty slot is found.

Cuckoo Hashing Examples

A B C

E D

Cuckoo Hashing Examples

A B C

E D

F

Cuckoo Hashing Examples

A B FC

E D

Cuckoo Hashing Examples

A B FC

E D

G

Cuckoo Hashing Examples

E G B FC

A D

Cuckoo Hashing Examples

A B C

E D F

G

Good Properties of Cuckoo
Hashing

• Worst case constant lookup time.
• High memory utilizations possible.
• Simple to build, design.

Cuckoo Hashing Failures

• Bad case 1: inserted element runs into
cycles.

• Bad case 2: inserted element has very long
path before insertion completes.
– Could be on a long cycle.

• Bad cases occur with very small probability
when load is sufficiently low.

• Theoretical solution: re-hash everything if a
failure occurs.

Various Representations
Buckets

Buckets

Elements
Buckets

Elements

Buckets

Elements

Basic Performance

• For 2 choices, load less than 50%, n
elements gives failure rate of Θ(1/n);
maximum insert time O(log n).

• Related to random graph representation.
– Each element is an edge, buckets are vertices.
– Edge corresponds to two random choices of an

element.
– Small load implies small acyclic or unicyclic

components, of size at most O(log n).

Natural Extensions
• More than 2 choices per element.

– Very different : hypergraphs instead of graphs.
– D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis.
– Space efficient hash tables with worst case constant

access time.
– More than 2 choices is important.
– Much higher memory utilizations; 3 choices : 90%+,

4 choices : about 97%.
• More than 1 element per bucket.

– M. Dietzfelbinger and C. Weidling.
– Balanced allocation and dictionaries with tightly

packed constant size bins.

Recent Work:
Parallel Architectures

• Multicores, Graphics Processor Units
(GPUs), other parallel architectures
possibly the next wave.

• Multiple-choice hashing and cuckoo
hashing seem naturally parallelizable.

• Theory and practice?

Related Work

• Plenty on parallel hashing/load balancing
schemes.
– PRAM emulation, related work in the 1990s.

• Technical improvements of last decade
suggest more is possible.

• In Amenta et al., we designed new
implementation for GPUs based on cuckoo
hashing.
– New theory, practical implementations possible?

