
Algorithmica (1998) 21: 312–329 Algorithmica
© 1998 Springer-Verlag New York Inc.

Average Case Analyses of List Update Algorithms,
with Applications to Data Compression1

S. Albers2 and M. Mitzenmacher3

Abstract. We study the performance of the Timestamp (0) (TS(0)) algorithm for self-organizing sequential
search on discrete memoryless sources. We demonstrate that TS(0) is better than Move-to-front on such
sources, and determine performance ratios for TS(0) against the optimal off-line and static adversaries in
this situation. Previous work on such sources compared on-line algorithms only with static adversaries. One
practical motivation for our work is the use of the Move-to-front heuristic in various compression algorithms.
Our theoretical results suggest that in many cases using TS(0) in place of Move-to-front in schemes that use
the latter should improve compression. Tests using implementations on a standard corpus of test documents
demonstrate that TS(0) leads to improved compression.

Key Words. On-line algorithms, Competitive analysis, List update problem, Probability distribution, Data
compression, Entropy.

1. Introduction. We study deterministic on-line algorithms for self-organizing se-
quential search. Consider a set ofn itemsx1, x2, . . . , xn that are stored in an unsorted
linear linked list. At any instant of time, an algorithm for maintaining this list is presented
with a requestthat specifies one of then items. The algorithm must serve this request
by accessingthe requested item. That is, the algorithm has to start at the front of the list
and search linearly through the items until the desired item is found. Serving a request
to the i th item in the list incurs a cost ofi . Immediately after a request, the requested
item may be moved at no extra cost to any position closer to the front of the list; this
can lower the cost of subsequent requests. At any time two adjacent items in the list
may be exchanged at a cost of 1; these moves are calledpaid exchanges. The goal is to
serve asequence of requestsso that the total cost incurred on that sequence is as small as
possible. A list update algorithm typically workson-line, i.e., when serving the present
request, the algorithm has no knowledge of future requests.

Early work on the list update problem assumes that a request sequence is generated by
a probability distributionEp = (p1, p2, . . . , pn). A request to itemxi occurs with prob-
ability pi ; the requests are generated independently. The following on-line algorithms
have been investigated extensively:

• Move-to-front (MTF): Move the requested item to the front of the list.

1 A portion of Albers’ work was done while the author was at the International Computer Science Institute,
Berkeley. A substantial portion of Mitzenmacher’s research was done while at the Computer Science Depart-
ment, UC Berkeley, with funding from the ONR and National Science Foundation Grant No. CCR-9505448.
2 Max-Planck-Institut f¨ur Informatik, Im Stadtwald, 66123 Saarbr¨ucken, Germany. albers@mpi-sb.mpg.de.
3 Digital Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301, USA.
michaelm@pa.dec.com.

Received December 3, 1995; revised April 5, 1997. Communicated by M. Y. Kao.

Average Case Analyses of List Update Algorithms 313

• Transpose (T):Exchange the requested item with the immediately preceding item in
the list.
• Frequency count (FC):Maintain a frequency count for each item in the list. Whenever

an item is requested, increase its count by 1. Maintain the list so that the items always
occur in nonincreasing order by frequency count.

In this paper we again investigate the list update problem under the assumption that a
request sequence is generated by a probability distributionEp = (p1, p2, . . . , pn); that
is, it is generated by a discrete memoryless source. We note that this assumption is
a suitable first approximation in many applications, especially within specific request
intervals. For example, if the request sequence consists of alphanumeric characters from
the concatenation of a set of files, modeling each file by a different probability distribution
depending on its type provides a first-order approximation of behavior over request
intervals corresponding to each file.

Although our assumption of a memoryless source is only a first approximation for real
applications, our analysis provides a great deal of insight into how list update algorithms
perform. Moreover, our techniques can be applied to higher-order models as well. For
instance, if the sequence is generated by a Markov chain, so that the probability of
a letter appearing depends only on the previous letter, generalizing our techniques is
straightforward.

Our work is motivated by the goal to present a universal algorithm that achieves
a good competitive ratio (in the Sleator and Tarjan model, to be presented) but also
performs especially well when requests are generated by distributions. Previous results
have shown that MTF is such an algorithm, whereas algorithms T and FC are not. More
specifically, MTF achieves an optimal competitive ratio of 2 and has a good behavior
on probability distributions. Algorithms T and FC have an even better performance on
distributions but do not achieve a constant competitive ratio. Our main contribution is to
show that there is an algorithm that has an even better overall performance than MTF.
The algorithm we analyze belongs to the Timestamp(p) family of algorithms [1] that
were introduced in the context of randomized on-line algorithms and are defined for any
real numberp ∈ [0, 1]. For p = 0, the algorithm is deterministic and can be formulated
as follows:

• Algorithm TS(0): Insert the requested item, sayx, in front of the first item in the
list that has been requested at most once since the last request tox. If x has not been
requested so far, leave the position ofx unchanged.

As an example, consider a list of six items being in the orderL: x3 → x2 → x4 →
x6 → x1 → x5. Suppose that algorithm TS(0) has to serve the second request tox1 in
the request sequenceσ = . . . x1, x2, x2, x4, x3, x3, x1. Itemsx4 andx6 were requested
at most once since the last request tox1, whereasx2 andx3 were both requested twice.
Thus, TS(0) will insertx1 immediately in front ofx4 in the list.

In [1] it was shown that TS(0) achieves a competitive ratio of 2 on any request se-
quence, as does MTF [17]. Here we demonstrate that TS(0) performs better on distribu-
tions, both by developing a formula for the expected cost per request, and by comparing
TS(0) with the optimal static and dynamic off-line algorithms.

Since our results show that TS(0) performs better than MTF on distributions, we

314 S. Albers and M. Mitzenmacher

consider applying the algorithm in the context of data compression, where MTF has
been used to develop a locally adaptive data compression scheme [4]. Here we prove
that, for all distributionsEp = (p1, p2, . . . , pn), the expected number of bits needed by
a TS(0)-based encoding scheme to encode one symbol is linear in the entropy of the
source. Our implementations also demonstrate that in practice TS(0)-based schemes can
achieve better compression than MTF schemes.

1.1. Comparison with Previous Work. We briefly review the main results in the model
where a request sequence is generated by a probability distribution. The performances of
MTF, T, and FC have generally been compared with that of theoptimal static ordering,
which we call STAT. The optimal static ordering first arranges the itemsxi in nonincreas-
ing order by probabilitiespi and then serves a request sequence without changing the
relative positions of items. For any algorithmA, letEA(Ep)denote the asymptotic expected
cost incurred by algorithmA in serving one request in a request sequence generated by the
distribution Ep. Rivest [15] showed that, for allEp, EFC(Ep)/ESTAT(Ep) = 1. However, algo-
rithm FC has the drawback that it adapts very slowly to changing probability distributions.
Chung et al. [6] analyzed the MTF rule and provedEMTF(Ep)/ESTAT(Ep) ≤ π/2≈ 1.5708
for all Ep. This bound is tight because Gonnet et al. [8] showed that one can findEp0 with
EMTF(Ep0)/ESTAT(Ep0) ≥ α for anyα arbitrarily close toπ/2.

More recent research on the list update problem was inspired by Sleator and Tarjan
[17] who suggested comparing the performance of an on-line algorithm with that of
an optimal off-linealgorithm. An optimal off-line algorithm knows the entire request
sequence in advance and can serve it with minimum cost. An on-line algorithmA is
calledc-competitive if, for all request sequences, the cost incurred byA is at mostc
times the cost incurred by the optimal off-line algorithm. Sleator and Tarjan proved that
the MTF algorithm is 2-competitive. They also showed that algorithms T and FC are not
c-competitive for any constantc that is independent of the list sizen. The competitive
ratio of 2 is the best ratio that a deterministic on-line algorithm for the list update problem
can achieve [13].

In classical data compression theory, it is often assumed that a discrete memoryless
source generates a stringS to be compressed. The stringS consists ofsymbols, where
each symbol is an element in the alphabet6 = {x1, x2, . . . , xn}. Each symbol is equal
to xi with probability pi . Bentley et al. [4] showed how any list update algorithm can
be used to develop a data compression scheme. The idea is to convert the stringS of
symbols into a stringI of integers. Whenever the symbolxi has to be compressed, an
encoder looks up the current position ofxi in a linear list of symbols it maintains, outputs
this position, and updates the list. A decoder that receives the stringI can recover the
original message by looking up in its own linear list, for each integerj it reads, the
symbol that is currently stored at positionj . The decoder also updates its list. Clearly,
when the stringI of integers is actually transmitted, each integer in the string should
be coded again using a variable length prefix code. Bentley et al. showed that, for all
Ep = (p1, p2, . . . , pn), the expected number of bits needed to encode one symbol in a
stringSusing the MTF rule is linear in the entropy of the source. By Shannon’s source
coding theorem, this is optimal, up to a constant factor. Bentley et al. also showed that,
for any stringS, the average number of bits needed by MTF to encode one symbol inS
is linear in the “empirical entropy” of the string.

Average Case Analyses of List Update Algorithms 315

Recently, Grinberg et al. [9] proposed a modification of the MTF encoding, which
they callMTF encoding with secondary lists. They implemented the new compression
scheme but their simulations do not show an explicit comparison between MTF and
MTF with secondary lists. Also recently, a fast and efficient compression scheme that
uses MTF encoding as a subroutine has been developed [5]. This algorithm appears
competitive with those used in standard compression tools, and thus the examination of
alternatives to MTF may lead to better practical compression algorithms.

1.2. Our Results. An important aspect in our work is that we compare the expected
cost incurred by an on-line algorithm with that of the optimal off-line algorithm, which
we denote by OPT. We recall that OPT may rearrange the list after each request and is
not forced to serve a request sequence using the optimal static ordering.

First we develop a formula for TS(0)’s expected cost on a distributionEp = (p1, p2, . . . ,

pn). This formula implies that if we have a distributionEp with pi = 1/n, for all i , then
MTF and TS(0) have the same expected cost. On all other distributions, TS(0) has a
smaller expected cost. Then we compare TS(0) with the optimal off-line algorithm OPT
and showETS(Ep)/EOPT(Ep) ≤ 1.5 for all distributionsEp. This is a performance MTF
cannot match becauseEMTF(Ep0)/ESTAT(Ep0) > 1.57 for someEp0, and when MTF is
compared with OPT the ratio might even be worse. We also show that, for anyEp and any
ε > 0, the cost of TS(0) is at most 1.5+ ε times the cost of OPT with high probability
on sufficiently long sequences. It is worthwhile noticing that 1.5 is the best lower bound
currently known on the competitiveness that can be achieved by randomized list update
algorithms against an oblivious adversary [18]. Thus, the performance ratio of TS(0) on
distributions is at least as good as the performance ratio of randomized algorithms on
any input. Finally, we evaluate TS(0) against the optimal static ordering and show, for
all Ep, ETS(Ep)/ESTAT(Ep) ≤ 1.34.

Given these results, we examine the potential of TS(0) in compression algorithms.
As previously mentioned, we prove that, for all distributionsEp = (p1, p2, . . . , pn),
the expected number of bits needed by a TS(0)-based encoding scheme to encode one
symbol is linear in the entropy of the source. Our upper bounds are slightly better than
similar upper bounds for MTF encoding in this case. We also prove that, for any string
S, the average number of bits needed by TS(0) to encode one symbol inS is linear
in the empirical entropy ofS. Our bound is the same as that given for MTF by [4].
Moreover, we provide evidence that TS(0)-based compression schemes can outperform
MTF-based compression schemes in practical situations by implementing these com-
pression algorithms and testing them on the standard Calgary Compression Corpus files
[19]. In almost all of our tests, TS(0) encoding achieves a better compression ratio than
MTF encoding. We note that further experiments on the performance of compression
schemes based on list update algorithms, including TS(0) and MTF, have recently been
performed by [2].

2. Analyses for the List Update Problem. In this section we begin by demonstrating
that the asymptotic expected cost of TS(0) is always at most that of MTF on discrete
memoryless sources. We then elaborate on this conclusion by determining the competi-
tive ratio of TS(0) on such sources, against both dynamic and static adversaries.

316 S. Albers and M. Mitzenmacher

First, we formally define the asymptotic expected cost of a list update algorithmA.
Given a probability distributionEp = (p1, p2, . . . , pn) and a request sequence generated
according toEp, the configuration ofA’s list follows a Markov chain, withn! states, that
converges to a stationary distribution. For any of then! statesSi , 1 ≤ i ≤ n!, let qi be
the stationary probability ofSi . Furthermore, for any itemxj , 1≤ j ≤ n, let pos(xj , Si)

be the position ofxj in the list configuration represented bySi . The asymptotic expected
costeA(xj) incurred by algorithmA is serving a request to itemxj in a request sequence
generated according toEp is xj ’s expected position in the list, i.e.,

eA(xj) =
∑

1≤i≤n!

qi pos(xj , Si).

The asymptotic expected cost incurred byA in serving a single request in a request
sequence generated toEp = (p1, p2, . . . , pn) is

EA(Ep) =
n∑

j=1

pj eA(xj).

2.1. The Expected Cost ofTS(0). To bound the expected cost per request of TS(0), we
first prove a useful lemma.

LEMMA 1. Consider any point in the request sequence where there have been at least
three requests for xi and xj . Then xi precedes xj in the list maintained byTS(0) if and
only if a majority of the last three requests for xi and xj have been for xi .

PROOF. We show that the item of the pair{xi , xj } that was requested most often during
the last three requests precedes the other item of the pair{xi , xj } in TS(0)’s list. Suppose
that a majority of the last three requests forxi andxj has been toxi . Itemxi was requested
at least twice during these three last requests. First consider the case that the last request
for xi andxj has been toxi . Then, at that last request, TS(0) movesxi at some position
in front of xj , provided thatxi did not precedexj already, becausexj was requested at
most once since the last request toxi . Now assume that the last request forxi andxj has
been toxj , i.e., the last three requests forxi andxj arexi xi xj . After the second request to
xi , item xi must precedexj in TS(0)’s list. Algorithm TS(0) has the important property
that if it serves a request to an itemxj , then all items precedingxj in the list that were
requested at most once since the last request toxj are stored consecutively in front ofxj .
In other words, ifxj is inserted in front of the first item in the list that was requested at
most once since the last request toxj , thenxj does not pass an item that was requested at
least twice since the last request toxj . These statements were shown in [1]. Therefore,
when TS(0) serves the request toxj in the subsequencexi xi xj , thenxj does not move in
front of xi .

THEOREM1. For any probability distributionEp = (p1, p2, . . . , pn),

(a) the asymptotic expected cost incurred byTS(0) in serving a request to item xj ,
1≤ j ≤ n, is

eTS(xj) = 1

2
+

n∑
i=1

p2
i + 3p2

i pj

(pi + pj)3
.

Average Case Analyses of List Update Algorithms 317

(b)

ETS(Ep) =
∑

1≤i≤ j≤n

pi pj

pi + pj

(
2− (pi − pj)

2

(pi + pj)2

)
.

PROOF. (a) The costeTS(xj) is 1 plus the expected number of itemsxi , xi 6= xj , that
precedexj in the list. LetAi j be the event thatxi precedesxj in the list when TS(0) serves
a request toxj . We compute the asymptotic probabilityProb(Ai j) using Lemma 1.

Lemma 1 implies that the eventAi j occurs if and only if the last three requests forxi

andxj are(B1) xi xi xi ; (B2) xi xi xj ; (B3) xi xj xi ; or (B4) xj xi xi . It is not hard to verify
that Prob(B1) = p3

i /(pi + pj)
3 andProb(Bk) = p2

i pj /(pi + pj)
3, for k = 2, 3, 4.

Therefore,Prob(Ai j) = (p3
i + 3p2

i pj)/(pi + pj)
3 and

eTS(xj) = 1+
n∑

i=1
i 6= j

Prob(Ai j) = 1+
n∑

i=1
i 6= j

p3
i + 3p2

i pj

(pi + pj)3
= 1

2
+

n∑
i=1

p3
i + 3p2

i pj

(pi + pj)3
.

(b) The asymptotic expected cost incurred by TS(0) on one request is

ETS(Ep) =
n∑

j=1

pj eTS(xj) = 1

2
+

n∑
j=1

n∑
i=1

pj

(
p3

i + 3p2
i pj

(pi + pj)3

)

= 1

2
+ 1

2

n∑
j=1

pj +
∑

1≤i< j≤n

pi pj (p2
i + 6pi pj + p2

j)

(pi + pj)3

=
n∑

j=1

pj +
∑

1≤i< j≤n

pi pj (p2
i + 6pi pj + p2

j)

(pi + pj)3

=
∑

1≤i≤ j≤n

pi pj

pi + pj

(
p2

i + 6pi pj + p2
j

(pi + pj)2

)

=
∑

1≤i≤ j≤n

pi pj

pi + pj

(
2− (pi − pj)

2

(pi + pj)2

)
.

COROLLARY 1. For any probability distributionEp = (p1, p2, . . . , pn),

EMTF(Ep)− ETS(Ep) =
∑

1≤i≤ j≤n

pi pj
(pi − pj)

2

(pi + pj)3
.

PROOF. Rivest [14] showedEMTF(Ep) =
∑

1≤i≤n 2pi pj /(pi + pj). Using part (b) of
Theorem 1, the result follows immediately.

2.2. Performance against Dynamic Off-Line Algorithms.

THEOREM2. For any probability distributionEp = (p1, p2, . . . , pn),

ETS(Ep) ≤ 3
2 EOPT(Ep).

318 S. Albers and M. Mitzenmacher

PROOF. The analysis consists of two main parts. In the first part we show that, given
a fixed request sequenceσ , the cost incurred by TS(0) and OPT onσ can be divided
into costs that are caused by each unordered pair{x, y} of itemsx andy, x 6= y. This
technique of evaluating cost by considering pairs of items was also used in [3], [11], and
[1]. In the second part of the analysis we show that, for each pair{x, y}, the asymptotic
expected cost paid by TS(0) is at most 1.5 times the asymptotic expected cost incurred
by OPT.

In the following we always assume that serving a request to thei th item in the list
incurs a cost ofi−1 rather thani . If ETS(Ep) ≤ 3

2 EOPT(Ep) holds in this(i−1)-cost model,
then the inequality also holds in thei -cost model. (We note that the reverse statement does
not necessarily hold.) Now consider a fixed request sequenceσ = σ(1), σ (2), . . . , σ (m)
of lengthm. For an algorithmA ∈ {TS(0),OPT}, let CA(t, x) denote the cost caused
by item x when A serves requestσ(t). That is,CA(t, x) = 1 if x precedes the item
requested byσ(t) in A’s list at timet ; otherwiseCA(t, x) = 0. For any pair{x, y} of
itemsx 6= y, let p(x, y) be the total number of paid exchanges thatA incurs in moving
x in front of y or y in front of x. Recall that in a paid exchange, an item, which is not
accessed by the present request, is exchanged with the immediately preceding item in
the list. The cost incurred byA onσ can be written as

CA(σ) =
∑
{x,y}
x 6=y

∑
t∈[1,m]
σ(t)=x

CA(t, y)+
∑
t∈[1,m]
σ(t)=y

CA(t, x)+ p(x, y)

 .
Now, for any unordered pair{x, y} of itemsx andy, with x 6= y, let σxy be the request
sequence that is obtained fromσ if we delete all requests that are neither tox nor to y.
Let CTS(σxy) be the cost incurred by TS(0) if it servesσxy on a two item list that consists
of only x and y. In [1] it was shown that if TS(0) servesσ on the long list, then the
relative position ofx andy changes in the same way as if TS(0) servesσxy on the two
item list. Therefore,

CTS(σxy) =
∑
t∈[1,m]
σ(t)=x

CTS(t, y)+
∑
t∈[1,m]
σ(t)=y

CTS(t, x)

and

CTS(σ) =
∑
{x,y}
x 6=y

CTS(σxy).(1)

Note that TS(0) does not incur paid exchanges and hencep(x, y) = 0 for all pairs{x, y}.
The optimal costCOPT(σ) can be written in a similar way:

COPT(σxy) ≤
∑
t∈[1,m]
σ(t)=x

COPT(t, y)+
∑
t∈[1,m]
σ(t)=y

COPT(t, x)+ p(x, y)

and

COPT(σ) ≥
∑
{x,y}
x 6=y

COPT(σxy).(2)

Average Case Analyses of List Update Algorithms 319

Here, only inequality signs hold because if OPT servesσxy on the two items list, then
it can always arrangex andy optimally in the list, which might not be possible if OPT
servesσ on the entire list. In fact, an optimal off-line algorithm for serving a request
sequenceσxy on a two item list can be specified easily: whenever there are at least two
consecutive requests to the same item, that item is moved to the front of the list after
the first request if the item is not already there. On all other requests, the list remains
unchanged. Clearly, such an optimal ordering of all pairs{x, y} might not always be
possible if OPT servesσ on the long list.

Equation (1) and inequality (2) allow us to compareCTS(σ) andCOPT(σ) by simply
comparingCTS(σxy) and COPT(σxy) for each pair{x, y} of items. The same can be
trivially shown to hold true for the asymptotic expected costsETS(Ep) and EOPT(Ep) as
well, by taking the expectations of both sides of (1) and (2), and using the linearity of
expectations.

Hence, in the following, we concentrate on one particular pair{x, y} of itemsx 6= y.
For an algorithm,A ∈ {TS(0),OPT}, letExy

A (Ep)be the asymptotic expected cost incurred
on the two item list containingx andy if A serves a single request inσxy, given that the
request sequenceσ is generated byEp. We will show that

Exy
TS(Ep) ≤ 3

2 Exy
OPT(Ep).

This proves the theorem.
We first evaluateExy

TS(Ep). TS(0) incurs a cost of 1 on a request inσxy if x is requested
and y precedesx in TS(0)’s list or if y is requested andx precedesy in TS(0)’s list.
Otherwise, TS(0) incurs a cost of 0. By Lemma 1,y precedesx in TS(0)’s list if and
only if the majority of the last three requests forx and y have been fory, i.e., if the
last three requests inσxy have been(B1) yyy; (B2) yyx; (B3) yxy; or (B4) xyy. In
the probability distributionEp = (p1, p2, . . . , pn), let px be the probability of a request
to x and let py be the probability of a request topy. Define p = px/(px + py) and
q = (1− p) = py/(px + py). Clearly, p andq are the probabilities that withinσxy, a
request is made tox andy, respectively. Thus, the asymptotic probability thaty precedes
x in TS(0)’s list isq3+ 3q2 p. Similarly, the asymptotic probability thatx precedesy in
TS(0)’s list is p3+ 3p2q. Thus

Exy
TS(Ep) = p(q3+ 3q2 p)+ q(p3+ 3p2q) = pq(p2+ 6pq+ q2).

Next we determineExy
OPT(Ep). Consider OPT’s movements when it servesσxy on the

two item list. As explained in the paragraph after inequality (2), we may assume without
loss of generality that whenever there are two consecutive requests to the same item,
OPT moves that item to the front of the list on the first request. Thus, OPT incurs a cost
of 1 on a request inσxy if x is requested and the last requests inσxy were of the form
yy(xy)i for somei ≥ 0, or if y is requested and the last requests inσxy were of the form
xx(yx)i for somei ≥ 0. Therefore,

Exy
OPT(Ep) = p

∞∑
i=0

q2(pq)i + q
∞∑

i=0

p2(qp)i

= p

(
q2

1− pq

)
+ q

(
p2

1− pq

)
= pq

1− pq
.

320 S. Albers and M. Mitzenmacher

We conclude thatExy
TS(Ep) ≤ (1− pq)(p2 + 6pq+ q2)Exy

OPT(Ep). The expression(1−
pq)(p2+ 6pq+ q2) is maximal forp = q = 1

2 and henceExy
TS(Ep) ≤ 3

2 Exy
OPT(Ep).

We next show that, for long enough sequences on discrete memoryless sources, TS(0)
will be at worst(1.5+ ε)-competitive with high probability.

THEOREM3. For every distributionEp = (p1, p2, . . . , pn) andε > 0 there exist con-
stants c1, c2, and m0 dependent onEp, n andε such that, for a request sequenceσ of
length m≥ m0 generated according toEp,

Prob{CTS(σ) > (1.5+ ε)COPT(σ)} ≤ c1e−c2mε2
.

PROOF. Again, we begin by considering the performance of the algorithms on a pair
of items{x, y}. We first show that the cost of TS(0) on a random request sequenceσ

is close to its expectation with high probability. Consider the eight state Markov chain
that records the last three requests ofσ that are from the sequenceσxy. Label the states
(xxx), (xxy), and so on, according to the last three requests. Then by Lemma 1 the
cost to TS(0) onσxy is exactly the number of transitions from(xxx) to (xxy), plus
the number of requests from(xxy) to (xyy), and so on. Consider only the number of
transitions from state(xxx) to (xxy) over the course of the sequenceσ . Let Z be the
random number of such transitions onσ . Abusing notation somewhat, letE[Z] be the
asymptoticexpected number of such transitions. We now make use of standard large
deviation bounds on finite state Markov chains (see, for example, Lemma 7.6 of [16] or
Corollary 4.2 of [12]), which yield Chernoff-like bounds on the deviation of the number
of transitions from the asymptotic expected number of transitions. In particular, we have,
for eachε1 > 0 and sufficiently largem,

Prob{|Z − E[Z]| > ε1E[Z]} ≤ c3e−c4mε2
1

for some constantsc3 andc4 dependent onpx andpy. That is, the number of transitions
of this type is close to the expected number of transitions with high probability. We now
use this argument for every transition type that corresponds to a cost of 1 for TS(0) over
all possible pairs of elements. Summing and using linearity of expectations then yields

Prob{CTS(σ)− E[CTS(σ)] > ε1E[CTS(σ)]} ≤ c5e−c6mε2
1,

for some constantsc5 andc6 dependent onEp andn.
Similarly, we may bound the cost of OPT onσ by bounding the deviation of OPT on

the subsequenceσxy. Note that this will provide only a one-sided bound for the cost of
OPT onσ by (2), but this is sufficient. As shown in Theorem 2 we may assume OPT
incurs a cost of 1 on a request inσxy if x is requested and the last request inσxy were
of the formyy(xy)i , and similarly ify is requested. Hence to count the cost to OPT on
σxy we may use a six state Markov chain that records the last two items requested from
σxy as well as the last item that was requested twice sequentially. Using large deviation
bounds and summing over all necessary transitions over all pairs of items yields that, for
eachε2 > 0,

Prob{COPT(σ)− E[COPT(σ)] > ε2E[COPT(σ)]} ≤ c7e−c8mε2
2 .

Average Case Analyses of List Update Algorithms 321

Choosingε + 1= ε2 = ε/4 suffices to yield the theorem. (We also note that, by this
construction, the constantsc1, c2, andm can all be made polynomial inn and 1/pn.)

2.3. Performance against Static Off-Line Algorithms. Recall that the expected cost
incurred by TS(0) in serving one request in a request sequence generated byEp =
(p1, p2, . . . , pn) is

1+
∑

i

∑
j 6=i

pi p3
j + 3p2

j p2
i

(pi + pj)3
=
∑
i, j

pi pj (p2
i + 6pi pj + p2

j)

2(pi + pj)3
+ 1

2
.

We can now adapt the techniques presented in [6] to bound the ratio betweenETS(Ep) and
ESTAT(Ep). We assumep1 ≥ p2 ≥ · · · ≥ pn. As ESTAT(Ep) =

∑
i i pi =

1
2

∑
i, j min(pi pj)+ 1

2, we have

ETS(Ep)
ESTAT(Ep) =

∑
i, j (pi pj (p2

i + 6pi pj + p2
j)/2(pi + pj)

3)+ 1
2

1
2

∑
i, j min(pi , pj)+ 1

2

<

∑
i, j (pi pj (p2

i + 6pi pj + p2
j)/(pi + pj)

3)∑
i, j min(pi , pj)

.

The result is immediate from the following theorem:

THEOREM4. If xi > 0 (1≤ i ≤ n), then∑
i, j xi xj (x2

i + 6xi xj + x2
j)/(xi + xj)

3∑
i, j min(xi , xj)

≤ 1.34.

PROOF. We rely on the following lemma, to be proven later, which replaces the ratio
of sums by the ratio of integrals:

LEMMA 2. Suppose f is an integrable function on(0,∞) with
∫∞

0 f dx = 0. Let
G(x, y) be homogeneous of degree1, H(x, y) = ∂2G/∂x ∂y, and H+(x, y) =
max{H(x, y), 0}. Then∫∞

0

∫∞
0 G(x, y) f (x) f (y) dx dy∫∞

0

∫∞
0 min(x, y) f (x) f (y) dx dy

≤
∫ ∞

0
H+(x, 1)x−1/2 dx.

Let G(x, y) = xy(x2+6xy+ y2)/(x+ y)3. Without loss of generality, let 0< x1 <

x2 < · · · < xn. Let fδ be a function such thatfδ = 1 in neighborhoods of lengthδ
around eachxi and 0 otherwise. Then asδ approaches 0,∑

i, j xi xj (x2
i + 6xi xj + x2

j)/(xi + xj)
3∑

i, j min(xi , xj)
= lim

δ→0

∫∞
0

∫∞
0 G(x, y) fδ(x) fδ(y) dx dy∫∞

0

∫∞
0 min(x, y) fδ(x) fδ(y) dx dy

.

We now apply Lemma 2. HereH+(x, y) = max(−6xy(x2 − 6xy+ y2)/(x + y)5, 0).
We calculate the required integral (using Maple) to find∫ ∞

0
H+(x, 1)x−1/2 dx ≈ 1.3390. . . .

322 S. Albers and M. Mitzenmacher

We now move to the proof of Lemma 2. The proof depends on H¨older’s inequality∫
f (x)g(x) dx ≤

(∫
f p(x) dx

)1/p(∫
gq(x) dx

)1/q

,

and the following version of Hilbert’s inequality (see [10]):

THEOREM5 (Hilbert’s Inequality). For p,q > 1 satisfying1/p+ 1/q = 1, suppose
that K(x, y) is nonnegative and homogeneous of degree−1, and that∫ ∞

0
K (x, 1)x−1/p dx =

∫ ∞
0

K (1, y)y−1/q dx = C.

Then ∫ ∞
0

dx

(∫ ∞
0

K (x, y)g(y) dy

)q

≤ Cq
∫ ∞

0
gq(y) dy.

PROOF OF LEMMA 2. Set F(x) = ∫ x
∞ f (x) dx. Then, by Lemma 2 of [6],∫∞

0

∫∞
0 min(x, y) f (x) f (y) dx dy= ∫∞0 F2(x) dx. Similarly,∫ ∞

0

∫ ∞
0

G(x, y) f (x) f (y) dx dy

=
∫ ∞

0
f (x) dx

[
G(x, y)F(y)|∞0 −

∫ ∞
0

∂G

∂y
F(y) dy

]
= −

∫ ∞
0

∫ ∞
0

∂G

∂y
f (x)F(y) dx dy

=
∫ ∞

0

∫ ∞
0

∂2G

∂x∂y
F(x)F(y) dx dy

=
∫ ∞

0

∫ ∞
0

H(x, y)F(x)F(y) dx dy

≤
∫ ∞

0

∫ ∞
0

H+(x, y)F(x)F(y) dx dy

≤
[∫ ∞

0
F2(x) dx

]1/2 [∫ ∞
0

dx

[∫ ∞
0

H+(x, y)F(y) dy

]2]1/2

≤
∫ ∞

0
F2(x) dx

∫ ∞
0

H+(x, 1)x−1/2 dx.

The second equality follows from the definition ofF and the hypothesis that
∫∞

0 f dx =
0. The penultimate step follows from H¨older’s inequality, and the last step utilizes
Hilbert’s inequality. The lemma follows immediately.

Note the necessity of replacingH(x, y) by H+(x, y) in the third to last step, as
Hölder’s inequality requires the functions inside the integral to be nonnegative. In fact
in Theorem 4 the functionH(x, y) can be negative, so care must be taken in calculating

Average Case Analyses of List Update Algorithms 323

the integral. It is somewhat surprising that, despite seemingly having to “cut off” part of
the integral, we still realize an interesting result. It also suggests that perhaps the bound
could be improved by avoiding this technical difficulty.

3. Analyses and Simulations for Data Compression. The MTF algorithm has proved
useful in the development of the locally adaptive compression scheme of [4]. Motivated
by this result, we consider a similar algorithm based on TS(0). We assume the reader is
somewhat familiar with the system of [4], which was briefly described in the Introduction.

3.1. Theoretical Results. Let BTS(Ep) be the expected number of bits that TS(0) needs
to encode one symbol in an input sequence that is generated byEp = (p1, p2, . . . , pn).
We assumepi > 0 for all i . In order to analyzeBTS(Ep), we have to specify how an
integer j should be encoded. We use a variable length prefix code by Elias [7] which
encodes the integerj using 1+blog j c+2blog(1+ log j)c bits. Bentley et al. [4] showed
that, using this prefix code, the expected number of bits needed by the MTF algorithm
is BMTF(Ep) ≤ 1+ H(Ep)+2 log(1+ H(Ep)), for all Ep. HereH(Ep) =∑n

i=1 pi log(1/pi)

is the entropy of the source. We prove similar bounds for TS(0).

THEOREM6. For any Ep = (p1, p2, . . . , pn),

BTS(Ep) ≤ 1+ H̄(Ep)+ 2 log(1+ H̄(Ep)),
whereH̄(Ep) = H(Ep)+ log(1−∑1≤i≤ j≤n(pi pj (pi − pj)

2/(pi + pj)
2)).

Note that 0 ≤ ∑
1≤i≤ j≤n pi pj (pi − pj)

2/(pi + pj)
2 < 1 and thus log(1 −∑

1≤i≤ j≤n pi pj (pi − pj)
2/(pi + pj)

2 ≤ 0.

PROOF. Let f (j) = 1+ log j+2 log(1+ log j). Consider a fixed symbolxi , 1≤ i ≤ n.
For j = 1, . . . ,n, let qi j be the asymptotic probability thatxi is at positionj in TS(0)’s
list. The expected number of bits to encode the symbolxi is

∑n
j=1 qi j f (j), which, by

Jensen’s [10] inequality, is at mostf (
∑n

j=1 qi j j). Jensen’s inequality state that, for any
concave functionf and any set{w1, w2, . . . , wn} of positive reals,

∑n
i=1wi f (yi) ≤

f (
∑n

i=1wi yi). Note thatqi j j is the asymptotic expected positioneTS(xi) of symbolxi

in TS(0)’s list. Therefore,BTS(Ep) ≤
∑n

i=1 pi f (eTS(xi)). In the following we show that

n∑
i=1

pi log(eTS(xi)) ≤ H̄(Ep).(3)

Using the inequality, we can easily derive Theorem 6 because

BTS(Ep) ≤
n∑

i=1

pi f (eTS(xi)) ≤ 1+
n∑

i=1

pi log(eTS(xi))

+ 2
n∑

i=1

log(1+ pi log(eTS(xi)))

≤ 1+ H̄(Ep)+ 2 log(1+ H̄(Ep)).

324 S. Albers and M. Mitzenmacher

We now show inequality (3). By Theorem 1(a), we haveeTS(xi) = 1
2 +

∑n
j=1(p

3
j +

3p2
j pi)/(pi + pj)

3 and

n∑
i=1

pi log(eTS(xi)) =
n∑

i=1

pi log

(
1

2
+

n∑
j=1

p3
j + 3p2

j pi

(pi + pj)3

)

=
n∑

i=1

pi log

(
1

2
+

n∑
j=1

pj

pi + pj
+

n∑
j=1

pi p2
j − p2

i pj

(pi + pj)3

)
.

We have

1

2
+

n∑
j=1

pj

pi + pj
= 1

pi

(
1

2
pi +

n∑
j=1

pi pj

pi + pj

)
≤ 1

pi

(
pi +

n∑
j=1
j 6=i

pj

)
= 1

pi
.

Therefore

n∑
i=1

pi log(eTS(xi)) ≤
n∑

i=1

pi log

(
1

pi
+

n∑
j=1

pi p2
j − p2

i pj

(pi + pj)3

)

=
n∑

i=1

pi log

(
1

pi

)
+

n∑
i=1

pi log

(
1+

n∑
i=1

p2
i p2

j − p3
i pj

(pi + pj)3

)

≤
n∑

i=1

pi log

(
1

pi

)
+ log

(
1+

n∑
i=1

pi

n∑
i=1

p2
i p2

j − p3
i pj

(pi + pj)3

)
.

The last step follows again from Jensen’s inequality. We conclude

n∑
i=1

pi log(eTS(xi)) ≤
n∑

i=1

pi log

(
1

pi

)
+ log

(
1−

∑
1≤i≤ j≤n

pi pj (pi − pj)
2

(pi + pj)2

)
.

So far we have assumed that an input sequenceS to be compressed is generated by a
probability distributionEp = (p1, p2, . . . , pn). Now considerany input sequenceS. Let
m be the length ofS, and letmi , 1≤ i ≤ n, be the number of occurrences of the symbol
xi in the stringS. Let ATS(S) be the average number of bits needed to encode one symbol
in the stringSusing the TS(0) algorithm. Similarly, letAMTF(S) be the average number
of bits needed by the MTF algorithm. Again, we assume that an integerj is encoded by
means of the Elias encoding that requires 1+ blog j c + 2blog(1+ log j)c bits. Bentley
et al. [4] show that, for any input sequenceS, AMTF(S) ≤ 1+ H(S)+ 2 log(1+ H(S))
whereH(S) =∑n

i=1(mi /m) log(m/mi) is the “empirical entropy” ofS. The empirical
entropy is interesting because it corresponds to the average number of bits per symbol
used by the optimal static Huffman encoding of a sequence; this result implies that MTF
encoding is, at worst, almost as good as static Huffman encoding. We can show a similar
bound for a variation of TS(0), where after the first occurrence of a symbol it is moved
to the front of the list.

Average Case Analyses of List Update Algorithms 325

THEOREM7. For any input sequence S,

ATS(S) ≤ 1+ H(S)+ 2 log(1+ H(S)),

where H(S) =∑n
i=1(mi /m) log(m/mi).

PROOF. Our analysis is very similar to the corresponding proof by Bentley et al. Again,
let f (j) = 1+ log j + 2 log(1+ log j). Consider a fixed symbolxi , 1 ≤ i ≤ n, and
let t1, t2, . . . , tmi be the times at which the symbolxi occurs in the stringS. We assume
here that after TS(0) has transmitted the first occurrence of the symbolxi , it movesxi to
the front of the list. Furthermore, we may assume without loss of generality that the first
occurrence ofxi is encoded usingf (t1) bits. We show that, fork = 2, 3, . . . ,mi , thekth
occurrence of the symbolxi can be encoded usingf (posk−1 + tk − tk−1 − posk) bits,
where posk is the position of symbolxi in TS(0)’s list immediately after thekth xi is
transmitted. After the(k−1)st occurrence ofxi is encoded, the position ofxi in TS(0)’s
list is posk−1. Let dk be the number of symbolsxj , xj 6= xi , that occur at least twice in
the interval [tk−1+1, tk−1]. Obviously, at mosttk− tk−1−1−dk symbolsxj can move
ahead ofxi in TS(0)’s list during the time interval [tk−1+ 1, tk− 1]. By the definition of
TS(0), immediately after thekth occurrence ofxi is transmitted,xi precedes all items in
TS(0)’s list that were requested at most once in [tk−1+ 1, tk − 1]. Also, by Lemma 1,xi

is located behind all items in the list that are requested at least twice in [tk−1+1, tk−1].
Thus,dk + 1= posk. Therefore, thekth occurrence ofxi can be encoded using at most
f (posk−1+ tk − tk−1− 1− dk) = f (posk−1+ tk − tk−1− posk) bits. The total number
of bits needed to encode themi occurrences of the symbolxi is at most

f (t1)+
mi∑

k=2

f (posk−1+ tk − tk−1− posk)

≤ mi f

(
1

mi

(
t1+

mi∑
k=2

(posk−1+ tk − tk−1− posk)

))

= mi f

(
1

mi
(tmi + pos1− posmi)

)
≤ mi f

(
m

mi

)
.

The first inequality follows from Jensen’s inequality; in the last step we make use of the
facts thattmi ≤ m and pos1 = 1≤ posmi .

Summing up the above expression for allxi and dividing bym, we obtain that the
average number of bits needed by TS(0) to encode one symbol in the stringS is

ATS(S) ≤
n∑

i=1

mi

m
f

(
m

mi

)
.

The theorem follows immediately.

326 S. Albers and M. Mitzenmacher

3.2. Simulation Results. Our theoretical work suggests that a compression scheme
similar to MTF using the TS(0) scheme may provide better performance. In effect,
TS(0) is a conservative version of the MTF encoding; like MTF encoding, it responds
well to locality of reference by moving recently requested items to the front, but it
responds more slowly. Understanding this intuition is important to understand where
TS(0) encoding can improve on MTF encoding: when the locality is very strong, then
MTF encoding will perform better, since it responds more aggressively. On the other
hand, TS(0) encoding is more effective when the input to be compressed resembles a
string generated by a distribution, possibly with a large number of rare items each with
a small probability of appearing.

We have tested our theoretical results by implementing simple versions of TS(0)
encoders and decoders for text compression. Our tests use standard documents from the
Calgary Compression Corpus [19]. The current goal of these these is not to develop
an all-purpose functional compression system, but merely to demonstrate the potential
gains from using TS(0) in place of MTF. The compression is performed by turning the
document into a token stream. The tokens are then encoded by their position in the
list using standard variable-length prefix encodings given by Elias [7]; each integerj
requires 1+ 2blog j c bits. This prefix code is different from the code we used in the
analyses of the previous section; in our tests, it leads to slightly better compression. We
can compare the compression of MTF and TS(0) compression by varying the adaptive
discipline of the list.

In the first test ASCII characters (that is, single bytes) constitute the tokens, and
the list is initialized in order of character frequency in standard text. The results of
Table 1 demonstrate that TS(0) encoding outperforms MTF encoding significantly on
the sample documents. The boldface figures indicate how much space the compressed
files take, assuming that the original files use 100% space. The improvement of TS(0) over
MTF is typically 6–8%. Moreover, in all cases TS(0) encoding beats MTF encoding.
However, this character-based compression scheme performs far worse than standard

Table 1.MTF versus TS(0): Byte-based compression.

TS(0) MTF Original
File Bytes % Orig. Bytes % Orig. bytes

bib 99,121 89.09 106,478 95.70 111,261
book1 581,758 75.67 644,423 83.83 768,771
book2 473,734 77.55 515,257 84.35 610,856
geo 92,770 90.60 107,437 104.92 102,400
news 310,003 82.21 333,737 88.50 377,109
obj1 18,210 84.68 19,366 90.06 21,504
obj2 229,284 92.90 250,994 101.69 246,814
paper1 42,719 80.36 46,143 86.80 53,161
paper2 63,654 77.44 69,441 84.48 82,199
pic 113,001 22.02 119,168 23.22 513,216
progc 33,123 83.62 35,156 88.75 39,611
prog1 52,490 73.26 55,183 77.02 71,646
progp 37,266 75.47 40,044 81.10 49,379
trans 79,258 84.59 82,058 87.58 93,695

Average Case Analyses of List Update Algorithms 327

Table 2.MTF versus TS(0): Word-based compression.

TS(0) MTF Original
File Bytes % Orig. Bytes % Orig. bytes

bib 34,117 30.66 35,407 31.82 111,261
book1 286,691 37.29 296,172 38.53 768,771
book2 260,602 42.66 267,257 43.75 610,856
news 116,782 30.97 117,876 31.26 377,109
paper1 15,195 28.58 15,429 29.02 53,161
paper2 24,862 30.25 25,577 31.12 82,199
progc 10,160 25.65 10,338 26.10 39,611
prog1 14,931 20.84 14,754 20.59 71,646
progp 7,395 14.98 7,409 15.00 49,379

UNIX utilities, such aspack , compress , andgzip , which generally compress text
files by 30% to 80%. Among the Unix utilities,compress is superior topack , and
gzip is superior tocompress .

In order to make TS(0) and MTF encoding comparable with the standard UNIX
utilities, we have to use words as the tokens, which we do in our second test. A word is
taken to be a sequence of nonwhite space characters between white space. This technique
assumes that the decompressor has a dictionary consisting of a list of all words in the
document; in practice, this dictionary (in compressed or uncompressed form) can be
included as part of the compressed document. In the results of Table 2, we compare
the size of the MTF- and TS(0)-based encodings. These figures do not include the
dictionary cost, so that a direct comparison between MTF and TS(0) can be seen. Also,
for convenience, we placed no memory limitation on the compressor or decompressor;
that is, the length of the list was allowed to grow as large as necessary. In practice
one might wish to devise a more memory-efficient scheme, using the list as a cache as
in [4].

The results of Table 2 reflect the compression achieved,4 including only the token
stream and not the dictionary. As one might expect, the gains from TS(0) in this situation
are less dramatic, but still noticeable.

To compare the TS(0) compression with the standard UNIX utilities, we add to the
results in Table 2 the size of the dictionary after being compressed usingpack . These
results are presented in Table 3. We emphasize that our results for TS(0) could be
improved by compressing the dictionary using other methods, but the results are quite
suggestive of TS(0) performance: the scheme performs better thanpack and occasionally
as well ascompress , but not as well asgzip .

We have also attempted to use TS(0) encoding in place of MTF encoding in the data
compression algorithm recently presented by Burrows and Wheeler [5]. Unfortunately,
the results here show less promise. In some cases, TS(0) led to improved compression,
but in most cases MTF encoding yielded better results. Although it is not entirely clear
why this is the case, we note that the Burrows–Wheeler compression scheme attempts
to use MTF on a stream with an extremely high locality of reference. Given this, it is

4 Because the current implementation handles only ASCII characters, we do not have results for all files.

328 S. Albers and M. Mitzenmacher

Table 3.TS(0) word-based compression versus UNIX utilities.

TS(0) pack compress gzip

File (% orig.) (% orig.) (% orig.) (% orig.)

bib 51.51 63.91 41.82 31.51
book1 50.66 57.04 43.19 40.76
book2 56.06 60.31 41.05 33.84
news 57.07 65.37 48.29 38.41
paper1 53.74 62.94 47.17 34.94
paper2 49.88 58.07 43.99 36.20
progc 65.11 65.71 48.33 33.51
prog1 37.54 60.15 37.89 22.71
progp 42.79 61.42 38.90 22.77

not entirely surprising that MTF would outperform TS(0). We remain optimistic that
TS(0)-based encoding will prove useful in other situations.

4. Conclusion. We have analyzed the performance of the deterministic list update
algorithm TS(0) when a request sequence is generated by a probability distribution
Ep = (p1, p2, . . . , pn). We have demonstrated that TS(0) has a better overall perfor-
mance than the MTF algorithm on such distributions. In particular, we have shown that
on all distributions, the expected cost incurred by TS(0) is at most 1.5 times the expected
cost incurred by the optimal (dynamic) off-line algorithm. We note that a similar anal-
ysis can also be used to study the Timestamp(p) algorithms [1], but TS(0) yields the
best competitive ratio against distributions. Also, the techniques we used can easily be
extended to the case that a request sequence is generated by a Markov chain, but for
general Markov chains, we cannot prove that TS(0) has a better competitive ratio than
2. (MTF can easily be shown to be 2-competitive against a Markov chain that cycles
among then elements of the list.)

List update algorithms can be used to develop locally adaptive data compression
schemes. Our theoretical results show that TS(0)-based encoding can be better than MTF-
based encoding. We have supported our theoretical observations by building encoders
and decoders with TS(0) encoding that lead to improved compression over MTF encoding
on a standard corpus of test files.

We suggest some open questions based on our work. A tight bound on the competitive
ratio of TS(0) against static off-line algorithms, perhaps based on a tight bound for the
expression in Theorem 4, remains open. A more general question is whether there is
quick, simple way to determine which list update strategy (say between MTF and TS(0))
is expected to perform better on a given higher-order Markovian source. In theory, the
expected cost per request can be determined, but this seems excessively time-consuming.
Our work settles the question for discrete memoryless sources in favor of TS(0); for
higher-order sources, the question appears more difficult.

Acknowledgments. The authors would like to thank Michael Burrows for general
information on compression and outlines for the code.

Average Case Analyses of List Update Algorithms 329

References

[1] S. Albers. Improved randomized on-line algorithms for the list update problem. InProceedings of the
6th Annual ACM–SIAM Symposium on Discrete Algorithms, pages 412–419, 1995.

[2] R. Bachrach and R. El-Yaniv. Online list accessing algorithms and their applications: recent empirical
evidence. InProceedings of the8th Annual ACM–SIAM Symposium on Discrete Algorithms, pages 53–
62, 1997.

[3] J.L. Bentley and C.C. McGeoch. Amortized analyses of self-organizing sequential search heuristics.
Communications of the ACM, 28:404–411, 1985.

[4] J.L. Bentley, D.S. Sleator, R.E. Tarjan, and V.K. Wei. A locally adaptive data compression scheme.
Communications of the ACM, 29:320–330, 1986.

[5] M. Burrows and D.J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm. DEC SRC
Research Report 124, 1994.

[6] F.R.K. Chung, D.J. Hajela, and P.D. Seymour. Self-organizing sequential search and Hilbert’s inequality.
In Proceedings of the17th Annual Symposium on the Theory of Computing, pages 217–223, 1985.

[7] P. Elias. Universal codeword sets and the representation of the integers.IEEE Transactions on Infor-
mation Theory, 21:194–203, 1975.

[8] G.H. Gonnet, J.I. Munro, and H. Suwanda. Exegesis of self-organizing linear search.SIAM Journal on
Computing, 10:613–637, 1981.

[9] D. Grinberg, S. Rajagopalan, R. Venkatesan, and V.K. Wei. Splay trees for data compression. InPro-
ceedings of the6th Annual ACM–SIAM Symposium on Discrete Algorithms, pages 522–530, 1995.

[10] G.H. Hardy, J.E. Littlewood, and G. Polya.Inequalities. Cambridge University Press, Cambridge, 1994.
[11] S. Irani. Two results on the list update problem.Information Processing Letters, 38:301–306, 1991.
[12] N. Kahale. Large Deviation Bounds for Markov Chains. DIMACS Technical Report 94-39.
[13] R. Karp and P. Raghavan. From a personal communication cited in [14].
[14] N. Reingold, J. Westbrook, and D.D. Sleator. Randomized competitive algorithms for the list update

problem.Algorithmica, 11(1):15–32, 1994.
[15] R. Rivest. On self-organizing sequential search heuristics.Communications of the ACM, 19:63–67,

1976.
[16] A. Shwartz and A. Weiss.Large Deviations for Performance Analysis: Queues, Communications, and

Computing. Chapman and Hall, London, 1995.
[17] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Communications of

the ACM, 28:202–208, 1985.
[18] B. Teia. A lower bound for randomized list update algorithms.Information Processing Letters, 47:5–9,

1993.
[19] I.H. Witten and T. Bell. The Calgary/Canterbury text compression corpus. Anonymous ftp from

ftp.cpsc.ucalgary.ca :/pub/text.compression/corpus/text.compression.corpus.tar.Z.

