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Abstract

We consider the capacity of binary deletion channels, where bits are deleted
independently with probability d. We improve significantly upon the framework
used in [1, 2] to lower bound this capacity, by utilizing a stronger definition of a
typical output from the channel. In this paper, we specifically focus on codeword
sequences given by a first order Markov chain. Our results give the best bounds
on the capacity for all values of d; in particular, for d > 0.65, we surpass Ullman’s
combinatorial upper bound for channels with an asymptotic fraction of d synchro-
nization errors. Hence our results explicitly indicate a need for new upper bounds
in the case of channels with i.i.d. synchronization errors.

1 Introduction

Deletion channels are a special case of channels with synchronization errors. A synchro-
nization error is an error due either to the omission of a bit from a sequence or to the
insertion into a sequence of a bit which does not belong; in both cases, all subsequent
bits remain intact, but are shifted left or right respectively.

In this work, we are interested in lower bounds for the capacity of binary deletion
channels where bits are deleted independently with probability d, or i.i.d. deletion chan-
nels. It is known that the capacity of such channels is related to the mutual information
between the codeword sent and the received sequence [3], but this does not give an ef-
fective means of proving capacity bounds. Recent work, which we describe fully below,
attempts to develop Shannon-style theorems that allow computable bounds. Our work is
a continuation in this vein, but yields dramatically improved bounds. For example, our
bounds when d > 0.65 surpass Ullman’s combinatorial upper bound for channels with
synchronization errors [5]. This bound has previously been used as though it were an
upper bound on the i.i.d. channel, as it seemed difficult to reach, even though it was not
strictly a proven bound for this specific type of channel. Our results are therefore the
first to demonstrate that under i.i.d. errors this bound can in fact be broken.

Another advantage of our approach is that it can be applied to insertion and inser-
tion/deletion channels as well. Previous work was based on a decoding method that was
successful only if the received sequence was a subsequence of exactly one codeword, and
therefore did not generalize beyond deletion channels. While we do not consider more
general channels here, we plan to analyze such channels in future work.
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1.1 Previous Work

It has long been known that random codes, i.e., codes consisting of codewords chosen
independently and uniformly at random from the set of all possible codewords of a certain
length, yield a lower bound of

Cia > 1—H(d) bits, for d < 0.5,

where H(d) = —dlogd — (1 — d)log (1 — d) is the binary entropy function [1] (we denote
by log the logarithm base 2 and by In the natural logarithm throughout). Diggavi
and Grossglauser had the insight to examine codewords chosen non-uniformly, in order
to better cope with the memory inherent in deletion channels [1]. Specifically, they
examined codes consisting of codewords of length N generated by a symmetric first-order
Markov process with transition probability p. The decoding algorithm they consider
takes a received sequence and determines if it is a subsequence of exactly one codeword;
if this is the case, the decoder is successful, and otherwise, the decoder fails. Using this
decoder, they determine for what transmission rate the probability of error goes to 0
asymptotically. This analysis yields the following lower bound for the capacity, which
proves strictly better than the lower bound for random codes, and is substantially better
for high deletion probabilities d:

Caa 2 sup [t — (1 —d)log ((1 — q)A +¢B)], (1)

t>0
0<p<1
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Drinea and Mitzenmacher in [2] improve on the lower bounds in (1) by generalizing
the framework above to consider codewords of length N that consist of alternating blocks
of zeros and ones. The lengths of the blocks are i.i.d. random variables, according to some
symmetric distribution P over the positive integers with suitably decreasing tails. For
example, when the block lengths are geometrically distributed with parameter p, the
resulting code has the same distribution as codes generated by the first-order Markov
chain model with transition probability p. Again, the decoder is successful if and only
if the received sequence is a subsequence of exactly one codeword from the randomly
generated codebook. Their improvements arise from two considerations. First, the anal-
ysis of Diggavi and Grossglauser considers only typical outputs, which consist of at least
N(1 = d)(1 — €) bits, for some € = o(1); any output that is atypical is assumed to give
an error in the analysis. Note that the probability of an atypical output is exponentially
small. In [2] a stronger notion of a typical output that still contributes an exponentially
small error probability is used. For geometric block length distributions, this analysis
yields the following improved bounds over (1):

where A = "t+petandg=1—

Cie > sup [—t — (1 —d)log (At . Bq)] , (2)
0<pet

for A, B, g as in (1). However, the more important improvement in [2] comes from allow-
ing more general distributions for the block lengths. While obtaining a closed formula
for the capacity under general distributions appears hard, specific distributions can be
tested using numerical calculation. In [2] Morse-code type codes were considered; with
these codes blocks are either short (i.e., length m > 1) with probability = or long (i.e.,
length M > m) with probability 1 — . Calculations for these distributions yielded bet-
ter bounds than the geometric distribution when the deletion probability was at least



0.4. Prior to this work, these are the best provable bounds we know of for i.i.d. deletion
channels.

Recent work by Kavcic and Motwani attempts to bound the mutual information
between the input and output of the i.i.d. deletion channel experimentally, via simulation
[4]. Although their bounds are not strictly provable, their work demonstrates that the
capacity of the i.i.d. deletion channel is indeed much larger than the lower bounds proven
in previous theoretical work.

1.2 Owur New Approach

Our work extends the approach of previous work by considering both a stronger defini-
tion of a typical output and a corresponding stronger method for decoding. Informally,
the definition of a typical output in [2] requires that the received sequence consists of
approximately the expected number of blocks of length & for each & (the block length
distribution for the received sequence can be derived from the block length distribution
P for the codewords and the deletion probability d). In this paper, our stronger notion
of a typical output is motivated by the idea of mutual information. Specifically, consider
a block of length £ in the received sequence. Such a block arises from a group of one or
more blocks from the transmitted codeword. We call the ordered sequence of lengths of
this group of blocks in the codeword the type of a block in the received sequence; that is, a
type corresponds to a compact description of the group of blocks from the codeword that
generated the block in the received sequence. We now require that for a typical output
with respect to a codeword, the number of blocks of length k in the received sequence
arising from groups of type t is close to its expectation for every type ¢ and length k. Our
decoding algorithm checks if there is only one codeword for which the received sequence
is a typical output. While this decoding algorithm is remarkably inefficient (exponential
time), efficiency is not required to prove capacity bounds. Also note that the received
sequence might be a subsequence of more than one codeword with this approach; we only
need it to be a typical output with regard to one codeword.

In this paper, we consider only codewords with geometrically distributed block lengths.
While [2] suggests other distributions might perform better, searching for such distribu-
tions remains a point for future work, and the mathematics is much simpler in the geo-
metric case. Again, even with this restriction, our bounds are the best provable bounds
for this channel.

The remainder of the paper is organized as follows. In Section 2 we review the
necessary parts of the model from [2] and introduce the notion of the type of a block in
the received sequence. In Section 3, a general bound for the capacity of the i.i.d. deletion
channel for finite block length distributions is presented. In Section 4 we derive lower
bounds in the special case of the geometric distribution; a discussion of these bounds and
the upper bound provided by Ullman in [5] follows in Section 5. Section 6 concludes the

paper.

2 The framework and codebook

We describe the generation of our codebook, following [2], and define the notion of types.
We consider a code C' with 2¥® binary codewords of length N, where R is the rate of
the code in bits. Each codeword consists of alternating blocks of zeros and ones and is
generated independently by the following stochastic process. The first block is chosen
to be zeros or ones each with probability 1/2. The lengths of successive blocks are
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Figure 1: The blocks with lengths 71, 7; and 5 from X give rise to block B1 in Y; the
type of Bl is in the family F(1,4y,19,j1). The blocks with lengths jo, i3, j3, 74 and j,
give rise to block B2; the type of B2 is in the family F(2, ja, j3 + ja, 93 + i4). The thick
contours of blocks j1, ¢3 and ¢4 indicate that these blocks were necessarily completely
deleted.

independent identically distributed random variables given by a distribution P, so that
the length is j with probability P; for j > 1. While this approach could be extended to
use different distributions P and () for zeros and ones, we have not found this helpful so
far, and hence we restrict ourselves to a single distribution. We assume throughout that
our distribution P is bounded by some geometric distribution, so that P; < a/ for some
constant 0 < a < 1. We keep generating blocks until the codeword length NV is reached or
exceeded. If the last block exceeds NV, it is truncated; this does not affect the asymptotics
for large N. Applying standard results from renewal theory, we can show that for large
N and a suitable § = o(1), the number of blocks in the codeword is ZJ-A;PJ (1 +0) with

high probability. (The proof appears in the full version of [2].)

Now consider a transmitted codeword X and the associated received sequence Y.
The sequence Y can also be broken into alternating blocks of zeros and ones. With each
block we may associate a type depending on the blocks in X that it was derived from.
Specifically, consider a block B of k > 1 zeros in Y (everything is entirely similar for
blocks of ones). We associate with B a group of consecutive blocks in X, starting with
the first block in X which had an undeleted zero that is a bit in B, and including all
blocks up to (but not including) the block in which the next undeleted one appears. The
type is just a tuple giving the lengths of all these blocks.

More concretely, a type is a tuple of 2i + 1 numbers representing the lengths of 2 + 1
consecutive blocks in X, for ¢+ > 0. If the first block is a block of zeros, the ¢ blocks of
ones in the type must be completely deleted since the type gives rise to a single block of
zeros in Y. The first block of ones in X from which at least one bit is not deleted gives
rise to a new block in Y and thus begins a new type. We represent the type of a block in
Y by the ordered 2i 4+ 1-tuple ¢t = (z, s1,71,..., 8, 7;). We now find the probability that
a block in Y has type t. Let the random variable 7" be the type of the block. We have

P(1-d?) (1 i
Pr[l'=t] = 1 (H Py, d* N) (1—2z)=P,(1~d (H PszPN> dette (3)
— X

=1

where z =} P;d’ is the probability that a block is deleted. The first term on the
left hand side of (3) is the conditional probability the block in X starting the type has
length 2z given that the block starts a type; that is, at least one bit from the block is not
deleted. The second term corresponds to the remaining blocks in X, with every other
block necessarily being deleted. The third term is the probability that the block after
these 27 + 1 blocks has at least one undeleted bit, starting a new block in Y. Note that
here and throughout the paper we ignore boundary effects, which have no effect on the
asymptotics.



A more concise representation that we use henceforth is motivated by (3). Let r =
S_iTes S =Yy S Foralli>0,z>1,r>4 s>i, we define F(i,zr,s) to be the
family of types that consist of the following: 2¢ + 1 blocks, the first of which has length
z; the lengths of the ¢ blocks whose bits differ from the first block sum up to s; and the
lengths of the i blocks whose bits are the same as the first block sum up to r. We denote
by |F(i, z,1,s)| the size of the family F'(i, z,r,s); each of the |F(i, z,7,s)| members of
F(i,z,r,s) occurs with the same probability given by (3). In what follows, when we
refer to the type of a block in Y we may instead refer to the family F(i, z,r, s) of types,
when we do not care which specific member of the family the type is. For examples, see
Figure 1.

We introduce some additional notation. Let (), be the probability that the total
length of m blocks, each independently and identically distributed with distribution P,
is n. We note that @, ,, is easily computed by the recursion

n—1
Qn,m - Z PZanl,mfl-
=1

With the same reasoning as for (3),
Pr[T € F(i,z,r,s)] = P,(1 —d°) - Q,Qs,d’, (4)
and also, if t € F(i,z2,r,s), then

Pr[T € F(i,z,r,s)]

PrT =t| =
i e T TR

(5)

With this notation, we can write an expression for the distribution of block lengths
in Y. We denote this distribution by P; like P, P is symmetric with respect to blocks of
zeros and blocks of ones. Let K and T be random variables representing the length and
type of a block in Y. Conditioned on arising from type ¢ in family F'(i, z, 7, s), a block of
zeros in Y will have length £ if exactly & of the z 4+ r zero bits of ¢ are not deleted, with
at least one arising from the first block of length z. Thus the joint probability of a block
having length k£ and arising from type t is given by:

PriT=t,K=Fk = Pr[K=Fk|T=t]-Pr[T =1t (6)

(&) - @) d="a-aF ! . :
1—d? F(G, 2T, s)|Pz(1 — d)@riQsid

1 1—d : Z+r T z+r+s
= ez (o) ((37) () pae

This implies that the probability that a block in the received sequence has length £ > 1
is given by

Pr = Y. >, PrIl=tK=Fk

(i,2,r,8) tEF (,2,r,8)
1—d\"* z+rT r
- — - dz+r+s'Pz AR 8
() = () -() Q. ®

Similar formulas appear in [2], where types were implicitly used. Explicitly identifying
the existence of types and studying their behavior proves crucial to improve the lower



bounds for the capacity of i.i.d. deletion channels. In essence, we can think of the received
symbols as being the lengths of the blocks, and the transmitted symbols as being the
types that give rise to the blocks. Further, in effect the mutual information for these
symbols gives a computable bound that we can use to bound the capacity of the deletion
channel.

3 A new lower bound

We start by giving a new definition of typical outputs and show that a received sequence
Y is a typical output for some codeword X with high probability. Then we show that,
upon reception of a typical output Y, our decoding algorithm fails with probability
exponentially small in N for appropriate rates. This yields our lower bound on the
capacity.

3.1 Typical outputs

We give a somewhat less formal definition of a typical output; a complete description
and analysis will appear in the full paper. The value B = g(,fiﬁi is approximately the
expected number of blocks in the received sequence Y (it is only approximate because of
boundary effects and variations in the number of bits received). A received sequence Y
is a typical output for a codeword X if it consists of Pr[T = t, K = k|- B(1 £ ) blocks
of length 1 < k < ¢; that arise from types ¢ with at most ¢y blocks, for certain positive
constants ¢, and ¢y, and 8 = O(1/V/N).

Essentially, our choice of definition for a typical output yields that with all but van-
ishingly small probability, the number of blocks of Y of each length arising from each
type is close to its expectation, when there are sufficiently many blocks of Y so that
Chernoff bounds may hold. The case where the length of a block is greater than ¢; or the
number of blocks for a type is greater than ¢y can be handled in a more explicit fashion;
by choosing ¢; and ¢,y sufficiently large, these cases can be made to have at most an e
effect on the capacity for any constant ¢ > 0. We conclude that a received sequence Y
fails to be a typical output from the channel with vanishingly small probability.

3.2 Decoding error probability

We now develop the main analysis of our paper. In the following, we simplify the analysis
by assuming that the number of blocks of length k derived from groups of blocks of type t,
denoted by B, ;, exactly equals Pr[T" = t, K = k|-B forall k, t. Conditioned on the output
being a typical output, the number of such blocks is really Pr[T = ¢, K = k|B(1 + o(1))
for sufficiently small £ and types ¢ with a sufficiently small number of blocks; a more
careful analysis, to be given in an extended version of this paper, shows that the o(1)
terms and the effect of large blocks and types with more blocks do not affect the capacity
bound derived in this way.

Fix a received sequence Y. We will use F as a shorthand for F'(i, z,r,s). Consider
an enumeration of all families F' and denote by tf the j-th type in family F. For each
k, the number of blocks of length k in Y is given by By = Y 5 > ,c Bix- There are

Btfl,k; ...Btll;lwk; Bth,k; ...BtFQ Ic;

[Fa]?



ways we can place the types corresponding to the blocks of length £ in an attempt to
reconstruct all different codewords that, when transmitted through the deletion channel,
might generate these blocks according to the definition of a typical output. That is,
given the received sequence Y, our decoding algorithm considers all possible By blocks
of length k£ in Y, and considers all possible ways of choosing the type of each block in
Y so that Y would have been a typical output. After doing this for all k, the decoding
algorithm has an exponentially large list of all possible strings of length N for which Y
would have been a typical output. If exactly one of these strings is a codeword in our
codebook, then (assuming that Y was indeed a typical output, which occurs with high
probability) the algorithm decodes successfully.

If T"and K are again random variables denoting respectively the type of a block in
Y and its length, the number of potentially transmitted codewords considered by the
decoding algorithm is then

e, ae )
. Btfl,k; ...Bt?’k;

Q—Ek Br Y g >iep Pr[T'=t | K=k]log(Pr[T'=t | K=k])

IN

_ 2—sz >oF 2rer Pr[T=t,K=k]log(Pr[T'=t | K=k])

NO-d) g7 | k)
: (9)

ISk FPy,

Here (9) is an upper bound, as a received sequence Y may correspond to a codeword X
under many different segmentations into types while still having the property that Y is
a typical output for X. Improving this bound may directly yield improvements on the
rate.

To upper bound the probability that a fixed codeword X in our codebook could
yield one of the sequences of types counted in (9), we restrict the codebook to consist

only of the likely codewords. That is, standard methods give that almost all codewords

_ N
arise with probability at most 2 2577 H(P)+O(N), so that the probability of including a

codeword with greater probability of being chosen is exponentially small. We can throw

out such improbable codewords, to guarantee that all possible codewords are chosen with

.- — D5 H(P)+o(N) . :
probability at most 2 3% . Ignoring the o(/V) term, which does not affect the

final capacity bound, yields the following upper bound for the probability that YV is a
typical output for a randomly selected codeword in our codebook:

SR | 1)

w7 1P
By a union bound, the probability that the received sequence Y is a typical output for
more than one codeword is at most

NR o= (1 | 1) (P) Ritml (1 | K)m et (p))
VR . oS s ) _ (ofr s =57 . (10)

Since all typical outputs share the same structural properties, the probability that the
decoding algorithm will fail to identify a unique codeword upon reception of any Y that
is a typical output for a codeword chosen uniformly at random is given by (10). Let P
be the class of all distributions P such that P; < a’ for some constant 0 < a < 1. For
the decoder to fail with probability that goes to zero asymptotically it suffices that the
rate is upper bounded by

1—-d
> e kP

1—-d

R < su -
b S kP

1
PeP WH(P)_ H(T | K)| =sup H(P) —

PeP

1
2. 1P

(H(T,K) -

H(K))



Therefore we obtain the following theorem for arbitrary distributions P € P.

Theorem 1 Consider a channel that deletes every transmitted bit independently and
with probability d and a binary input alphabet. The capacity of this channel is lower
bounded by

(1-a)
C,. > su —H(P) — ———
S A TR S

for Pr[T =t, K = k] given by (7) and P given by (8).

(H(T,K) — H(P))| bits (11)

4 Geometric distributions

In this section, we use (11) to derive a lower bound for the capacity of i.i.d. deletion
channels in the special case where the block lengths in X are geometrically distributed,

e, P;=(1—-p)p L
It is easy to show that H(P) = %’2, where H () is the binary entropy function. Also,
the probability that m blocks from X have length n is given by Q. m = (”71)p”*m(1—p)m,

m—1
since there are n — 1 bits from which to choose the last bits of the first m — 1 blocks

(the last block ends at the n-th bit). Hence a family F'(i, z, 7, s) consists of (::11) . (::11)
members and the probability of a type (5) becomes:

| p\ 2L

Pr[T =t] = prtste. <_> (1 —d?) - d°. (12)
p

Then the joint probability of length k& and type ¢ from (7) becomes

rar-ues = (5 (7)- (O o (50

When the block length distribution in X is geometric with parameter p, the block lengths
in Y are also geometrically distributed with parameter ¢ = 1 — % (e.g., see [1, 2]).
p

Then H(P) = %’2. The following combinatorial lemma, given in the full version, derives

a formula for the joint entropy H (T, K):

Lemma 1 When the blocks in X are geometrically distributed with parameter p, the joint
entropy H(T, K) of the distribution of the types and the block lengths in Y is given by

H(d r+z r
HT K) = ——— Pr[T=t,K =k]-lo — .
R - iy X e (17) - ()]
(i,2,r,8) tEF (i,2,r,5)
We immediately obtain the following corollary to Theorem 1.

Corollary 1 Consider a channel that deletes every transmitted bit independently and
with probability 0 < d < 1, a binary input alphabet and geometric block length distribution
P. The capacity of this channel is lower bounded by

Coi > sup { )(1—q) Z Z ZPr — K = K] log{<r+z>—<2>} (14)

+a—®H@—Hw}

where ¢ = 1 — Pr[T =t, K = k] is given by (13), and F represents F(i,z,1,5).

1-p
1+d—2pd’
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Figure 2: Improvement in rate with our framework for codewords with geometrically
distributed block lengths (Section 4). Comparison with lower bounds for geometric and
(m, M, x) distributions from [2], and Ullman’s upper bound.

Although it seems difficult to derive a closed formula for the summation above, one can
easily compute it numerically for fixed p, d. Then it is a matter of optimizing over all
values of p. Our optimization was over only two decimal digits for p. Also, our numerical
calculations were over a limited range of k and i, z, , s, (which is equivalent to truncating
both the distribution of the block lengths in the received sequence and the distribution of
types). Hence the graph in Figure 2 presents an underestimate of the actual rates, as all
terms inside the summation (14) are non-negative. To verify our results, we performed
extensive simulations for codewords with geometrically distributed block lengths and
N = 2.5-10'% The simulations verified the convergence of H(P), H(P), H(T), and
H(T,K) to the values predicted by the theory, giving us confidence in the results of
Figure 2.

5 Discussion of our results

As discussed in the introduction, an upper bound for the capacity Cy,, of channels with
synchronization errors is provided by Ullman in [5]:

Cia <1—(14+d)logy (14 d)+ dlog, (2d) bits, (15)

where d in his notation is the limit of the fraction of synchronization errors over the
block length of the code, as the latter goes to infinity. All previous lower bounds for the
capacity of i.i.d. deletion channels were strictly below (15). Our current bounds are much
higher than (15) for d > 0.65. Because of this, we clarify that Ullman’s upper bound
does not apply to i.i.d. deletion channels, and our work does not yield any contradiction.

Ullman’s bound (15) is based on a channel that introduces d- N insertions in the first
(1 —d) - N bits of the codeword. Further, the insertions are restricted to be such that
the number of blocks in the first N bits of the received sequence equals the number of
blocks in the first N(1 — d) bits of the transmitted codeword. Finally, his bound is for
a codebook with zero probability of error. Obviously, the i.i.d. deletion channel is quite
different: deletions instead of insertions occur in random places, and only a vanishing



probability of error. We conclude that while [5] provides an upper bound for the capacity
of channels with d - N arbitrary synchronization errors with no errors, it does not apply
here. Our work is the first to demonstrate that in fact this bound can be broken, and
specific upper bounds for this channel need to be developed.

6 Conclusions

We have presented new lower bounds for the capacity of i.i.d. binary deletion channels,

improving on previous analysis by using a stronger definition of a typical output. For

high rates, we have exceeded Ullman’s upper bound for general synchronization channels.
There are many directions to advance this work that we are pursuing.

e The analysis we have given may be improvable, for example by finding a better
upper bound for (9).

e There may be even stronger notions of typical output that may be useful. For
example, perhaps types should be considered for several consecutive blocks in the
received sequence at a time, instead of just one, to achieve a better bound. The
challenge of this direction is the computation necessary to determine and evaluate
the achievable rates.

e There may be better ways of selecting codewords, such as using distributions sug-
gested in [2].

e Qur approach can be applied to channels with insertions and deletions.

Finally, providing good upper bounds for the capacity of i.i.d. deletion channels is a
clear challenging open question.
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