
Bloom Filters via d-Left Hashing and Dynamic Bit Reassignment
Extended Abstract

Flavio Bonomi1 Michael Mitzenmacher2 Rina Panigrahy3 Sushil Singh4 George Varghese5

Abstract— In recent work, the authors introduced a data
structure with the same functionality as a counting Bloom filter
(CBF) based on fingerprints and thed-left hashing technique.
This paper describes dynamic bit reassignment, an approach
that allows the size of the fingerprint to flexibly change with
the load in each hash bucket, thereby reducing the probability
of a false positive. This technique allows us to not only improve
our d-left counting Bloom filter, but also to construct a data
structure with the same functionality as a Bloom filter, including
the ability to handle insertions online, that yields fewer false
positives for sufficiently large filters. Our results show that our
d-left Bloom filter data structure begins achieving smaller false
positive rates than the standard construction at 16 bits per
element. We explain the technique, describe why it is amenable
to hardware implementation, and provide experimental results.

I. INTRODUCTION

A Bloom filter is a data structure for approximating a set;
it answers queries of the form is x ∈ S, with a constant
probability of a false positive for elements not in the set,
using a constant number of bits per element in storage and
a constant number of hashes per lookup [1]. Bloom filters
also naturally handle dynamic insertions of elements into the
set, or equivalently they can handle the set being given as a
stream of data, although generally there is a fixed maximum
target size for the set. Counting Bloom filters [7], [10] allow
for the deletion of elements from the set as well as insertions.

If (minimal) perfect hash functions were easy to construct,
and one was given an entire set offline, one could easily
obtain a data structure with the same functionality as a
Bloom filter for the set [5]: use the perfect hash function to
map the set of n elements into an array of size n, and store
a fingerprint for each element at the corresponding location.
A b-bit fingerprint would give a false positive probability of
2−b with a total space of nb bits (not including the space to
store the hash function). Unfortunately, such hash functions
are generally difficult to construct, and are not amenable
to situations where we might want to dynamically insert or
delete elements into the set.

In [3], the authors use almost-perfect hash functions based
on d-left hashing [11], [15] to design a data structure with
the functionality of a counting Bloom filter based on this
approach. (We describe the construction briefly in Section III,

1Cisco Systems, Inc. bonomi@cisco.com.
2Division of Engineering and Applied Sciences, Harvard University.

michaelm@eecs.harvard.edu. Supported in part by NSF grant CCR-
0121154 and a research grant from Cisco.

3Stanford University. rinap@cs.stanford.edu.
4Cisco Systems, Inc. sushilks@cisco.com.
5U.C. San Diego and Cisco Systems, Inc. varghese@cs.ucsd.edu.

but we recommend [3] for more background.) For false
positive rates of 1% or less, we obtained a factor of 2 or
more improvement in space. A key point in the approach is
that a fixed number of bits are assigned to each fingerprint,
and a fixed number of fingerprint slots are assigned to each
bucket in a hash table. This clearly wastes space; some
slots meant to hold a fingerprint are left empty. Here we
explore the idea of dynamically assigning bits in a bucket to
fingerprints depending on the number of elements currently
hashed to that bucket; a bucket with fewer elements would
thus have longer fingerprints, reducing the overall false
positive probability. We call this general approach dynamic
bit reassignment. Dynamic bit reassignment naturally yields
better performance, and it particularly improves performance
when the filter is underloaded, as wasted space is the avoided.
In fact, the resulting space usage is sufficiently efficient that
we can provide an alternative data structure competitive with
Bloom filters at a surprisingly small ratio of bits to elements.
We focus on this new d-left Bloom filter structure, since an
alternative Bloom filter construction may prove significant
for many applications. We also consider the implications for
the d-left CBF as well.

While other approaches to designing alternatives to Bloom
filters have been considered (for example in [14]), we
emphasize that with our approach we are sharply focused
on schemes that can naturally be implemented in hardware.
(Of course, they could be implemented in software as well!)
That is, we are aiming for a scheme that has roughly the
same implementation complexity as the very simple standard
Bloom filter scheme, so that the design can be used in
practice.

Finally, while we focus in this paper on variations cor-
responding to d-left hashing, we also believe that the idea
of dynamic bit reassignment may be useful for other similar
hashing techniques. Specifically, cuckoo hashing [12] and
its variants [8], [13] also make use of multiple possible
hash locations for an item. The main difference is that such
schemes can allow much more movement of items within
a hash table on an insertion, which may not be suitable
for applications where sequential hash table accesses are
expensive. This remains a point for future work.

II. A d-LEFT BLOOM FILTER CONSTRUCTION

A. Why dynamic bit reassignment is needed

We suggest an alternative construction for a Bloom filter
based on d-left hashing, which we generally refer to as a
d-left Bloom filter. We use the following facts about d-
left hashing, following from [4], [11]. If we use a hash



TABLE I

ASYMPTOTIC TAILS OF THE LOAD DISTRIBUTION FOR 3-LEFT HASH

TABLES: 3 SUBTABLES, n ELEMENTS, n/4 TOTAL BUCKETS FOR AN

AVERAGE LOAD OF 4. THE TABLE ENTRIES GIVE THE ASYMPTOTIC

FRACTION OF BUCKETS WITH THE GIVEN LOAD TO TWO SIGNIFICANT

DIGITS FOR LOADS UP TO 7.

Load Fraction
0 2.3e-05
1 6.0e-04
2 1.1e-02
3 1.5e-01
4 6.6e-01
5 1.8e-01
6 2.3e-05
7 5.6e-31

table partitioned into three equally sized subtables, so that
on insertion each element chooses one bucket from each
subtable uniformly at random and is placed in the least
loaded, then if the average load per bucket is four, the
maximum load is six in practice with high probability. (The
probability of overflow per bucket is, asympotically, less than
10−30. See Table I.) That is, we have a set of n elements, a
hash table with n/4 buckets divided into three subtables each
with n/12 buckets, and each bucket need only have capacity
to hold fingerprints for six elements. For n elements, we use
3n/2 fingerprint slots. These constants are not specifically
important for our scheme, but it is useful to have a specific
starting point when describing the construction.

On insertion, an element is given a fingerprint, and this
fingerprint is stored in the least loaded of the three associated
buckets. (One can check if the fingerprint is already in one
of the four buckets, in which case it need not be added.)
On a lookup for an element, three buckets are searched in
parallel for the appropriate fingerprint. If we use a fixed
number of bits x for each bucket, divided into six slots of
f = x/6 bits for each fingerprint, the probability of a false
positive is bounded above by 12 · 2−f . This follows from
the fact that a false positive from any specific fingerprint
is 2−f , and on average an element not in the set will
have 12 other elements in its buckets; a union bound now
suffices. The space used for such a scheme now 3nf/2. A
corresponding Bloom filter with the same space using the
optimal number of hash functions would have a false positive
probability of 2−3f ln 2/2 ≈ 2−1.04f , better than the d-left
hash table. (This follows from the standard analysis, as in
[5].) While one could change the parameters used for the d-
left hash table (modifying the number of subtables, the load
per bucket, etc.), so that eventually it would prove superior,
for natural parameter setting f must be unreasonably large
in practice for the d-left hashing scheme to dominate. (With
large fingerprints, say whenever f ≥ 50, standard hashing
schemes appear much more appropriate.)

Dynamic bit reassignment dramatically changes the equa-
tion, avoiding most of the wasted space from unused finger-
prints, and calls for a new analysis. To see this, suppose that

each bucket had 60 bits set aside for fingerprints. If finger-
print sizes are fixed, then a maximum of six fingerprints per
bucket would yield 10-bit fingerprints. But suppose instead
the 60 bits could be assigned dynamically, according to the
number of elements present in the bucket. Buckets with four
elements could then have 15-bit fingerprints, substantially
improving performance. On insertion of an element in a
bucket, all fingerprints in the bucket would shrink; in a bucket
holding a fingerprints, each has �60/a� bits.

Our choice of 60 bits above is motivated somewhat by the
fact that it is evenly divided by numbers up to six. Moreover,
for each bucket we need to keep a count of how many
elements are in the bucket to properly determine how bits are
partitioned into fingerprints. Notice that, given this counter,
partitioning bits to fingerprints is straightforward. Using four
bits for a counter would give buckets a natural size of 64
bits, which might be useful in many hardware or software
contexts. (While four bits for a counter is overkill, we will
see how to make better use of the four bits subsequently.)

Using the rough approximation that no two fingerprints
are the same (which in fact gives an upper bound on the
false positive probability), we can compute the asymptotic
false positive probability as n grows large by calculating the
asymptotic distribution of the number of elements in a bucket
for each subtable, and combining appropriately. Calculations
of load distributions are described for example in [4], [11];
this is how we obtained Table I. The asymptotics are quite
accurate for practical values of n. Letting Q ij be the fraction
of buckets in the ith table with load j, and letting f(x) be
the size of the fingerprint when the load is x, we find the
false positive probability F is given by the formula:

F =
∑

a

Q1aa · 2−f(a)+
∑

b

Q2bb · 2−f(b)+
∑

c

Q3cc · 2−f(c).(1)

That is, we consider the probability of a false positive from
each table in turn, with a bucket of load a contributing
a · 2−f(a). (Again, this is a slight overestimate, as we are
ignoring the possibility of duplicate fingerprints for simplic-
ity.) Notice that, because of the tie-breaking mechanism, the
Qij indeed differ among the subtables.

Performing this calculation, using 64 bits per bucket with
60 for the fingerprints and 4 bits for the counter so that
f(a) = �60/a�, gives a false positive rate of 0.0008937 . . ..
In comparison, a corresponding Bloom filter with 16 bits per
item using the optimal 11 hash functions has a false positive
rate of 0.0004587 . . .. Our initial d-left construction is about
a factor of two worse.

B. A simple improvement: semi-sorting buckets

There are many natural ways to improve our scheme,
however. One particularly useful trick is to take advantage
of the fact that we can re-order fingerprints in the bucket.
Suppose that besides keeping a counter for each bucket, we
also keep track of the number of fingerprints that begin
with 0, which we call the 0-count. Then by keeping the
the fingerprints in a bucket in semi-sorted order, so that
all fingerprints that begin with 0 come first, we can avoid



storing the first bit of each fingerprint, since this bit is given
implicitly by the counters. The effect of this is to allow us to
add a bit to the fingerprint without using further additional
space; that is, since we have a fixed number of bits for
the bucket, this space-saving improvement is used to give
a longer effective fingerprint. When the count for the bucket
is x, there are x+1 possible values for the 0-count. Hence, to
track these values up to load k requires �log2(k(k + 1)/2)�
bits.

In our setting, with 4 bits for the counter, we do not
have enough bits to track the 0-count up to load 6. We can,
however, use the 16 values of the counter to track the load
(up to the value of 6), and track the 0-count for buckets
with 4 or 5 fingerprints, which are overwhelmingly the most
common cases. This gives f(a) = 60/a for a = 1, 2, 3, 6
and f(a) = (60/a) + 1 for a = 4, 5, improving the false
positive probability of our scheme to 0.0004477 . . ., slightly
better than a standard Bloom filter. (Of course there remains
the possible downside of bucket overflow with our scheme,
which must be handled separately or ignored.)

We note that all of the asymptotic numbers we present
have also been compared with simulation numbers to verify
that the analysis is correct. In all cases, the deviations from
the asymptotic results are small, and are much less significant
than the variance in observed false positive probabilities
across individual trials. For example, we performed 1000
trials, where in each trial, we ran the corresponding balls and
bins experiment with 49152 balls and 8192 bins. Recall that
this slightly overestimates the false positive rate in that we
ignore the possibility that two fingerprints are the same using
the balls and bins analysis (but it matches the approach used
for the asymptotic analysis above). After each trial, we tested
for false positives on 100000 additional elements. The overall
false positive rate was 0.00044988, closely matching the
theoretical analysis. Over the 1000 trials, the false positives
ranged from 23/100000 to 75/100000.

As a second comparison point, we consider buckets that
can hold 128 bits. In this case, we use 120 bits for finger-
prints, and use eight counter bits for additional purposes.
An average load of 6.4 items per bucket corresponds to
an average of 20 bits per item. The corresponding load
distribution in the hash table is given in Table II. An optimal
Bloom filter with 20 bits per item using the optimal 14 hash
functions has a false positive rate of 0.00006713 . . .. Using
the same configuration for our d-left hash table, and using the
counter to save an additional bit via semi-sorting for every
load we obtain a false positive rate of 0.00004259 . . ..

It turns out that we can do even better still. If we semi-
sort on the first two bits, instead of just the first bit, the eight
bits for the counter is sufficient to not only track the 0-count
for all loads, but to also track the number of fingerprints
that begin with 00, 01, 10, and 11 when the load is 6 or
7. (Indeed, with some care, we could track the number of
fingerprints that begin with 00, 01, 10, and 11 when the
load is 7 or 8 as well, but it turns out better to track for
loads 6 and 7.) This gives f(a) = �120/a� + 1 for a ∈
[1, 11], a �= 6, 7; f(a) = 22 for a = 6, and f(a) = 19

TABLE II

ASYMPTOTIC TAILS OF THE LOAD DISTRIBUTION FOR 3-LEFT HASH

TABLES: 3 SUBTABLES, n ELEMENTS, n/4 TOTAL BUCKETS FOR AN

AVERAGE LOAD OF 6.4. THE TABLE ENTRIES GIVE THE ASYMPTOTIC

FRACTION OF BUCKETS WITH THE GIVEN LOAD TO TWO SIGNIFICANT

DIGITS FOR LOADS UP TO 9.

Load Fraction
0 1.7e-08
1 5.6e-07
2 1.2e-05
3 2.1e-04
4 3.5e-03
5 5.6e-02
6 4.8e-01
7 4.5e-01
8 6.2e-03
9 4.8e-15

for a = 7. These settings reduce reduces the false positive
rate to 0.00002245 . . ., almost a factor of three better than
the standard Bloom filter (corresponding to roughly a 10%
saving in space).

It is worth stopping at this point to consider the imple-
mentability of the d-left scheme as we have described. We
note that the hashing operations are simple; indeed, unless
a method to reduce hashing (such as the one given in [9])
is used with the standard Bloom filter, the d-left scheme
requires significantly less hashing than the standard Bloom
filter. The d-left scheme is, by design, trivially parellizable.
There is substantially more bit manipulation required using
the d-left scheme, particularly in keeping the bucket semi-
sorted on an insert, and when deciphering the counter bits
when using semi-sorting. However, these bit operations are
small in number and easily performed in hardware or soft-
ware when dealing with 64 or 128 bit blocks. We therefore
argue that in both hardware and software, the d-left scheme
should be nearly as efficient and possibly even more efficient
than a standard Bloom filter scheme.

We also note here some further points. First, our current
analysis shows d-left scheme only improves on Bloom filters
for fairly large, although still quite practical, numbers of bits
per element. Our tradeoff point is roughly 16 bits per item,
although we suspect further bit-saving tricks could drive
this number down further. We suspect it will be difficult to
improve on Bloom filters at false positive rates of 1% or
higher, however; at such levels, Bloom filters are very close
to optimal, and of course are remarkably simple. Second,
while other configurations (e.g., two or four subtables) are
possible, thus far our experience suggests that three subtables
is best (although four is not too much worse). Third, our
schemes are arguably not quite as straightforward and natural
as Bloom filters. As can be when considering semi-sorting,
some thinking about how to best make use of any spare bits
can make a significant performance difference, while Bloom
filters require much less consideration. Despite this, we
believe our approach provides a quite promising alternative
to Bloom filters with large numbers of bits per item.



C. A small improvement: grouping buckets

Considering equation (1), we can see that the buckets that
are more full from the average contribute significantly to the
false positive probability. We would like the distribution of
elements to bins to be as smooth as possible, so that all
elements have roughly the same long fingerprint.

One alternative way to achieve this is to group buckets
together, essentially allowing more full buckets to swipe
bits from less full buckets. We emphasize that this does not
mean that we are creating larger buckets with more elements
per bucket; we are merely organizing buckets in such a
way that bits are divided among fingerprints in a group of
buckets, instead of among fingerprints in a single bucket.
An advantage of this approach is that is also can be quite
sensible in hardware: for example, if a memory read obtains
256 bits, it would be natural to group four 64-bit buckets
together into a single memory block. Again, this somewhat
complicates the bit-level operations that must be taken on a
lookup and an insert, but not dramatically.

As an example, using our example of 64-bit buckets with
60 bits set aside for fingerprints, if four collected buckets
had loads 5, 4, 4, and 3, all elements could be given 15 bit
fingerprints. If the four buckets had load 5, 5, 4, and 4, then
thirteen elements (three buckets) could be given thirteen bit
fingerprints, and five elements (one bucket) could be given
fourteen bit fingerprints. Such smoothing offers small but
non-trivial gains.

Again, the asymptotics can be calculated exactly via dif-
ferential equations. To simplify our calculations, we restrict
each bucket within a group to have the same number of bits,
even though the example of loads 5-5-4-4 given above shows
that this can be wasteful if after such a division there are
enough bits left over to give one extra bit to every fingerprint
in just some of the buckets in the group. As an example, with
our 64-bit buckets, grouping together blocks of four buckets
in the same subtable (and using semi-sorting as above) drops
the false positive rate from 0.0004477 . . . to 0.0003520 . . ..
With our 128-bit buckets, such grouping reduces the false
positive rate from 0.00002245 . . . to 0.0002042 . . ..

D. Further possible improvements: balancing

In our work up to this point, we have implicitly assumed
that elements to be inserted into the d-left Bloom filter are
presented one at a time and the corresponding fingerprint
must be placed immediately without being moved subse-
quently. This makes sense when elements are presented as a
stream of data, as they are for many applications. The setting
is different if all the elements are presented initially offline,
and one is given time offline to build the data structure.

In the setting of d-left Bloom filters, we could determine
their performance in the offline setting, where we should
be able to balance the load among buckets much more
effectively. This can be done by various means, including
for example local search. We have done this experimentally,
and not surprisingly found sizable improvements. Of course,
in the offline case, we could do even better by simply
looking for a minimal perfect hash function, as described

in the introduction. Alternatively, and more efficiently than
finding a minimal perfect hash function, we could use a
variant of cuckoo hashing: using buckets of size 1, with
high probability we can place n elements into less than
1.05n cells, with four possible locations for each element
given by four distinct hash functions, in the offline setting
[8]. Thus cuckoo hashing gives something very close to a
minimal perfect hash function, using slightly more space and
using more than one hash function. (While natural, this use
of cuckoo hashing, to construct a near-optimal Bloom filter
offline, does not seem to have been explicitly mentioned in
previous work.)

The idea of re-balancing, however, can still be useful in
some situations. First, if one is can delay insertions and
handle them in large batches, one can then balance the
batches in an offline fashion. Second, re-balancing operations
can actually be done online or as a background task if
one can use the fingerprint and bucket for an element in
one subtable to determine the appropriate fingerprints and
buckets for an element in another subtable. This would
be possible, for example, using invertible pseudorandom
permutations, or simply linear permutations, as described in
[3] and below. Such invertible hashes would also potentially
allow using cuckoo hashing to construct Bloom filters online.
A problem with this approach is that we do not know how
to analyze performance when limited to such hash functions,
except by simulation. (In practice, behavior generally appears
very close to the idealized analysis of fully random hash
functions.)

To gauge the potential utility of these approaches, we
summarize our experiments on the performance of offline
assignments. The Bloom filter is set up by initiall inserting all
items and then sequentially trying to replace each element in
order 10 times after the initial insertion. We use semi-sorting
to improve performance, but we do not group buckets. For
32768 elements, using two hash functions and subtables with
4096 buckets each (for an average load of 4), we obtain an
average false positive rate of 0.00023894 when using 64-bit
buckets. This is a fairly small improvement, but the initial
setup was already quite well balanced. For 49152 elements,
using two hash functions and subtables with 4096 buckets
each (for an average load of 6), we obtain an average false
positive rate of 0.000004605 when using 128-bit buckets.
This demonstrates a more substantial improvement.

E. A consideration: underloaded filters

Overloading is a problem for both standard Bloom filters
and our d-left variation; besides yielding increased false
positive, with our d-left Bloom filter there is a danger of
bucket overflow. But it is also worth considering performance
when the filters are underloaded. In many settings, as one
inserts items on-line, one also asks lookup queries, before the
filter has reached its target full state. For example, in a model
checking application described in [6], states are inserted into
a Bloom filter, and as new states are encountered they are
checked to see if they are already in the Bloom filter. One
performance metric is the number of false positives as the



Bloom filter is filled. For most of its lifetime, the Bloom
filter is underloaded.

Our d-left scheme performs quite well when underloaded.
This is not surprising; again, as long as the bits in a bucket
are being used to provide as long a fingerprint as possible,
one would expect good performance. Details depend on the
configuration, but are similar to our previous experiments.
We point out one important issue. Because semi-sorting
is quite useful, not having semi-sorting available for all
loads can be damaging. For example, in our 64-bit bucket
configuration, we describe enabling semi-sorting only when
the load is four or five. When the average load is four, this is
suitable; when the filter is significantly underloaded, so that
the average load is much less than four, then we get no gain
from semi-sorting under this configuration.

F. Result summary

We have demonstrated that the d-left hashing approach,
when combined with dynamic bit reassignment within a
bucket and the bit-saving trick of semi-sorting, can outper-
form a standard Bloom filter, starting at roughly 16 bits per
element. Further gains are possible by applying additional
techniques to save bits wherever possible, but thus far we
have found these techniques generally give only small gains
in the false positive probability for potentially non-trivial
increases in computational requirements. The basic approach
is comparable with the complexity of a standard Bloom filter,
and certainly appears viable in practice, in both hardware and
software.

III. COUNTING BLOOM FILTER VARIANT

A. Extending the Previous Analysis

Dynamic bit reassignment can also improve the perfor-
mance of the proposed d-left counting Bloom filter structure
[2], [3]. Again, instead of wasting space statically assigning
a fixed number of bits for each fingerprint, we allow bits in
a bucket to be assigned dynamically, yielding a dynamic d-
left counting Bloom filter, or ddlCBF. A further advantage of
dynamic bit reassignment is that is can possibly allow a more
a graceful response to overload conditions; instead of facing
overflow in the buckets, one merely shortens the fingerprints,
increasing the false positives but avoiding overflow.

We must take some care in order to ensure that we avoid
any problems with regard to deletion. We therefore explain
in detail the hashing and placement scheme. Knowledge of
[3] is useful for understanding these results. In the setting
we now describe, we assume that the number of bits per
fingerprint stored in any bucket can only decrease over time.
We return to this point later. Following the notation of
[3], we refer to fingerprints as remainders in this section.
Each bucket must contain a counter for the current number
of remainders stored the bucket, as well as the maximum
number of remainders ever stored in the bucket; the latter
determines the current size of the store remainder. In [3],
each cell, or remainder location, also has a small counter
associated with it (in case remainders match). We assume
this is used in what follows for analysis purposes. An

alternative approach would be to just include multiple copies
corresponding to the same remainder; where appropriate we
briefly discuss this alternative as well.

As with the original d-left CBF, we break the hashing
operations down into two phases. For the first phase, we
start with a hash function H : U → [B] × [R] × [Z]. We
write H(x) = fx = (b, r, z). The intuition here is that the
first two fields b and r will specify the bucket and a minimal
remainder for each cell. For the second phase, to obtain the d
locations for an element, we make use of additional (pseudo)-
random permutations P1, . . . , Pd, where Pi : [B] × [R] →
[B] × [R]. Specifically, let F (H(x)) = (b, r). Then let

P1(F (H(x)) = (b1, r1),
P2(F (H(x))) = (b2, r2), . . .
Pd(F (H(x))) = (bd, rd).

The values Pi(F (H(x))) correspond to the bucket and
minimal remainder corresponding to x for the ith subarray.
Notice that for a given element, the minimal remainder that
can be stored in each subarray can be different.

The minimal remainder must always be stored for each
element, as it is used to avoid any issues of ambiguity when
a deletion occurs, following the approach of [3]. Notice that
this means that the ddlCBF still cannot handle sets of an
arbitrary size (as a standard CBF potentially could). The
z field simply provides extra remainder bits that can be
stored as room permits. Generally Z will be such so that the
maximum length remainder is bounded to some reasonable
size, such as 32 or 64.

When inserting an element, we first see whether in any
bucket bi another element with the same minimal remainder
ri is already being stored. If so, we assume the element
is placed in the same bucket, either by incrementing the
counter (if the two elements match in all the bits stored in
the bucket after placement) or by simply placing as much
of the remainder bits ri, z as possible given the load of the
bucket. (Again, multiple copies could be placed instead of
using counters, and copies can be placed in any bucket.) If
no appropriate ri is already stored, we store the remainder in
the least loaded bucket according to the d-left scheme. On an
insertion, all fingerprints are reduced in size as appropriate.

On a deletion, the remainder that matches an element
is deleted or the corresponding counter decremented. If
counters are not being used, the remainder that gives the
longest match should be deleted; using the longest match
on a deletion maintains consistency over future deletions for
lookups.

With this setup, adding dynamic bit reassignment does
not essentially change the behavior of the dlCBF, except
that the permutations are now based on the minimal re-
mainder. In particular, if one uses a minimal remainder
size corresponding to the remainder size of a non-dynamic
dlCBF, the performance can only improve (if one ignores
the space cost of the counters). That is, a ddlCBF will only
yield remainders of size less than the minimal remainder
when the corresponding dlCBF would have overflowed. It is



worth noting that assuming we always place a fingerprint
in a bucket that already contains the minimal remainder,
the underlying process is not exactly that of d-left hashing
in general. However, since all elements with the same
minimal remainder would collapse into a single cell (with
a corresponding count in the counter) if a bucket becomes
loaded to the point where the remainder stored was minimal,
the behavior is again no worse that the standard dlCBF
with remainder size equal to the corresponding minimal
remainder. (If not using counters, then there is some slight
dependence among bucket choices, since elements with the
same initial hash will choose the same bucket. Enough slack
must be left for such elements, since they are no longer
handled by counters.)

B. A small improvement: multiple remainder sizes

In the basic description we have provided thus far, the
remainder size in a bucket depends on the maximum number
of elements that have ever been in a bucket. Obviously, even-
tually all buckets will obtain a larger than average number of
items, and the scheme will converge in performance to that
of the dlCBF without dynamic bit reassignment. With proper
engineering, the advantage of dynamic bit reassignment can
last for a significant time, but it is somewhat disappointing
that it is not permanent. One approach to handle this would
be to keep an additional (off-chip) structure that held larger
versions of the remainders, which could be used to refresh
short remainders periodically.

Another approach is to allow multiple remainder lengths
within a bucket. After items are deleted, freeing up space in
a bucket, newly entering items try to take as much space as
possible. That is, remainders that are below average in size
“donate” bits to the newer remainders as they are inserted, so
all bits are being used even though older remainders cannot
grow in length. In this way, space is reclaimed eventually
from temporary overloading, although the time for older,
smaller remainders to be removed can vary significantly.
These shorter remainders will be the bottleneck in terms of
the false positive rate.

The main downside of this approach is that handling
the bit-level manipulations for a bucket becomes somewhat
more complex. It is not clear that the small gains from
this approach adequately cover the additional cost in terms
of bit operations per table operation and complexity of
implementation.

C. Experimental results

In order to gain some preliminary idea of how much im-
provement we could expect from dynamic bit reassignment,
we recreated the experiment from the paper [3]. Recall that
there it was shown that a dlCBF could perform more than
a factor of two better in terms of space with the same false
positive rate.

We use a similar construction as in that experiment:
4 subtables, with 2048 buckets in each subtable, and an
average load of six elements per bucket. Similarly, as in
that experiment, we start by inserting 49152 elements, and

then we repeatedly delete a random element and insert a
new random element 220 times. (We used a slightly different
construction in this setting, using 1 bit counters per cell
instead of 2 bit counters per cell, and otherwise we allow
remainders to appear multiple times. This had no substantial
effect on our results.) The false positive rate was measured
after all of these insertions and deletions.

There are slight variations in the final sizes of our struc-
tures, depending on the number of bits used in the bucket
counters, but all structures use 120 bits for storing remainders
and are about 1 Mbit in size. We averaged over fifty trials.

For the dlCBF scheme, our false positive rate was
0.0014593, matching quite closely the results reported in [3].
For a ddlCBF scheme using only one remainder length for
all items in a bucket (based on the maximum load the bucket
has seen) using semi-sorting, the false positive rate was
0.0004729, roughly a factor of three better. This experimen-
tal result matches calculations obtained by considering the
experimentally determined distribution of the maximum load
seen over the buckets. The key point is that most buckets have
had a maximum load of only seven, instead of eight, giving
the performance gain. We emphasize that this performance
comparison would have been even better for the ddlCBF if
fewer random deletion/insertion operations had been done,
since the fingerprint size from the ddlCBF is determined by
the maximum load a bucket has seen. Similarly, comparative
performance would have been better if the system had been
underloaded, since cells are fixed size in the dlCBF scheme
but variable sized in the ddlCBF scheme. Finally, we also
did an experiment where each bucket was allowed two
fingerprint sizes. This approach did use slightly more space
(semi-sorting was not used as it was not cost-effective using
two fingerprint sizes), and reduced the false positive rate to
0.0003111. The improvement over the initial ddlCBF scheme
was small; performance would be comparatively better if the
system were overloaded, but generally with these structures
we seek to avoid overloading.

IV. CONCLUSIONS

The use of dynamic bit reassignment is extremely natural
for hardware implementations of Bloom filters and related
data structures, as data is usually accessed in standard block
sizes, and bit-level manipulations can be performed effec-
tively. We have demonstrated the effectiveness of dynamic
bit reassignment to design new data structures with the
functionality of a Bloom filter, and to improve our previous
dlCBF design.

There still is room to improve our scheme to get close
to the theoretical lower bounds. Specifically, in examining
how our approach differs from perfect hashing, we see that
the overhead of having to look in more than one bucket
and at multiple fingerprints per bucket translates directly into
a nontrivial constant factor multiplier for the false positive
rate. This factor might be removed in some settings by using
cuckoo hashing techniques [12], [8], [13], although the issue
of hvaing to move elements with that approach must be



considered. Is there some way to remove the factor entirely
with computationally simple techniques?

REFERENCES

[1] B. Bloom. Space/time tradeoffs in in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Vargh-
ese. Beyond Bloom filters: From approximate membership checks to
approximate state machines. To appear in Proc. of SIGCOMM, 2006.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.
An Improved Construction for Counting Bloom Filters. To appear in
Proc. of ESA, 2006.

[4] A. Broder and M. Mitzenmacher. Using multiple hash functions to
improve IP Lookups. In Proceedings of IEEE INFOCOM, pp. 1454-
1463, 2001.

[5] A. Broder and M. Mitzenmacher. Network applications of Bloom filters:
A survey. Internet Mathematics, 1(4):485-509, 2004.

[6] P. Dillinger and P. Manolios. Fast and Accurate Bitstate Verification
for SPIN. In Proceedings of the 11th International SPIN Workshop on
Model Checking of Software, 2004.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area Web cache sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281-293, 2000.

[8] D. Fotakis, R. Pagh, P. Sander, and P. Spirakis. Space Efficient Hash
Tables with Worst Case Constant Access Time. In Proceedings of
the Twentieth Annual Symposium on Theoretical Aspects of Computer
Science, pp. 271-282, 2003.

[9] A. Kirsch and M. Mitzenmacher. Simple Summaries for Hashing with
Multiple Choices. In Proceedings of the Forty-Third Annual Allerton
Conference on Communication, Control, and Computing, 2005.

[10] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transac-
tions on Networking, 10(5):613-620, 2002.

[11] M. Mitzenmacher and B. Vöcking. The asymptotics of selecting the
shortest of two, improved. In Analytic Methods in Applied Probability:
In Memory of Fridrikh Karpelevich, edited by Y. Suhov, American
Mathematical Society, 2003.

[12] R. Pagh and F. Rodler. Cuckoo Hashing. In Proc. of the 9th Annual
European Symposium on Algorithms, pp. 121-133, 2001.

[13] R. Panigrahy. Efficient hashing with lookups in two memory accesses.
In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 830-839, 2005.

[14] A. Pagh, R. Pagh, and S. Srinivas Rao. An Optimal Bloom Filter
Replacement. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 823-829, 2005.

[15] B. Vöcking. How asymmetry helps load balancing. In Proceedings of
the 40th IEEE-FOCS, pp. 131-140, 1999.


