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ABSTRACT

In this paper we develop a generalized approach to visualiz-
ing and controlling an optimization process. Our framework,
called Human-Guided Search, actively involves people in the
process of optimization. We provide simple and general vi-
sual metaphors that allow users to focus and constrain the
exploration of the search space. We demonstrate that these
metaphors apply to a wide variety of problems and opti-
mization algorithms. Our software toolkit supports rapid
development of human-guided search systems.

Our approach addresses many often-neglected aspects of
optimization that are critical to providing people with prac-
tical solutions to their optimization problems. Users need to
understand and trust the generated solutions in order to ef-
fectively implement, justify, and modify them. Furthermore,
it is often impossible for users to specify, in advance, all ap-
propriate constraints and selection criteria for their problem.
Thus, automatic methods can only find solutions that are
optimal with regard to an invariably over-simplified prob-
lem description. In contrast, human-in-the-loop optimiza-
tion allows people to find and better understand solutions
that reflect their knowledge of real-world constraints.

Finally, interactive optimization leverages people’s abil-
ities in areas in which humans currently outperform com-
puters, such as visual perception, learning from experience,
and strategic assessment. Given a good visualization of the
problem, people can employ these skills to direct a computer
search into the more promising regions of the search space.

The software we describe is written in Java and is avail-
able under a free research license for research or educational
purposes.
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1. INTRODUCTION

Research on designing systems to solve optimization prob-
lems, such as routing, layout, and scheduling problems, fo-
cuses primarily on developing automatic algorithms to search
the exponentially large space of possible solutions more ef-
ficiently. Typically, the user’s role in these systems is to
specify the problem, including weights on predefined crite-
ria for evaluating candidate solutions, and then initiate a
computer search to find an optimal solution.

In this paper, we describe a generalized approach to visu-
alizing and controlling an optimization process. Our frame-
work, called Human-Guided Search (HuGS), actively in-
volves people in the process of optimization. We provide
simple and general visual metaphors that allow users to fo-
cus and constrain the exploration of the search space. We
demonstrate that these metaphors apply to a wide vari-
ety of problems and optimization algorithms. We also de-
scribe middleware software that supports rapid development
of such human-guided search systems and four applications
we have built with it. This software is written in Java and
available for research or educational purposes.

Our approach addresses many often-neglected aspects of
optimization that are essential for people to obtain usable
solutions. Users must understand and trust the generated
solutions to make effective use of them. Furthemore, it is
often impossible for users to specify, in advance, all appro-
priate constraints and selection criteria for every possible
scenario of a problem. Consider, for example, someone pro-
ducing a monthly work schedule. She must understand the

! Contact lesh@merl.com for details.
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Figure 1: The Crossing Application.

solution to convey it to the affected employees. Moreover,
she must understand how to make modifications as new
needs arise. Futhermore, she may have experience in eval-
uating candidate schedules that is difficult to convey to the
computer. By participating in the construction of the work
schedule, she can steer the computer towards an optimal
schedule based on her real-world knowledge.

Additionally, human guidance of search can improve the
quality of solutions because it leverages people’s abilities
in areas in which humans currently outperform comput-
ers, such as visual perception, learning from experience, and
strategic assessment. Given a good visualization of the prob-
lem, people can employ these skills to direct a computer
search into the more promising regions of the search space
[2, 17, 20].

This paper is organized as follows. We first discuss our
four current applications and introduce terminology to de-
scribe them uniformly. We then present our primary method
of guiding search and discuss several examples of the various
ways in which it can be used. We then present an overview
of all user actions in our system, and then give an overview
of our toolkit by describing how a new application can be
made with it. We conclude with discussions of related and
future work.

2. APPLICATIONSAND TERMINOLOGY

In this section, we briefly describe four applications of our
system, which will serve as examples to describe the func-
tionality of our system in the remainder of this paper. We
also introduce abstractions that allow a uniform description
of these and future applications.

The Crossing application is a graph layout problem [9] in
which the goal is to arrange nodes so as to minimize the num-
ber of intersections between edges. The problem consists of
m levels, each with n nodes and edges connecting nodes on
adjacent levels. The goal is to re-arrange the nodes within
their level (i.e., it is legal to move nodes horizontally but
not vertically) so as to minimize the number of intersections
between edges. An example is shown in Figure 1.

The Delivery application is a variation of the traveling-
salesman problem in which there is no requirement to visit
every city [10]. Instead the goal is to deliver as many pack-
ages as possible, without driving more than a given max-
imum distance. A problem consists of a set of customers,
each at a fixed geographic location with a given number of
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Figure 2: The Delivery Application.

requested deliveries, a starting point, and a maximum dis-
tance that can be traveled. In Figure 2, the starting point
is the black square in the middle of the screen, and the cus-
tomers are represented by ovals. The size of the oval is pro-
portional to the number of orders the customer has placed.
The primary goal is to fulfill as many requests as possible
without exceeding the distance limitation. We treat this as
a minimization problem by having the goal be to minimize
the number of unfulfilled requests. The secondary goal is
to minimize the distance traveled; but it is always better to
fulfill more requests than to travel less. There are no time
constraints or capacity limitations. The problem is quite
challenging, however, because it involves both subset selec-
tion and route minimization.

The Protein application is a simplified version of the protein-
folding problem, using the hydrophobic-hydrophilic model
introduced by Dill [8]. In this model, the input is a se-
quence of amino acids representing a protein. Each amino
acid is labeled as either hydrophobic or hydrophilic. (Un-
der this model, the input could simply be a binary string
representing whether each acid in the sequence is hydropho-
bic or hydrophilic.) The sequence of amino acids must be
placed on a given geometry so that there are no overlap-
ping amino acids and so that adjacent amino acids in the
sequence are adjacent. Here we consider the geometry of the
two-dimensional grid. The goal is to maximize the number
of adjacent hydrophobic pairs, which corresponds to finding
the minimum-energy configuration corresponding to the pro-
tein. Even with the restriction of counting only hydrophobic
interactions on a two-dimensional lattice the problem is NP-
hard [7]. Our framework easily applies to variations such
as triangular grids or more complex models of interactions
between adjacent amino acids. Even the best known heuris-
tic algorithms do not appear capable, in general, of solving
problems based on sequences of one hundred amino acids
[4]. An example is shown in Figure 3.

The Jobshop application is a widely studied task-scheduling
problem. The general problem is extremely broad: thereis a
set of n jobs to be processed on a set of m machines in some
order so as to minimize some function on the completion
times. In the variation we consider, each job is composed
of m operations (one for each machine) that must be per-
formed in a specified order, with the time for the ith job on
the jth machine given by ¢;;. Operations are not allowed
to overlap on a machine, and the operations assigned to a
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Figure 4: The Jobshop Application.

given machine can be processed in any order. We seek to
minimize the time that the last job finishes. (In other vari-
ations, there may be precedence constraints, so that certain
jobs must be processed on certain machines before others.
Alternatively, not every job may need to run on every ma-
chine. Our framework can easily be extended to handle such
variations.) Of course this problem is NP-hard and indeed
even cases where n = m = 15 are extremely difficult to solve
in practice. For more on the history of this problem, see [1,
3]. An example of our application is shown in Figure 4.

We have found that these applications benefit from the
use of a projected, tabletop display shown in Figure 5, which
we call the Optimization Table. We project an image down
onto a whiteboard. This allows users to annotate candi-
date solutions by drawing or placing tokens on the board.
In addition, several users can comfortably use the system
together.

2.1 Terminology

To describe these applications uniformly, we refer to prob-
lems, solutions, moves, and elements. A problem is an in-
stance of the type of problem being optimized. For example,
a Protein problem consists of a sequence of amino acids. A
Delivery problem specifies the location and number of or-
ders of each customer, the starting point, and the maximum
allowed distance.

The goal of optimization is to find the best solution to the
given problem. A Protein solution, for example, is a loca-

Figure 5: The Optimization Table.

tion in the 2D grid for each amino acid. A Delivery solution
is a sequence of customers. We assume that for each appli-
cation there is a method for comparing any two solutions
and that for any two solutions, one is better than the other
or they are equally good. As mentioned in the introduction,
however, we assume that this total ordering merely approx-
imates the real-world constraints and preferences known by
the users. Additionally, for most applications, it is possible
to create infeasible solutions which violate some of the con-
straints of the problem. For example, a Delivery solution
may exceed the distance constraint, or a Protein solution
may not describe a proper path.

For each application we have designed a set of possible
moves, or transformations on solutions. Applying a move
to a solution produces a new solution. For example, in the
Jobshop, Crossing, and Delivery applications, one possible
move is to swap two adjacent operations, nodes, or cus-
tomers, respectively. For the Delivery applications, other
types of moves include adding or removing customers from
the current route.’

Finally, we assume that each problem contains a finite
number of elements. The elements of Crossing are the nodes,
the elements of Delivery are the customers, the elements of
Protein are the amino acids, and the elements of Jobshop are
the operations. Each move is defined as altering some subset
of the elements of its problem. In general, it is straightfor-
ward to define the problems and solutions for the applica-
tions. However, there are often several options available for
defining the set of possible moves and which elements they
alter. Part of designing an effective interactive optimization
system is choosing how to model the moves. As we discuss
below, these decisions can have a significant impact on the
behavior of our interactive optimization system. Similarly,
designing a good set of transformations on solutions has a
significant impact on fully automatic, heuristic search algor-
ithms as well.

3. VISUAL CONTROL OF SEARCH
ALGORITHMS

In this section we describe a general mechanism that al-
lows users to visually annotate elements of a solution in
order to guide a computer search to improve this solution.
Each element can be assigned a high, medium, or low mo-
bility. Roughly speaking, the search algorithm is focused on

2The moves in the Protein application are more complicated
than the moves of the other applications and are beyond the
scope of this paper.



altering high-mobility elements and is forbidden from alter-
ing any low-mobility elements. It can alter medium-mobility
elements only in service of altering the high-mobility ones.
The formal definition of mobility is that the search algorithm
is only allowed to explore solutions that can be reached by
applying a sequence of moves to the current solution such
that each move alters at least one high-mobility element
and does not alter any low-mobility element. Thus, the se-
mantics of mobilities in any application relies on the set of
possible moves that are defined for that application, as well
as which elements each move is defined as altering.

We demonstrate the concept of mobility with a simple ex-
ample. Suppose the problem contains seven elements and
the possible solutions to this problem are all possible or-
derings of these elements. Further assume that the only
allowed move is to swap two adjacent elements. A swap of
two elements, of course, is defined as altering only those two
elements. Suppose, the current solution is as follows, and
we have assigned element 3 low mobility (shown in red), el-
ement 5 and 6 medium mobility (shown in yellow), and the
rest of the elements have high mobility (shown in green):

_1_2+4# 7 _

A search algorithm would be allowed to swap any pair of
adjacent elements only if at least one has high mobility and
neither have low mobility. The search algorithm could thus
explore the space of solutions that are reachable by a series
of such swaps, including:

— 12 m 7 4_
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Note that setting element 3 to low mobility essentially di-
vides the problem into two separate subproblems, both of
which are much smaller than the original one. Also, while
medium-mobility elements can change position, their rela-
tive order cannot be changed, e.g., it is impossible to move
element 6 before element 5. In fact, for this simple exam-
ple, there are only 12 possible solutions given these mobility
settings. Without mobilities, there are 7!=5040 possible sol-
utions. Thus, these mobilities reduce the search space by a
factor of 420. This simple example demonstrates the differ-
ent effects of each of the three mobility settings.

For more sophisticated moves, such as inserting an ele-
ment into a new location, we distinguish between the mover
element, e.g., the element being relocated, and the mowved el-
ements, e.g., the elements that are shifted to accommodate
the relocation. The optimizer is only allowed to perform
moves in which the mover element has high mobility and
the moved elements have high or medium mobility.

In some cases, the question of which elements are altered
by a move is a design choice for the developer. For exam-
ple, in Delivery, inserting a customer into the route could
reasonably be said to alter all customers in the route after
the inserted customer, since they are now appear later in
the route. This would mean that no new customers could
be inserted before any customer with low mobility. Instead,
we defined a move as altering only those customers which
are removed or added to the route or have at least one new
neighbor on the route after the move is performed.

Reducing the elements to three different types allows a
natural visualization interface that provides the user a great
deal of control. We describe two basic ways that the mo-
bilities and the visual interface can be used to enhance the
search for solutions. The first involves focusing the search
on a restricted portion of the space. The second involves
modifying a solution to pull the computer into a new part of
the state space. We demonstrate the use of mobilities with
examples from the Delivery application.

Suppose that the search algorithm runs for some time
without focus, i.e., all elements are set to high mobility.
The search is likely to quickly reach a state where there
are few improving moves, and hence improvements will be
difficult to achieve if the number of possible moves is suf-
ficiently large. The users can assign mobilities to the cus-
tomers in the problem to focus the computer search on areas
which they think have the most potential for further opti-
mization. Consider the three regions of customers shown
in Figure 2 (differentiated by the same colors used in the
example above). One region of customers is set to low mo-
bility, indicating that the users do not think these customers
should be added, removed, or re-positioned in the current
route. Another region of customers are given high mobil-
ity, indicating the users think the solution can be improved
by altering these elements. The remaining customers have
been given medium-mobility, so as not to overly constrain
the movement of the high-mobility customers. By assign-
ing the mobilities, the users have essentially defined a much
smaller, and thus more tractable problem to work on. If the
users have indeed identified promising regions of the search
space, the computer will be more likely to improve the so-
lution than with an unfocused search, given a fixed amount
of computational effort.

As we describe below, users can also manually modify the
current solution. Modifying the current solution can be par-
ticularly useful when the search seems to be caught in a local
minimum. In such a case, it may be extremely difficult for
the search program to move away from this local minimum
in order to find a better solution. The user, however, can
force the search engine to explore new areas of the search
space by manually modifying the solution and restarting the
search algorithm.

The mobility metaphor greatly enhances this ability. For
example, in the Delivery problem, the search algorithm of-
ten finds a solution that makes deliveries to a small set of
customers that are close together but fairly far from the rest
of the customers on the route. Often, the human user can
see that the distance driven to reach these customers could
probably be better spent servicing customers closer to the
main route. For many search strategies it may be difficult
to escape such a local minimum, since it requires removing
several deliveries from the current path, any one of which
only reduces the amount driven by a small amount. The
user can force the issue by manually removing all of these
deliveries from the path and setting their mobility to low,
effectively preventing them from being restored to the path.
In this way the user can pull the computer into a new region
of the search space.

The ability to modify the current solution and introduce
mobilities is useful for introducing real-world constraints as
well. For example, suppose the user notices that an im-
portant customer is not on the current route. Even though
the customer is far from the current route, the user wants
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Figure 6: Use of Mobilities to Add Real-World Con-
straints. The top screen shot shows the Delivery ap-
plication after a user has added an important cus-
tomer to the route. The resulting route is too long,
and thus infeasible. The user sets the mobility of the
new customer to medium, so that it cannot be re-
moved from the route and then re-invokes the search
algorithm which produces the solution shown in the
lower screen shot, which is feasible and optimized
with the constraint posted by the user.

to try to fulfill this important customer’s request, unless it
means losing too many other customers. The addition of the
new customer may greatly increase the length of the route,
causing the current solution to be infeasible. If the user
were to invoke the search algorithm without use of mobili-
ties, the algorithm would simply remove the new customer,
because this would immediately make the solution feasible
again. However, as shown in Figure 6 the user sets the new
customer to medium (or low), forcing the computer to re-
optimize the solution without removing this customer. It
is very likely that the result of the computer search will be
vastly better than the user could have found by manually
adding and removing customers herself.

A further advantage of this visual framework is that it is
easy to take advantage of human ability to cluster. Specifi-
cally, our user interface provides controls to set the mobility
of a large number of elements simultaneously in a way that
naturally corresponds to visual clusters. In the Delivery
problem, for example, a rectangular region can be selected,
and the mobility of all elements in the region set simulta-
neously. Similarly, in the Protein problem a region in the

two-dimensional grid can be selected and the mobility of all
amino acids in that region can be set.

4. OVERVIEW OF USER ACTIONS

We now describe the full range of user actions in the HuGS
framework. In our applications, the system always main-
tains a single, current working solution which is displayed
to the users. (Potentially, other solutions could be displayed
as well, though currently we do not do this.) The users try
to improve the current solution by performing the following
three actions:

1. manually choose a move to be applied to the current
solution,

2. invoke, monitor, and halt a focused search for a better
solution,

3. revert to a previous or precomputed solution.

We now describe each type of action. The users can man-
ually modify the current solution by performing any of the
possible moves defined for the current application on the
current solution, such as repositioning an operation in the
Jobshop application. In many of our applications, a single
user action on the GUI can invoke several moves. In the De-
livery application, for example, the user can select multiple
customers and remove them all with a single button press.

Users can also invoke a computer search for a better solu-
tion. The search algorithm starts from the current solution
and explores the space of solutions that can be reached by
applying moves which are allowed given the mobility assign-
ments as described above. The users can invoke a variety of
different search algorithms. Currently, we provide steepest-
descent and greedy exhaustive search algorithms and a pop-
ular heuristic algorithm, called tabu search [12, 13]. Both
exhaustive algorithms first evaluate all legal moves, then all
combinations of two legal moves, and then all combinations
of three moves and so forth. The steepest-descent algor-
ithm keeps searching deeper and deeper for the move that
most improves the current solution. The greedy algorithm
immediately makes any move which improves the current
solution and then restarts its search to try to improve the
solution that results from applying that move. The tabu al-
gorithm repeatedly makes the best possible move from the
current solution, which may yield a worse solution. A vari-
ety of mechanisms are used to prevent tabu from immedi-
ately backtracking and to prefer altering elements that have
not been altered recently. Our initial experience has been
that tabu search outperforms exhaustive search but it seems
useful to provide multiple search algorithms to the users.

After the users have invoked a search algorithm, they can
monitor its progress to decide when to halt it. A text display
shows the score of the best solution the search has found and
how many seconds ago this solution was found. At any time,
the user can query the search algorithm for either the best
solution found so far or the current solution it is considering.
This solution becomes the current visualized solution of the
system. While the search is running the user can modify
the current visualized solution or reassign mobility values
to problem elements. The user can restart the search from
these current settings, or halt the search.

While the search algorithm is running, the users can sel-
ect from a variety of search-visualization modes. The most



efficient mode is to let the search algorithm run in the back-
ground without updating the current visualized solution.
The users can also observe the search more directly. The
users can put the search into “auto” mode, in which every
solution the search considers is displayed, or “poll” mode
in which the computer is polled periodically for its current
solution, or “step” mode in which the computer waits for
the user to press a button before moving on to the next so-
lution it considers. These modes are useful for developing
applications as well as for learning about how the system
and search algorithms work.

Finally, the third type of user action is to revert to a pre-
vious solution. The system maintains a history of previous
solutions, which can be browsed and adopted by the users.
The GUI also provides menu commands to quickly undo or
redo recent moves, as well as revert to the best solution seen
so far. Additionally, the users can browse and adopt a set of
solutions that were precomputed by the search algorithms
prior to the interactive optimization session.

5. CREATING A NEW APPLICATION

We now discuss what is required to produce an interac-
tive optimization application for a new problem using our
software platform, with emphasis on what is required of the
visualization component.

The majority of the code in these applications is shared by
all of them, and thus could also be used by a new application.
Generic code is used to maintain the current working solu-
tion, the mobilities, and the history. The file Input/Output,
including saving and loading of problems and solutions, and
logging user behavior, are also performed by generic code.
Furthermore, all our applications use the same implementa-
tion of the search algorithms and the GUT’s for invoking and
monitoring them. Our implementation of the tabu search
algorithm functions by modifying the mobility assignments.
Thus, there is no additional burden on the developer of a
new application in order to be able to use tabu search.

Of course, the developer of a new application must define
what a problem is and what a solution is for that applica-
tion.® Each problem instance needs to implement a function
that returns all the elements of that problem. Each solution
instance must be able to return an object which represents
the score of that solution. We have built generic components
for representing scores with integer or double numbers, but
for some applications a new score object must be written.
For example, the score of the Delivery application consists
of both the percentage of unfulfilled requests and the dis-
tance traveled, and so required the creation of a new type
of Score object. An instance of a score object must be able
to compare itself to another instance of a score and decide
if it is better, worse, or equal to that instance.

Additionally, a developer must define a set of moves which
can be applied to solutions in this application. For some ap-
plications, there might be several different types of moves.
Additionally, at a minimum, the user must provide a func-
tion for generating all possible single moves for a given solu-
tion. This is sufficient for the search algorithms to consider
any legal combinations of moves. However, for efficiency,
a developer might provide functions for directly generating
combinations of moves.

3This involves defining classes which implement Java inter-
faces for a Problem class and a Solution class.

5.1 Visualization Component

Each application requires a domain-specific visualization
component. From the point of view of the system, the vi-
sualization component has only three responsibilities. First,
it must report any manual moves made by the user. These
moves will be applied to the current solution that the sys-
tem maintains. Second, the visualization component must
have an update function which, when called, triggers it to
display the current solution and mobilities maintained by
the system. Third, the system must allow users to select
and unselect problem elements. The system will query the
visualization component for the list of currently selected el-
ements in order to maintain the mobilities. The users can,
for example, set all the selected elements to a particular mo-
bility, as well as reset all elements to any particular mobility.

In all of our applications, we have found it useful to vi-
sually indicate which elements have changed compared to
the previous solution that was displayed. For example, we
highlight which customers have changed their condition in
Delivery, or which nodes have changed locations in Cross-
ing. This is important because when the computer produces
a new solution, it can be difficult (and yet important) for a
user to identify what has changed.

Beyond the above-mentioned system requirements, of course,

the usefulness of any interactive optimization system de-
pends on the quality of the visualization. This challenge
differs from application to application. One unusual fea-
ture of designing visualizations for interactive optimizations,
however, is that the quality of the visualization can be mea-
sured (albeit, imperfectly). It is reasonable to compare two
visualizations by running a series of experiments in which
people work on the same problems for the same amount of
time, with the only difference being which of the two visual-
izations is used. If people are able to produce more optimal
solutions with one visualization than another, it can be said
to be superior for this task. While this does not measure all
the benefits that one visualization might offer over another,
it does quantify the performance of the visualization on one
of its most important tasks.

All of the applications described in this paper consider
problems with, at most, several hundred elements. A future
research direction is to explore techniques for applying in-
teractive optimization to larger problems, in which people
cannot view all the elements at once on the computer screen.

6. RELATED WORK, FUTURE WORK,
AND CONCLUSIONS

The work described in this paper builds on previous work
on the Human-Guided Search paradigm [2]. The framework
for user actions and the idea of high, medium, and low mo-
bilities has been previously described in the context of a
particular application (capacitated vehicle routing with time
windows). The novel aspects of this paper include the uni-
form approach to interactive optimization, the description
of the Java software, the four applications, and the interac-
tion mechanisms for monitoring the search algorithms while
they are in progress (e.g., the ability to query for the current
and best solutions, and the various modes of visualizing the
search). In related work, our human-guidable tabu search
algorithm is described in detail in [15]. This work also pro-
vides experimental confirmation that people can effectively
guide our tabu search algorithm.



Interactive optimization systems have been built for a va-
riety of applications, including space-shuttle scheduling [6],
graph drawing [17], graph partitioning [16], vehicle routing
[23, 5, 2], and constraint-based drawing [18, 14, 11, 19]. To
our knowledge, however, no single interactive optimization
approach has previously been applied to such a varied set of
optimization problems as we have described here.

An approach similar to HuGS was used to create an in-
teractive graph-drawing system, which allows users to post
constraints on the final solution, as well as to perform man-
ual moves and to freeze graph elements in their current po-
sition [17]. Other research has explored alternative meth-
ods for dividing the work between human and computer
in cooperative optimization or design. In the space-shuttle
scheduling application [6], for example, the computer de-
tects and resolves conflicts introduced by the user’s refine-
ments to a schedule. In interactive constraint-based draw-
ing applications e.g., [18, 14, 11, 19], the user imposes geo-
metric or topological constraints on a nascent drawing such
that subsequent user manipulation is constrained to use-
ful areas. The interactive-evolution paradigm, which has
primarily been applied to design problems, offers a differ-
ent type of cooperation [21, 22]. In this approach, the
computer generates successive populations of novel designs
based on previous ones, and the user selects which of the
new designs to accept and which to reject. Thus novel de-
signs evolve, subject to user-supplied selection criteria. This
paradigm has found use in various computer-graphics appli-
cations. The HuGS paradigm differs significantly from the
iterative-repair, constraint-based, and interactive-evolution
paradigms in affording the user great involvement and greater
control of the optimization/design process.

The primary contribution of this work has been to present
a general approach for visualizing and controlling an interac-
tive search process. We have shown how this approach can
be applied to four diverse applications. Our future work
includes developing extensions of our system which allow
distributed human-guided search in that multiple people can
collaboratively work on the same optimization problem from
remote locations, as well as take advantage of distributed
computational resources.
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