
On the Hardness of Finding Optimal Multiple

Preset Dictionaries

Michael Mitzenmacher �

Harvard University

Abstract

Preset dictionaries for Hu�man codes are used e�ectively in fax

transmission and JPEG encoding. A natural extension is to allow mul-

tiple preset dictionaries instead of just one. We show, ho wever, that

�nding optimal multiple preset dictionaries for Hu�man and LZ77-

based compression schemes is NP-hard.

1 Introduction

Preset dictionaries are often used to improv e compression. F or example,
with standard two-pass Hu�man coding, one generally sends a table describ-
ing the encoding, or a dictionary, that allows the decoder to determine the
appropriate code words for each alphabet symbol. Instead, if similar trans-
missions occur on a repeated basis, a preset dictionary can be set in advance
to av oidthe cost of computing and transmitting an explicit dictionary each
time. Avoiding memory and computation costs for dictionary computation
may be useful even if it yields slighltly worse compression. Preset dictionar-
ies may also yield improv ed compression results when the cost of sending an
explicit dictionary would be more than the gain the explicit dictionary would
yield over the preset dictionary. This situation may occur when documents
are short and a suitably e�ective preset dictionary can be found. Preset
dictionaries arise in for example fax transmission and JPEG encoding [4].

�Harvard University, Division of Engineering and Applied Sciences, 33 Oxford St.,

Cambridge, MA 02138. Supported in part by an Alfred P .Sloan Research F ellowship,

NSF CAREER gran tCCR-9983832, and an equipment grant from Compaq Computer

Corporation. E-mail: michaelm@eecs.harvard.edu.

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

A natural extension to this idea is to allow multiple preset dictionaries.
Flag bits at the beginning of a �le can be used to denote which (if any)
preset dictionary to use. Allowing multiple dictionaries in tuitively should
improv e compression b y providing more
exibility. Such an idea is quite
natural; indeed, the ZLIB library, designed for LZ77-based compression, al-
lows for multiple preset dictionaries [1]. The tradeo� is that more space is
required to store the preset dictionaries, and more computation is required
to test which dictionary should be used for compression. Note that this ad-
ditional computation is required only at the compression end, and is easily
parallelized.

In this paper, we relate the problem of �nding optimal multiple preset
dictionaries to the model of segmentation pr oblems introduced in [3]. This
connection between a simple compression problem and a natural economics
problem may be interesting in its own right. In the spirit of these results, we
refer to problems related to �nding multiple preset dictionaries as compres-
sion se gmentation pr oblems. Using this connection, we show that natural
compression segmentation problems for Hu�man trees and LZ77-based com-
pression are NP-hard.

2 The catalog segmentation problem

The problem of �nding optimal families of preset dictionaries is related to the
segmentation problems de�ned by Kleinberg, Papadimitriou, and Raghavan.
The canonical segmentation problem is the catalog se gmentation problem,
which we �rst describe informally. A seller can send a catalog to all customers
in its database. Only r items can be advertised in a catalog. Given previous
history, the seller can exactly tell which people will buy which items. The
goal is to maximize the n umber of sales. If the seller could create just one
catalog, the optimal solution would be to include the r most popular items.
Suppose instead the seller can create k di�erent catalogs and send exactly
one to each customer. How should the seller determine the k catalogs that
will maximize the n umber of sales?

F ollo wing[3], we formally de�ne the catalog segmentation problem as
follo ws.Consider the customers as sets of items S1; S2; : : : ; Sn ov er a ground
set U . Catalogs X1; X2; : : : ; Xk are also sets of items. The goal is to choose
the Xi such that jXij � r for all i and

nX
j=1

max
1�i�k

(jXi \ Sjj)

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

is maximized.

Theorem 1 [3] The catalog segmentation problem is NP-hard (even for k =
2).

Even though the catalog segmentation problem is NP-hard, it can be
solved in polynomial time for any �xed r and k, since there are only

�
jU j
r

�

possiblecatalogs.
Although in [3] the authors sa y that the catalog segmentation problem

(and sev eralnatural variants) are NP-hard, complete proofs are not given.
F or completeness we o�er our own simple proof of Theorem 1, suggested to us
by Steve Lumetta, below. We then reduce the catalog segmentation problem
to the problems of �nding optimal multiple preset dictionaries for Hu�man
coding and Lempel-Ziv coding, thereby showing that these problems are NP-
hard. F orconv enience for the remainder of the paper we focus on the case
where k = 2, although our results are easily generalized to other values of k.

Theorem 2 The catalog segmentation problem is NP-hard for k = 2.

Proof: We reduce from the well-known NP-hard problem Graph Bisection
[2]: giv ena graph G = (V;E) with an ev ennumber of v ertices, split V in to
two disjoint sets V1 and V2 with jV1j = jV2j = jV j=2 such that the number
of edges adjacent to both V1 and V2 is minimized. We turn an instance of
simple graph bisection in toa catalog segmentation problem as follows. F or
each vertex, create a corresponding item. If d is the maximum degree of the
graph, create for each item d+ 1 customers who want to purchase only that
item. F or each edge, create a customer that wants to purchase only those two
items corresponding to the v ertices adjacent to that edge. Now suppose we
can hav e r = jV j=2 items in each catalog. It it easy to see that the optimal
pair of catalogs must contain all jV j items. Otherwise, some item appears in
both catalogs, but since the maximum degree of the graph is d replacing one
copy of the repeated item b y some item that does not appear improves the
number of items sold. Because the optimal pair of catalogs contains all jV j
items, we may conclude that it also provides a bisection that minimizes the
number of edges crossing from V1 to V2. This completes the reduction. 2

3 Hu�man coding

We no w de�ne the Hu�man codesegmentation problem. We are giv en a col-
lection of documents D1; D2; : : : ; Dn ov er an alphabet �.Finding an optimal

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

sequence of Hu�man code word lengths ov er � to compress these documents
is trivial; it simply requires summing the character frequencies ov erall of
the documents and using the standard Hu�man tree algorithm. Suppose,
however, we were allo wed to construct k di�erent Hu�man codes, and use
the best one to compress each document. The Hu�man code segmentation
problem is to minimize the total compressed size given the Di and k � 2.

T o see how the Hu�man code segmentation problemmight naturally arise,
suppose we plan to design multiple preset Hu�man codes for a large, arbitrary
collection of documents, such as all Web pages. We might then sample n
representative pages as a test set in order to develop our Hu�man codes,
which will be used ov erthe larger class of documents. The Hu�man code
segmentation problem designs the k best codes for this test set.

Theorem 3 The Hu�man codesegmentation problem is NP-hard.

Proof: We reduce from catalog segmentation for the case k = 2. Recall for
the catalog segmentation problem we hav e a ground setU with jU j = m and
n subsets S1; : : : ; Sn of U . We wish to �nd two subsets X and Y of U with
size r such that

nX
j=1

max(jX \ Sjj; jY \ Sjj)

is maximized. We will design a related Hu�man code segmentation problem
so that each element in the ground set corresponds to a character of �, and
each character has depth d or d+1 for some d in the pair of optimal Hu�man
trees. The sets X and Y will correspond to the characters of depth d derived
from elements of U in each Hu�man tree.

More speci�cally, let d be the smallest integer such that 2d+1 � m + r.
Our alphabet � will consist of 2d+1 � r characters. The �rst m characters,
u1; u2; : : : ; um represent characters that correspond to elements of U . We
also in troduce additional characters v1; v2; : : : ; vh, where h = 2d+1 � r �m,
so that there are 2d+1 � r total characters.

For each set Sj we construct a corresponding document Dj. Let z be
a su�ciently large constant (such as 8). The document Dj will contain z
occurrences of each character uq such that item q is contained in Sj, and
z � 1 occurrences of every other character.

With this construction, we may assume without loss of generality that
all of the characters v1; v2; : : : ; vh should hav e depth at least as large as any
character ui in both of the Hu�man trees in the solution, because their
frequency is at least as large in every document. Similarly, if the depths of

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

all characters in both trees are not within one of each other, the total cost
can be improv ed b y
attening the o�ending tree. That is, if some node has
depth a and two other nodes hav e depth (at least)a+2, we may improv e the
tree b y replacing it with one where all three nodes hav e depth a + 1. This
reduces the compression cost b yat least 2(z � 1)n� zn > 0.

Hence there must be exactly r characters from U with depth d in each
of the two trees of the solution, and all other characters hav e depth d + 1.
We show that the sets of r characters with depth d in the two trees yield the
sets X and Y for the catalog segmentation problem, by replacing characters
with the correspondingelemen ts. The cost of compressing Dj using optimal
pair of Hu�man trees is the sum of the follo wing terms: (z � 1)(d+ 1)h for
characters v1; v2; : : : ; vh; zd(max(jX \ Sjj; jY \ Sjj) for characters in Sj of
depth d in the better tree; and z(d+1)(m�max(jX \Sjj; jY \Sjj) for other
characters ui. Hence the total compression cost ov erthe n documents is

n(z � 1)(d+ 1)h+ nz(d+ 1)m� z
nX

j=1

max(jX \ Sjj; jY \ Sjj):

Minimizing the compression is therefore equivalent to maximizing the result
of the catalog segmentation problem.

Also, the corresponding decision v ersion, which asks if there is a pair
of trees that compresses the documents down to t total bits, is clearly NP-
complete. 2

We note an obvious approximation result is that using one Hu�man tree
is at most dlog2 ke bits per character worse than using k Hu�man trees, since
we could clearly combine the k separate trees into a single super-tree. In
other words, giv en theoptimal Hu�man trees for a given k, we could design
a compression scheme where the �rst dlog2 ke bits would specify which of
the k trees to use, and then use the appropriate codeword from that tree;
the optimal single Hu�man tree performs better thanthis solution. Proving
better approximation results remains open question.

4 Preset dictionaries for De
ate

The ZLIB format was primarily designed for use with the DEFLATE pro-
cedure, an LZ77-based algorithm [1]. Since the LZ77 format is standard
and described fully in most basic compression texts (e.g., [4]), we rely on an
informal description here. As a document is sequentially compressed (or de-
compressed), there is a window into the previous stream of characters. The

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

current sequence of characters can be compressed b y providing a pointer
into the window of the previous character stream and a length denoting
how many characters starting from that pointer are the same as the current
stream. The decompressor can use these pointers to e�ciently reconstruct
the original text. In this setting, a preset dictionary consists of a sequence
of characters that the compressor and decompressor use as an implicit pre�x
to the stream to be compressed. As an example, we might expect most Web
pages to include the character string \http://www". Including this string in
a preset dictionary may therefore improv e compression. We note that �nd-
ing ev ena single optimal preset dictionary for a given set of documents is
non-trivial, and we do not currently know a solution. There are unusual sub-
tleties, including how the position of the character sequence in the dictionary
a�ects the amount of compression and possible ov erlaps of words. A natural
approach for English text, howev er, is to �nd the most frequently used words
and use them as the basis for a dictionary.

The LZ77 segmentation pr oblemis to determine given k � 2 and a set of
documents D1; D2; : : : ; Dn ov eran alphabet � the k best preset dictionaries
of size at most s, where the cost of compressingDi is taken to be the minimum
number of bits ov er the choice of the k dictionaries. When k � 2, the problem
is NP-hard.

Theorem 4 The LZ77 se gmentationproblem is NP-hard.

Proof:

We again reduce from the catalog segmentation problem for k = 2. The
main problem is to avoid complications introduced b y string position and
strings sharing characters (o v erlapping),so the corresponding compression
problem matches the segmentation problem.

Given a catalog segmentation problem, we construct an LZ77 segmenta-
tion problem whose alphabet � has size (z + 1)jU j for a value of z to be
determined. F oreach ui in the ground set jU j we associate z + 1 distinct
characters from � so that the characters associated with each ui are disjoint.
Let us consider a speci�c ui with associated characters w0; w1; : : : ; wz. We
associate a string with ui of length 3z of the form (w0)

zw1w2 : : : wz(w0)
z.

That is, with ui we associate a string consisting of z occurrences of a bound-
ary character w0, followed by the base string of z other characters associated
with ui, follo wed again b y z occurrences of the boundary character w0. F or
each set Sj of the catalog segmentation problem, there is an associated doc-
ument Dj constructed b y concatenating all the strings associated with the
elements of Sj. We seek dictionaries with size rz. Note that as each string

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

corresponding to a ui consists of distinct letters we avoid the problem of
ov erlappingstrings discussed abov e for the case of one dictionary.

It is not too hard to see that the the optimal preset dictionaries consist
of concatenated strings of length z, with each such string corresponding to
the middle third of a string corresponding to some ui. Note �rst that no
boundary character should be included in the preset dictionaries, as strings
of consecutive boundary characters are easy to compress. (Indeed, the string
of z successive boundary characters requires only O(log j�j+ log z) bits; the
�rst terms represents the cost of denoting the �rst appearance of the char-
acter, the second represents the cost of describing the length of the subse-
quent match.) Also, a preset dictionary should not contain substrings of base
strings of size strictly less than z. Any such dictionary could be improved by
replacing a subblock containing two or more base strings with a single base
string, choosing the base string of the most frequent ui with characters in
the subblock for the documents using that preset dictionary.

Also, the value of z can be chosen su�ciently large (but still polynomial in
the input size) so that the ordering of the strings in the preset dictionaries and
the documents Dj has a lower order e�ect. Hence we can e�ectively ignore
ordering, and focus instead on how many length z strings each document
matches with each dictionary. This is because a failure to match a length z
string corresponding to some ui will cost O(z log j�j) bits to write out the
uncompressed characters, whereas a successful match will require O(log rz)
bits for the relevant pointers describing the location of the match and the
length of the match. The number of matches is therefore the dominant term
in the compressed size.

Hence, with these conditions, the compression gain for each document
is proportional (up to lower order terms) to the number of strings in the
document that are matched in the dictionary. The optimal solution to the
LZ77 segmentation problem therefore naturally yields a corresponding opti-
mal solution to the catalog segmentation problem. Each dictionary maps to a
catalog by mapping length z strings of the same character in the dictionaries
to items in the catalogs. 2

5 Conclusions

Preset dictionaries hav e proven useful for various compression schemes, in-
cluding JPEG and fax transmission. Using multiple preset dictionaries o�ers
the potential for improv ed compression, and hence one might hope that op-

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

timal multiple preset dictionaries could easily be found. We hav e instead
shown that the problem is NP-hard b yshowing a reduction to a simple and
useful NP-hard problem, catalog segmentation.

In practice, approximations would clearly be suitable. Heuristic tech-
niques for the catalog segmentation problem as discussed in [3] could easily
be applied. Provable approximations remain an interesting open problem.

References

[1] P .Deutsch, J-L. Gailly. ZLIB Compressed Data F ormatSpeci�cation
Version 3.3. Network Working Group RFC 1950, 1996.

[2] M. Gary, D. Johnson, and L. Stockmeyer. Some simpli�ed NP-complete
graph problems. Theoretical Computer Science, 1(3):237-267, 1976.

[3] J. Kleinberg, C. P apadimitriou, P. Raghavan. Segmentation problems:
A micro-economic view of data mining. In Proc. 30th ACM Symposium
on Theory of Computing, pages 473-482, 1998.

[4] I. Witten, A. Mo�at, T. Bell. Managing Gigabytes: 2nd Edition.
Morgan Kaufmann, San F rancisco, 1999.

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

