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Abstract

A standard load balancing model considers placing n
balls into n bins by choosing d possible locations for each
ball independently and uniformly at random and sequen-
tially placing each in the least loaded of its chosen bins. It
is well known that allowing just a small amount of choice
(d = 2) greatly improves performance over random place-
ment (d = 1). In this paper, we show that similar perfor-
mance gains occur by introducing memory. We focus on
the situation where each time a ball is placed, the least
loaded of that ball’s choices after placement is remem-
bered and used as one of the possible choices for the next
ball. For example, we show that when each ball gets just
one random choice, but can also choose the best of the
last ball’s choices, the maximum number of balls in a bin
is log logn=2 log� + O(1) with high probability, where
� = (1+

p
5)=2 is the golden ratio. The asymptotic perfor-

mance is therefore better with one random choice and one
choice from memory than with two fresh random choices
for each ball; the performance with memory asymptoti-
cally matches the asymmetric policy using two choices in-
troduced by Vöcking. More generally, we find that a small
amount of memory, like a small amount of choice, can dra-
matically improve the load balancing performance. We
also investigate continuous time variations corresponding
to queueing systems, where we find similar results.

1 Introduction

The idea of using small amounts of choice to improve
load balancing schemes is now well understood, and is of-
ten expressed with the following simple example. Suppose
that n balls are thrown into n bins, with each ball choos-
ing a bin independently and uniformly at random. Then
the maximum load, or the most balls in any bin, is approx-
imately logn= log logn with high probability. Suppose in-
stead that the balls are placed sequentially, and each ball
is placed in the least loaded of d � 2 bins chosen inde-
pendently and uniformly at random. Azar, Broder, Karlin,

and Upfal showed that in this case, the maximum load is
log logn= log d � �(1) with high probability [1]. This re-
sult demonstrates the important power that choice can have
in load balancing.

Following the recent work of Shah and Prabhakar [11],
in this paper we demonstrate that memory combined with
choice can yield similar gains in performance. For example,
one of our results concerns the following variation: n balls
are thrown into n bins, with each ball choosing a bin inde-
pendently and uniformly at random. When a ball is placed,
the least loaded of that ball’s choices after placement is re-
membered and used as one of the possible choices for the
next ball. With just one random choice and one choice from
memory, the maximum load is log logn=2 log� + O(1),
where � = (1 +

p
5)=2 is the golden ratio. Hence a second

choice from memory is asymptotically better than a second
fresh random choice at each step. We obtain similar results
for the case of general d; having d random choices and one
choice from memory is slightly better than having 2d inde-
pendent random choices, in terms of the asymptotic maxi-
mum load.

Besides being of theoretical interest, our work provides
grounding for heuristics used in practice. For example, the
idea of sticky routing, where a good route once found is
re-utilized until it becomes congested, has been used and
analyzed for telephone call networks [6]. More recently,
randomized switch scheduling algorithms that use memory
have been analyzed in [5, 13]. These algorithms consid-
erably simplify the implementation while providing 100%
throughput and nearly optimal backlogs. The use of mem-
ory in load balancing can be motivated by thinking of tasks
as coming in bursts from a source. The source may remem-
ber and re-use good destinations. In the queueing setting,
this model has been studied empirically by Dahlin [3]. Our
analysis assumes that a new task always has some memory
from the last task; this may be a good approximation if burst
sizes are sufficiently large.
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1.1 Background and Related Work

There is a substantial amount of related work, as related
models have been the subject of a great deal of study. The
survey by Mitzenmacher et al [8] provides details on most
of the previous related work. We therefore recall only the
relevant essentials.

The problem where n balls are sequentially placed into
n bins, with each ball choosing from the best of d random
bins, was introduced and analyzed by Azar et al [1]. Follow-
ing [9], we call their policy the d-random policy. Among
other things, they showed that the d-random policy yields a
maximum load of log logn

log d ��(1) with high probability.
Vöcking demonstrated how to use asymmetry to improve

the result of Azar et al [14]. In Vöcking’s framework, the
bins are split into d groups of equal size. We may think of
these groups as being laid out from left to right. Each ball
chooses one bin from each group independently and uni-
formly at random. The ball is placed in the least loaded
bin, with ties being broken in favor of the leftmost bin.
The combination of the split and the tie-breaking policy
yields smaller maximum loads. Indeed, the maximum load
is log logn

d log�d
� �(1), where �d is the growth exponent of the

generalized dth order Fibonacci sequence. Following [9],
we refer to Vöcking’s approach as the d-left policy. Note
that when d = 2, the maximum load for the 2-left policy
is log logn

2 log � � �(1), matching our policy with one random
choice and one choice from memory. The 2-left policy,
however, requires more randomness resources, as well as
an a priori agreement on the grouping of bins.

Mitzenmacher [7] develops an approach using the theory
of large deviations for studying these load balancing prob-
lems by deriving differential equations for the limiting be-
havior as n grows large. This methodology is also useful for
studying dynamic, queueing versions of the problem, where
the balls correspond to tasks and the bins correspond to ex-
ponential server queues. Similar queueing systems were
also analyzed independently by Vvedenskaya et al [15].

In this work, we make use of a non-trivial extension of
large deviation theory that has not been used in the above
load balancing work, as we describe below. The treatment
we follow is from the text of Shwartz and Weiss [12]; the
book by Ethier and Kurtz is also a useful reference [4].

1.1.1 The memory model

We consider the following problem: n balls are thrown into
n bins. Under a (d;m)-memory policy, each time a ball
is thrown d (a constant) bins are chosen independently and
uniformly at random from the n bins. Also, m (a constant)
bins are stored in memory from the past throw. (For the first
ball, the memory is empty; this does not affect the analysis.)
The ball is placed in the least loaded of the d+m bins (with

ties broken arbitrarily). After a ball is placed, the m least
loaded of the d +m bins are kept in memory. The case of
no memory (m = 0) is the now classic problem analyzed
in [1]. We focus on the case m = 1 for the remainder of
the paper. Although our analysis can be extended to larger
values of m, it results in a substantial increase in complex-
ity; more details will appear in the full paper. We note that
one could also analyze variations of the asymmetric process
suggested by Vöcking with memory; results for this system
will also appear in the full paper.

In the dynamic setting, bins correspond to queues. Ar-
rivals occur according to a rate n� (� < 1) Poisson pro-
cess at a bank of n independent rate exponential servers,
with the ith server having service rate �i. We assume thatP

i �i = n, so that the net service rate is larger than the
net arrival rate. We refer to this general queueing setup as
the supermarket model, following [7]. As in the balls and
bins problem, for each arrival d queues are chosen indepen-
dently and uniformly at random, and m queues are stored
in memory. The arrival is placed in the least loaded of the
d+m queues, and the m least loaded of the d+m queues
are kept in memory. The case of no memory (m = 0) has
been analyzed in [9] for the case when �i = 1 for all i. Here
again we focus on the case m = 1.

Shah and Prabhakar [11] analyzed both the discrete and
continuous memory models. We briefly recall their results
and motivate the results of this paper.

They consider the supermarket model when the service
rates �i are not all equal (but

P
i �i = n), and show that

when sampling is done with replacement, the backlog in
the system can increase without bound under the d-random
policy, even when d = O(n). However, they show that the
(1; 1)-memory policy keeps the queue lengths finite (even
in expectation) for all � < 1. Thus, whereas the d-random
policy is unable to detect slower servers from faster ones
and cannot keep the queues bounded, the use of memory
in the (1; 1)-memory policy helps achieve stability. This
result strongly demonstrates the benefit of using memory
when the servers in the system run at different speeds.

For the balls and bins model, [11] uses large deviations
theory and coupling arguments to show that the maximum
load under the (d; 1) policy (d � 2) is bounded above by
ln lnn

ln(2d�1) + O(1) with high probability. This demonstrates
that the effect of the samples stored in memory is “multi-
plicative” rather than just “additive.” That is, each sample
in memory counts asO(d) new random samples, as opposed
to just one.

1.1.2 A Preliminary Sketch of our Methods and Re-
sults

In this paper we analyze the discrete and continuous ver-
sions of the problem and obtain exact bounds. Our main
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results make use of a non-trivial extension of large devia-
tion theory (following the treatment in the text of Shwartz
and Weiss [12]). The use of memory complicates the anal-
ysis as follows. Consider the (1,1)-memory policy for the
supermarket model. Under Poisson arrivals and exponen-
tial services, the load of the queues in the system and of
the queue in memory form a Markov chain. The load of the
system is generally represented by a vector with the fraction
of queues with i customers for each i. The complexity of
this Markov chain is that it has modes evolving at two dif-
ferent time scales: the load of the queue in memory evolves
much faster than the load of the queues in the entire system,
since it can change at each arrival while the system state
is affected by O(n) arrivals. It is therefore not possible to
analyze the memory system using large deviations methods
as in Mitzenmacher [7]. The rather technical way out is to
decompose the overall system into two Markov chains: one
for the memory and the other for the servers.

Since the Markov chain for the memory evolves much
faster than the chain for the load, for large enough n its
transitions appear at any time to be in equilibrium given the
state of the queue loads. The state of the memory then in
turn influences the loading and hence the state of the rest of
the system. What is needed is a proper pasting of the two
different chains.

We shall execute this procedure, tailoring the methods in
[12] to our needs, in the coming sections. Specifically, after
reviewing the appropriate results from large deviations the-
ory, we first formally consider the discrete system and deter-
mine exact orders. We then rigorously analyze the contin-
uous supermarket model. We also provide simulation com-
parisons of the (1; 1)-memory policy with the 2-random and
2-left policies.

2 Large Deviations Results

In this section, we first review results from large devia-
tions theory that we later use. Our treatment is necessarily
a brief summary, based on the more extensive treatment in
[12]. Readers uninterested in the fine technical details may
skip this section on a first reading, and accept the more in-
tuitive explanations in the appropriate sections.

We begin with a definition.

Definition 1. A finite-level finite-dimensional jump Markov
process with D dimensions and L levels has the state space
R
D � f0; 1; : : : ; L � 1g. The state is represented by the

D + L tuple (�x;m) = (x0; : : : ; xD�1; 0; : : : ; 1; : : : ; 0),
where a 1 in position D + m; 1 � m � L represents
that the system is in level m. When in state (�x;m) the
system can make �(m) possible different jumps: it jumps
to state (�x + �ei(m); ~m(m; i)) = (�x + �ei(m); 0; : : : ; 1 �
�; 0; : : : ; �; : : : ; 0) with rate �i(�x;m), for 1 � i � �(m),

and � 2 f0; 1g. Here �ei(m) is a unit vector in one of the
D dimensions, and, depending on value of �, the level may
change or remain as it is.

The idea behind this definition is that we have an under-
lying finite-dimensional jump Markov process (such as that
used in [7]), along with an associated “level” Markov chain
on the state space f0; : : : ; L � 1g; the state of the second
Markov chain may affect the transition rates of the first.

The generator A of this Markov process, which operates
on real valued functions f : RD+L ! R is defined as:

Af(�x;m) =

�(m)X
i=1

�i(�x;m)[f(�x+ �ei(m); ~m(m; i))

� f(�x;m)] (1)

Our interest is in the scaled version of this process with scal-
ing parameter n. The scaling is done as follows: the rate of
each transition is scaled up by n, while the jump magnitude
is scaled down by n. The state of this scaled system will be
represented by (�sn;m) = (s0; : : : ; sD�1; 0; : : : ;

1
n
; : : : ; 0).

The jump vector will be ( �ei
n
; 0; : : : ;��

n
; : : : ; �

n
; : : : ; 0), and

the corresponding rates are n�i(�sn;m) for 1 � i � �(m).
The generator for the scaled Markov process is:

Anf(�sn;m) =

�(m)X
i=1

n�i(�sn;m)ff [�sn +
�ei(m)

n
; 0; ::;

1

n
� �(m; i)

n
; 0; ::;

�(m; i)

n
; ::; 0]

� f(�sn;m)g: (2)

The following theorem (Theorem 8.15 from [12]) de-
scribes the evolution of the typical path of the scaled
Markov process in the limit as n grows large. The idea
behind the theorem is that because the finite-level Markov
chain is close to equilibrium in some finite time, for large
enough n the approximation that the finite-level Markov
chain is in equilibrium is sufficient to obtain Chernoff-like
bounds.

Theorem 1. Under Conditions 1 and 2 below, for any given
T and � > 0, there exist positive constants C1; C2(�) and
n0 such that for all initial positions �s0 2 R

D , any initial
level m 2 f0; 1; : : : ; L� 1g, and any n � n0,

Pr
�s0;m

�
sup

0�t�T
j�sn(t)� �s1(t)j > �

�
� C1 exp(�nC2(�)):

where, �s1(t) satisfies the following:

d

dt
�s1(t) =

L�1X
l=0

Pr (m(t) = l)

�(l)X
i=1

�i(�s1; l)�ei(l) (3)

�s1(0) = �s0
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where Pr (m(t) = l) is the equilibrium probability of the
level-process being in level l given the state �s1(t).

Condition 1. For any fixed value of �x 2 R
D , the Markov

process evolving over the levels f0; 1; : : : ; L�1gwith tran-
sition rate �i(�x;m) of going to level ~m(m; i) from level m,
is ergodic.

Condition 2. The functions log �i(�x; y) are bounded and
Lipschitz continuous in �x for every y (where continuity is in
all the D co-ordinates).

Note: The above conditions are to be checked for the un-
scaled process (�x;m) and not for the scaled process (�s;m).

3 The Discrete System

We now study the case where n balls are dropped into
n bins sequentially using the (1; 1)-memory policy. (Our
analysis easily generalizes to cn balls being dropped into n
bins for any constant c; we follow standard practice by fo-
cusing on the case where the average load is 1.) We denote
by time t the time before the tth ball is dropped. Let si(t)
be the fraction of bins with load at least i at time t; and sim-
ilarly, let pi(t) be the probability that the bin in memory has
load at least i at time t. Then it follows that

E[si(t+1)�si(t)js(t)] = [si�1(t)pi�1(t)�si(t)pi(t)]=n:
That is, si increases by 1=n when both the randomly se-
lected bin and the bin from memory have load at least i�1,
but both do not have load at least i.

If we re-scale time so that it runs from 0 to 1, and let
�t = 1=n, then we have the following equation

E[si(t+�t)� si(t)js(t)]
�t

= [si�1(t)pi�1(t)�si(t)pi(t)]:

More formally, in the large deviation framework, we have
that in the limiting process the system follows the path

dsi
dt

= si�1pi�1 � sipi:

Here the load of the bin in memory is the external Markov
process referred to in Theorem 1; pi represents the equilib-
rium probability (at the time t) that the bin in memory has
load at least i.

Note that the pi’s are governed by the following equa-
tion:

pi(t+1) = (pi�1(t)� pi(t))si(t) + pi(t)(si�1(t)� si(t))

+ pi(t)si(t)

The first term corresponds to the case where the bin in mem-
ory obtains a ball and reaches load i; the second term cor-
responds to the randomly chosen bin obtaining a ball and

reaching load i; and the third term corresponds to the case
where both choices have load at least i. Recall the discus-
sion from the section on large deviations; the chain govern-
ing the pi values runs at a much faster rate than the chain
for the si values. Hence, in considering the pi, we take the
equilibrium distribution for the pi values given a fixed set
of values for the si. In this equilibrium, we have

pi = pi�1si + pi(si�1 � si);

or equivalently

pi =
pi�1si

1� si�1 + si
:

Given these equations for pi, we can substitute so that all
equations are in terms of the si. The differential equations
can then by solved numerically.

Formally, using the large deviation theory, we may state
the following:

Theorem 2. For any fixed constant K, for 1 � i � K let
si(1) be the solution for the si at time 1 in the differential
equations above. For 1 � i � K, let Xi be the random
variable denoting the fraction of bins with i or more balls
when we throw n balls into n bins using the (1; 1)-memory
policy. Then for any � > 0, for sufficiently large n

Pr (jXi � si(1)j > �) � C1 exp(�nC2(�)); (4)

where C1 is a constant that depends on K and C2(�) is a
constant that depends on K and �.

Proof. This follows from Theorem 1. To be clear, we em-
phasize how we restrict the system to be finite dimensional.
This is easily accomplished by ignoring loads above K.
That is, we restrict ourselves to examining s1; s2; : : : ; sK ;
since the evolution of the si for i � K only depend on
s1; s2; : : : ; sK , we do not lose anything by failing to track
higher dimensions. The conditions of Theorem 1 are easily
checked, and the Chernoff-like bound of the theorem yields
the results.

Unfortunately, Theorem 1 as given by Shwartz and
Weiss only applies to finite dimensional systems, and hence
we cannot directly use it to prove (rigorously) that the maxi-
mum load isO(log logn). We can, however, use this frame-
work to gain the proper insight into the problem, and then
use a layered induction technique to get rigorous bounds.
This approach is described for example in [9] and [8]; here
we simply use the differential equations.

Theorem 3. When throwing n balls into n bins us-
ing a (1; 1)-memory policy, the maximum load is
log logn=2 log�+O(1) with high probability.
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Proof. We sketch the proof using the differential equations
above, and note that only minor additional work is neces-
sary to obtain a formal layered induction proof. Let us tem-
porarily assume that we had pi = pi�1si. Then,

dsi
dt

� si�1pi�1 = s2i�1pi�2 = s2i�1si�2si�3 : : : s1:

This holds for all t � 1. Hence

si(1) � s2i�1(1)si�2(1)si�3(1) : : : s1(1):

Inductively, we find that si(1) � s1(1)
F2i�1 , where Fn

is the nth Fibonacci number. (Here F1 = F2 = 1.) To
see this another way, let us suppose si(1) � s1(1)

Gi .
Then we find that Gi should satisfy the recurrence Gi �
2Gi�1 +

Pi�2
j=1Gj ; we easily find that Gi � F2i�1 by in-

duction. When si(1) falls below 1=n, the expected number
of bins with load greater than or equal to i falls below 1.
Hence from the above we can conclude that the maximum
load grows like log logn

2 log� +O(1) by finding where si(1) falls
below 1=n. To revise the argument to take into account the
actual formula pi = pi�1si=(1 � si�1 + si), we note that
for sufficiently large i the denominator becomes arbitrarily
close to 1. In particular, for any constant  > 0 there exists
a constant j so that for all i � j, pi � (1+)pi�1si. Hence
for all suitably large i

si(1) � s2i�1(1)si�2(1)si�3(1) : : : sj(1)pj�1(1 + )j�i:

Choose j to be a large enough constant so that sj(1) �
c=(1 + ) for some constant c < 1. Inductively, we find
that for i > j, si(1) � cF2(i�j)+1=(1 + ), from which
we may again conclude that the maximum load grows like
log logn
2 log� +O(1).

We note that similarly a lower bound for the (1; 1)-
memory policy could be proven, to show that in fact the
maximum load is log logn

2 log� +�(1):
Following the same framework, for the general case of a

(d; 1) system where d > 1, the relevant equations are:

dsi
dt

= sdi�1pi�1 � sdi pi

and

pi =
pi�1s

d
i

1� d(si�1 � si)s
d�1
i�1

:

Following the same line of reasoning as in Theorem 3, we
find that for sufficiently large i and a suitably large constant
j, si(1) falls like cG(j�i)+1=(1 + ), where here G satisfies
the recurrenceGi � 2dGi�1+d

Pi�2
j=1Gj . This recurrence

is easily solved to find

Gi �
 
2d+ 1 +

p
4d2 + 1

2

!i

:

Let us define

f(d) = (2d+ 1 +
p

4d2 + 1)=2: (5)

Note f(d) 2 (2d; 2d + 1); for large d, f(d) is slightly
more than 2d+1=2. Then, we have that the maximum load
for a (d; 1) system is log logn

log f(d) + O(1) with high probabil-
ity. Hence the tails of a (d; 1)-memory system behave like
a D-random system where D is between 2d and 2d + 1.
Phrased more intuitively, the value of the one spot of mem-
ory is worth somewhere between d and d + 1 additional
choices.

4 The Continuous System

We wish to use Theorem 1 to analyze the supermarket
model operating under the (d; 1)-memory policy. The state
of the supermarket model, however, is infinite dimensional,
as the load at the queue can be any positive integer. Simi-
larly, the memory (which is the level process) can also take
countably infinite values. Obviously, we need to truncate
the supermarket model to be able to use Theorem 1, as we
did for the discrete case. Hence we define auxiliary systems
in which the truncation occurs naturally and which approx-
imate the supermarket model.

More precisely, we shall define two systems—SbL and
SwL— which perform, respectively, better and worse than
the supermarket model under the (d; 1)-memory policy.
These systems are analyzable as finite-dimensional finite-
level jump Markov processes. We first obtain the defining
equations for these systems as at (3) and then let L go to
1. Now, for each L, the load of the systems SbL and SwL
sandwich the load of the supermarket model. When L goes
to 1, the sandwich closes, yielding the performance of the
supermarket model. There are subtleties in truncating and
in taking the limit L!1, as described below.

4.1 Analysis

Consider the supermarket model under the (d; 1)-
memory policy with n servers and Poisson arrivals of rate
n�. Following [7], let the state at time t be s(t) =
(si(t))i�0, where si(t) denotes the fraction of queues with
load at least i (we drop reference to scale parameter n in
representing the state �s as it is clear by the context). Let
m(t) denote the load of the queue in memory at time t. The
overall state is (s(t);m(t)). We now define the better and
worse systems: SbL and SwL .

Definition 2. SbL: Consider the supermarket model un-
der the (d; 1)-memory policy with the modification that the
buffers are truncated at level L. Accordingly, any arrival
occurring to a queue with size L is dropped. The state of
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the system1 is truncated to (s0; : : : ; sL), and the load of the
memory queue can be in f0; 1; : : : ; Lg.

We formalize the notion under which SbL is better than
the original system with the following definition.

Definition 3. A vector u = (u1; : : : ; un) is majorized by
v = (v1; : : : ; vn) if for i � i � n we have

P
1�j�i u�(j) �P

1�j�i v�(j), where � and � are permutations such that
u�(1) � : : : � u�(n) and v�(1) � : : : � u�(n). For two
allocation schemes X and Y on n queues, we say X is
majorized by Y if u(t) = (u1(t); : : : ; un(t)) represent the
loads of X at time t, v(t) = (v1(t); : : : ; vn(t)) represent
the loads of Y at time t, and there is a coupling between the
two schemes so that u(t) is majorized by v(t) at all times t.

It is easy to see through straightforward coupling argu-
ments that the load in SbL is majorized by the load in the
original (d; 1) system. Upon any arrival, if any of the d+ 1
possible destination queues has load at most L, then there
will be no overflows and the two systems behave similarly.
If all of the d+1 queues have load equal to L, then whereas
the load in the original system increases, the load ofSbL does
not.

The infinitesimal generator of this Markov process is de-
fined as follows: for continuous f : R2L+2 ! R,

Ab
nf(s;m) =

X
j�m

�(sdj�1 � sdj )(f(s+ ej=n)� f(s))

+ sdm(f(s+ em=n)� f(s)) +X
0�k�L

(sk � sk+1)(f(s� ek=n)� f(s))

The SbL is a finite-dimensional finite-level process. Hence,
we can apply Theorem 1 after checking conditions 1 and 2.
We would like to remind the reader that the conditions need
to be checked for the unscaled version of the process. The
scaling in SbL arises due to the size of the system. Hence,
for any finite-sized version n = n0 of the system, SbL can
be considered as the unscaled version of the system. As be-
fore, let the state be (�x;m), where �x = (x0; : : : ; xL) and
xi represents the fraction of queues with load at least i. The
xis are of the form q=n0; q 2 N; q � n0. The conditions
are checked as follows:
Checking condition 1: The memory process is an aperi-
odic, irreducible, finite-state Markov process for state �x,
and is therefore ergodic.
Checking condition 2: This condition is related to check-
ing the boundedness and continuity of transition rates. The
infinitesimal generator of the process SbL suggests that the
transition rates �i(�x;m) due to arrival or departure are fi-
nite size polynomials of load vector �x. This implies that

1In order not to introduce extra symbols, we use s(t) to denote the state
of the truncated systems as well.

log �i(�x;m) is Lipschitz continuous in co-ordinates of �x.
The bound xi � 1 gives an upper bound. If because one
or more xi = 0 the transition rate �i(�x;m) = 0, then it
means the transition is absent and we neglect it. Otherwise
xi � 1=n0, giving the lower bound on the log �i(�x;m).
This completes the check of condition 2.

Now we can apply Theorem 1 to SbL to obtain the behav-
ior of the system as n!1, described by the following set
of equations:

dsi(t)

dt
= �[pi�1(t)si�1(t)

d � pi(t)si(t)
d]

� [si(t)� si+1(t)]; for i < L (6)

dsL(t)

dt
= �[pL�1(t)sL�1(t)

d � pL(t)sL(t)
d]

� [sL(t)]; and (7)

sL+1(t) = 0: (8)

s0(t) = 1; s0(0) = 1; si(0) = 0; 1 � i � L:

and,

p0(t) = 1;

pi(t) = pi�1(t)si(t)
d + d(si�1(t)� si(t)) �

si(t)
d�1pi(t); for i � L (9)

pL+1(t) = 0: (10)

Next, we consider the worse system.

Definition 4. SwL : In the supermarket model, modify the
(d; 1)-memory policy as follows: at the arrival of a cus-
tomer, if any of the d random queues and 1 memory queue
has load smaller than L, follow usual (d; 1) policy. Oth-
erwise, ignore the memory and follow the d-random pol-
icy. (The memory is restored when a future customer has
a choice with load smaller than L.) Thus, if the queue in
memory has load larger thanL, it is irrelevant. Let us denote
the state of the system by (s0(t); : : : ; sL(t); F (t)), where
F (t) represents the fraction of queues with load higher than
L. The memory takes various values f0; 1; : : : ; L; L + 1g,
where L + 1 represents memory taking any value higher
than L.

We have used the same notation to represent the states
for SbL and SwL , although the meaning should be clear by
context. Note that we have truncated the system so that all
loads larger than L are merged into a single group. Again,
it is easy to see via a simple coupling argument that SwL
majorizes the original system, as the use of memory only
helps.

We can similarly write the infinitesimal generator for the
SwL . The SwL , as considered, is a finite-dimensional finite-
level Markov process. Hence we can apply Theorem 1. The
conditions 1 and 2 can be checked in a similar way as done
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for SbL. For n ! 1, for SwL , we obtain that the limiting
behavior is given by the following equations:

dsi(t)

dt
= �[pi�1(t)si�1(t)

d � pi(t)si(t)
d]

� [si(t)� si+1(t)]; for i < L (11)

dsL(t)

dt
= �[pL�1(t)sl�1(t)

d � pL(t)sL(t)
d]

�[sL(t)� F (t)]; and (12)

F (t) � �L+1: (13)

s0(t) = 1; s0(0) = 1; si(0) = 0; 1 � i � L; F (0) = 0:

and,

p0(t) = 1;

pi(t) = pi�1(t)si(t)
d + d(si�1(t)� si(t))�

si(t)
d�1pi(t); for i � L (14)

pL+1(t) = pL(t)F (t)d +

d(sL(t)� F (t))F (t)d�1pL+1(t): (15)

The justification for (13) is as follows: The system SwL is
majorized by the system where each incoming task chooses
a single random queue and queues there. For such a sys-
tem each queue behaves like an M/M/1 queue with arrival
rate � and service rate 1. The queue-size distribution for
the M/M/1 queue suggests that Pr(Q � i) � �i, with an
inequality when i < 1 and the system starts empty. In the
limiting system as n to infinity, the fraction of queues with
size i � 1 is therefore always smaller than �i if the system
starts empty. This yields the bound of (13).

We would like to take the limit L ! 1 for both SbL
and SwL to obtain the performance of their corresponding
limiting systems with respect to L. It is important to show
that the limits exist, and that they are equal.

For L1 < L2, the loading of SbL1
is majorized by the

loading of SbL2
as the dropping rate in the former is higher

than that in the latter. Further, co-ordinate wise, these sys-
tems are bounded above by the 1-random system—which is
a set of parallel M/M/1 queues. Thus, in each coordinate SbL
is a bounded and monotonically increasing system in L and
hence in each coordinate it converges to a limit. Similarly,
in each coordinate SwL is bounded below and monotonically
decreasing as L increases and hence in each coordinate a
limit exists.

The next step is to show that these two limits are the
same and hence give us the exact performance for the orig-
inal system with (d; 1)-memory policy. The equations (6)-
(10) for SbL and (11)-(15) for SwL demonstrate that the in-
finitesimal generators of these deterministic processes dif-
fer only in their tail co-ordinate (the sL+1(t) = 0 of SbL and
F (t) � �L+1 of SwL ). The explicit bound of (13) ensures
that, for any � > 0, there exists L � L(�) such that the
difference in these generators is bounded absolutely by �.

Hence, these generators converge (in the uniform operator
norm) to the same limit. And the limit can be character-
ized by the following set of evolution equations, which also
describes the evolution of the system with the (d; 1) policy:

dsi(t)

dt
= �[pi�1(t)si�1(t)

d � pi(t)si(t)
d]

� [si(t)� si+1(t)]; (16)

s0(t) = 1; si(0) = 0; i � 1: (17)

and,

p0(t) = 1;

pi(t) = pi�1(t)si(t)
d +

d(si�1(t)� si(t))si(t)
d�1pi(t); 8i: (18)

Thus we conclude the following theorem.

Theorem 4. Consider the supermarket system with n
queues starting empty (�s0 = �0) under (d; 1)-memory pol-
icy. Let �sn(t) represent the tails of the load at time t, and
let �s1(t) represent the tails as determined by the limiting
differential equations above. Then for any � > 0 there exist
constants C1; C2(�) and n0 such that for n � n0,

Pr
�s0;m

�
sup

0�t�T
j�sn(t)� �s1(t)j > �

�
� C1 exp(�nC2(�)):

4.2 Approximate behavior

Theorem 4 gives the limiting evolution for the system
employing the (d; 1)-memory policy. We can gain more in-
sight by considering the fixed point of this system, where
the derivatives are all 0, following the tack of [7]. (Note
that [7] proves that the d-random system converges to its
fixed point; we do not yet have an equivalent proof for this
system, although all experimental evidence suggests con-
vergence happens.) By comparing the fixed point with that
of the d-random policy, we can qualitatively compare the
load balancing policies.

Let s� = (s�0; : : : ; s
�
k; : : :) be the fixed point of equation

(16), and let p� = (p�0; : : :) be the corresponding solutions
for (18). Then,

s�i = s�i�1 + �p�i�1(s
�
i�1)

d � �p�i�2(s
�
i�2)

d (19)

p�i =
p�i�1(s

�
i )
d

1� d(s�i�1 � s�i )(s
�
i )
d�1

: (20)

Note the similarity between these equations and the equa-
tions obtained for the (d; 1)-memory policy in the discrete
balls and bins model. Recall also the boundary conditions
s�0(t) = 1, p�0(t) = 1, and s�1(t) = �. (The last corresponds
to the fact that the arrival rate must equal the departure rate.)
From these we can iteratively determine the s�i and p�i ; the
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Discrete system
i 2-random (1; 1)-memory 2-left

1 7.6e-1 6.3e-1 7.7e-1
2 2.3e-1 3.3e-1 2.2e-1
3 8.9e-3 3.8e-2 4.4e-3
4 6.0e-6 8.4e-5 5.2e-8
5 1.3e-12 6.1e-12 1.2e-21
6 3.2e-26 1.0e-30 5.3e-58
7 8.9e-54 6.8e-80

Table 1. Results from numerically solving the
differential equations of the discrete system
for 2-random, (1; 1)-memory, and 2-left.

fixed point exists and is in fact unique. A simple induc-
tion based on equation (19) reveals that s�i = �p�i�1(s

�
i�1)

d.
Hence, following the argument used in section 3, we obtain

s�i � �
f(d)i�c

�1
f(d)�1

1 + 
(21)

for all i � c for some suitable constants c and . As noted
before, f(d) 2 (2d; 2d + 1). Hence, past some point, the
tails of the memory system using (d; 1)-memory policy are
bounded above by tails of the system with 2d-random policy
and bounded below by the tails of (2d + 1)-random policy
at the fixed point.

Theorem 5. For a given �, there exists a constant c so that
the tails of the fixed point distribution beyond the cth co-
ordinate of the supermarket model with the (d; 1)-memory
policy are dominated by the tails at fixed point distribution
of the model under the 2d-random policy, and they dominate
the tails of the model under the 2d+ 1-random policy.

5 Experiments and Numerical Calculations

Discrete system: To provide more insight into the be-
havior of the load balancing policies with memory, we nu-
merically calculate the fraction of bins with load at least i
for the (1; 1)-memory policy when n balls are thrown into
n bins and compare them to the corresponding numbers for
the 2-random and 2-left policies. Results are shown in Ta-
ble 1. Terms that are less than 10�100 are not shown. As can
be seen, the tails for (1; 1)-memory policy initially decrease
more slowly than the 2-random, but then the decrease accel-
erates in a fashion similar to the 2-left policy. This behavior
is what one would expect from Theorem 3.

These numerical results accurately match simulation re-
sults. For example, we ran 1,000 trials of all three policies,
each with 100,000 bins and balls. For the 2-memory system,

Continuous system � = 0:9
i 2-random (1; 1)-memory 2-left

1 9.0e-1 9.0e-1 9.0e-1
2 7.3e-1 8.1e-1 7.3e-1
3 4.8e-1 6.5e-1 4.8e-1
4 2.1e-1 4.0e-1 2.0e-1
5 3.8e-2 1.3e-1 3.2e-2
6 1.3e-3 8.0e-3 5.8e-4
7 1.5e-6 4.4e-6 2.5e-8
8 2.1e-12 1.1e-14 9.9e-20
9 4.1e-24 2.9e-37 1.4e-49

Table 2. Results from numerically solving the
differential equations of the continuous sys-
tem at � = 0:9 for 2-random, (1; 1)-memory,
and 2-left.

there were 8,390 bins of load four over all trials, closely
matching the results from the differential equations. Over
the 1,000 trials, 2-left had a maximum load of four for only
seven trials, and a maximum load of three in the remain-
ing trials; 2-random had a maximum load of four in 462
trials, and a maximum load of three in the remaining trials;
and 2-memory had a maximum load of four for all 1,000
trials. Hence, despite the fact that 2-memory is asymptot-
ically better than 2-random, it performs slightly worse in
this experiment, as the numerical results of Table 1 would
suggest.

The key point of these results is that the O(1) constants
are important to the actual behavior for these variations on
realistic sizes, and hence the ability to accurately predict
performance from the differential equations is quite useful.

Continuous system: As with the discrete case, in the
queueing scenario we can numerically compare the (1; 1)-
memory policy with the 2-random and 2-left policies for
specific values of �. Here, we compute the behavior at the
fixed point for comparison. For example, Table 2 presents
the tails si for all three policies at � = 0:9, along with the
average time in the system as computed at the fixed point.

Table 2 shows similar behaviors as in the discrete case.
In particular, because the (1; 1)-memory policy has slowly
decreasing tails initially, the average time in the system is
slightly greater than for the 2-random and 2-left policies.
Still, the (1; 1)-memory policy performs dramatically better
than a system with just one random choice.

Again, simulation results match the above results quite
well. For example, we ran 20 trials of all three policies with
100 queues over 50,000 units of time at � = 0:9. We record
the time spent in the system for all tasks after time 5,000;
the initial time allows the system to reach the equilibrium
state. For the 2-memory system, the average time in the sys-
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tem for our simulations was 3.229, compared to 2.646 for
the 2-random system and 2.634 for the 2-left system. All of
these results closely match the predicted value for the aver-
age time in system as calculated using the values from the
table above. Again, theO(1) constants are important for the
actual behavior for these variations on realistic sizes, and
hence the ability to accurately predict performance from the
differential equations is quite useful.

6 Variations of memory policies

Up to this point we have considered the (d; 1)-memory
policy as follows: the memory is the least loaded bin (or
queue) among the available (d + 1) choices after loading.
This is clearly the most reasonable use of memory in prac-
tice. We consider the following two weaker variations of
this policy , which further informs the correct use of mem-
ory. The two variations are as follows:
(a) The memory is simply the bin (or queue) where the last
ball (or customer) went. Call this the (d; 1)1-policy.
(b) The memory is the best of the d samples chosen at the
previous time after loading. Call this the (d; 1)2-policy.

First, consider the (d; 1)1-policy in the discrete balls and
bins setting, with n balls going into n bins. Using the same
notation as before, we obtain the following set of equations
of evolution for the limiting system:

dsi
dt

= sdi�1pi�1 � sdi pi (22)

s0(t) = 1; si(0) = 0; i � 1; (23)

and,

p0 = 1;

pi = pi�1s
d
i�1; 8i: (24)

Note that the only change from the (d; 1)-memory policy
is in the equation (24) which governs the evolution of the
memory process. Indeed, this equation is simpler; in The-
orem 3, for the case where d = 1, we first considered the
simplification where pi = pi�1si, and it led to the equation

dsi
dt

� si�1pi�1 = s2i�1pi�2 = s2i�1si�2si�3 : : : s1:

This equation led us to the log logn
2 log � +O(1) bounds.

Here the equation (24) gives pi = pi�1si�1 which in
turn leads to

dsi
dt

� si�1pi�1 = si�1si�2pi�2 = si�1si�2si�3 : : : s1:

This leads to the bound log log n
log 2 + O(1) for the maximum

load. In general, for d random choices with 1 memory it
leads us to the bound log logn

log(d+1) + O(1). Hence in this case

d choices plus one choice from memory is asymptotically
equivalent to the (d+ 1)-random policy.

We may also consider the supermarket system under this
weaker policy. Let the fixed point of this system be (s�; p�).
The fixed point satisfies the equations

s�i = s�i�1 + �p�i�1(s
�
i�1)

d � �p�i�2(s
�
i�2)

d (25)

p�i = p�i�1(s
�
i�1)

d: (26)

These are the same as equations (19) and (20), except equa-
tion (26) includes the change in the behavior of the memory
process under the weaker policy.

A simple induction based on equation (25) again reveals
that s�i = �p�i�1(s

�
i�1)

d, from which it follows that s�0 = 1,
s�1 = �, s�2 = �d+1, and

s�i = �(s�i�1)
d(s�i�2)

d(s�i�3)
d : : : (s�1)

d 8i � 2: (27)

Hence, in this case the fixed point has a pleasing closed
form: s�i = �(d+1)i�1 . At the fixed point, the behavior
under the weaker policy (d; 1)1 is the same as the original
(d+ 1)-random policy.

Next, consider the (d; 1)2 policy for the supermarket sys-
tem. (This policy is analyzed for the balls and bins model
in [11].) Similar to equations (25) and (26), we obtain that
the fixed points of this policy satisfy:

s�i = s�i�1 + �p�i�1(s
�
i�1)

d � �p�i�2(s
�
i�2)

d (28)

p�i = (1� dp�i )(s
�
i )
d + p�i ds

�
i�1(s

�
i )
d�1 (29)

Thus, we obtain that

p�i =
(s�i )

d

1 + d(s�i )
d � ds�i�1(s

�
i )
d�1

(30)

Now, as the denominator above approaches 1 for suffi-
ciently large i, for any constant  > 0 there exists a constant
j so that for all i � j,

p�i � (1 + )(s�i )
d: (31)

Again, an induction on (28) gives s�i = �p�i�1(s
�
i�1)

d. Sub-
stituting for p�i�1 from (31) shows that the asymptotic be-
havior of (d; 1)2 is like that of the 2d-random policy.

Under the (d; 1)1-memory policy, the location in mem-
ory is reduced in value; for example, it can never take on
the value 0. In fact, its worth is that of only one additional
choice. Under the (d; 1)2-memory policy, the load of the
location in memory is still distributed as the minimum of
d random choices. Intuitively, this suggests an explanation
for the quite different performance of the two policies.

7 Conclusions

We have been motivated to examine load balancing sys-
tems with memory by several recent results. For example,
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it has been shown in asymmetric cases, where queues serve
at different rates, using random choices is not enough. The
system can be unstable when the net arrival rate is less than
the net service capacity, even with O(n) choices per incom-
ing customer. Using just one sample with one unit of mem-
ory, however, ensures stability [11]. This demonstrates that
a policy using a small amount of memory can “learn” things
about a system that simply using many choices cannot ac-
complish.

Here, we have focused on obtaining exact bounds for
limiting cases of both the discrete balls and bins problem
and the continuous queuing problem under uniform service
rates. We have demonstrated that asymptotically choice
plus memory yields more rapidly decreasing tails than an
equal number of choices alone. Specifically, the (d; 1)-
memory policy behaves somewhere between a 2d-random
and a (2d+ 1)-random policy.

A further contribution of this paper is the application
of the finite-dimensional finite-level jump Markov process
framework to analyze load balancing systems with memory.
We believe these methods will apply more widely, both for
other load balancing variations such as asymmetric systems
as well as other problems.
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[14] B. Vöcking. How Asymmetry Helps Load Balancing. In
Proceeding of 40th IEEE-FOCS, New York, 1999; pp. 131-
140.

[15] N. D. Vvedenskaya, R. L. Dobrushin and F. I. Karpele-
vich. Queueing System with Selection of the Shortest of
Two Queues : An Asymptotic Approach. Problems of Infor-
mation Transmission, 32(1):15-29, 1996.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02) 
0272-5428/02 $17.00 © 2002 IEEE 


