
Exact Sampling of TCP Window States

Ashish Goel
University of Southern California

Michael Mitzenmacher
Harvard University

Abstract—We demonstrate how to apply Coupling from the Past, a sim-
ulation technique for exact sampling, to Markov chains based on TCP vari-
ants. This approach provides a new, statistically sound paradigm for net-
work simulations: instead of simulating a protocol over long times, or ex-
plicitly finding the stationary distribution of a Markov chain, use Coupling
from the Past to quickly obtain samples from the stationary distribution.

Coupling from the Past is most efficient when the underlying state space
satisfies a partial order and certain monotonicity conditions. To efficiently
apply this general paradigm to TCP, we demonstrate that the states of a sim-
ple TCP model possess a monotonic partial order; this order appears inter-
esting in its own right.

Preliminary simulation results indicate that this approach is quite effi-
cient, and produces results which are similar to those obtained by simulating
a TCP-Tahoe connection.

I. INTRODUCTION

There are two commonly used methods for determining or
comparing the performance of TCP variants. The first approach
is to use simulations over large time scales, using tools such as
ns [17]. While useful in practice, this approach generally lacks a
statistical basis, without a priori knowledge of how long a TCP
simulation should run in order to obtain a good sample. A second
approach is to develop a simplified TCP model, often based on a
Markov chain. (Another recently proposed related approach is to
use stochastic fluid models [15].) If enough simplifyingassump-
tions are made, such a model may yield an equation (or bounding
equations) for relevant quantities such as throughput [16], [19],
[6], [3]. Such a tack often requires fairly extreme simplifications,
however. Alternatively, given an appropriate model one may
be able to calculate explicitly the equilibrium distribution [18],
[22], from which relevant quantities can be derived. The calcula-
tions required, however, grow with the complexity of the model.
For example, if complex loss models are used, calculating the
equilibrium distribution may require significant resources.

We suggest another approach that may prove useful for study-
ing performance of TCP variations or simplifications. This ap-
proach is to treat a TCP connection as a Markov chain and obtain
a sample from the stationary distribution of this chain. Unlike
previous work, our approach does not require computing the en-
tire stationary distribution. Also, unlike simulation attacks that
simply run the chain for a long period of time, our approach is
grounded with a solid statistical basis. Specifically, under cer-
tain conditions, one can run a Markov chain in such a way that
one is sure to obtain an exact sample from the stationary distri-
bution.

Ashish Goel is at the Department of Computer Science, University of Southern
California. Supported in part by the DARPA NMS program under contract no.
N66001-00-C-8066 (”SAMAN”). Email: agoel@cs.usc.edu

MichaelMitzenmacher is at the Division of Engineering and Applied Sciences,
Harvard University. Supported in part by an Alfred P. Sloan Research Fellow-
ship and NSF grants CCR-9983832, CCR-0118701, and CCR-0121154. Email:
michaelm@eecs.harvard.edu

We apply “Coupling from the Past” (CFTP) [20], a simula-
tion technique widely used to sample combinatorial structures
in mathematics and physics, to Markov chains for TCP. While
this connection is theoretically interesting in its own right, we
believe that CFTP may also prove a practically useful tool for
network analysis. Indeed, we suspect that CFTP may prove use-
ful for studying other similar complex network phenomena that
can be modeled effectively as Markov chains.

CFTP is essentially a variant of the Markov Chain Monte
Carlo method [8], [13] and a natural extension of the work on
approximate and exact sampling for specific Markov chains [4],
[14], [13]. Markov Chain Monte Carlo methods have al-
ready been used widely for problems arising from combinatorics
(e.g. [5], [1]), physics (e.g. [10], [11]), statistics (e.g. [4]), and
optimization (e.g. [7]). The reader is referred to an excellent de-
scription of CFTP by Propp and Wilson [20] for more detail.

Coupling from the Past is most effective when there is a par-
tial order on the underlying state space with a monotone struc-
ture i.e. if X � Y in the partial order, then this relationship is
preserved as the states X and Y evolve in time. Accordingly,
we first present a partial order defined on all possible states of a
TCP connection. We show that this partial order results in a min-
imum and a maximum state. The minimum state corresponds to
a connection performing slow start, with the slow start thresh-
old and the congestion window set to the smallest possible val-
ues. The maximum state corresponds to a connection perform-
ing congestion avoidance, with the congestion window set to the
maximum possible value. We then demonstrate that if we start
in two different states which are ordered and couple their packet
loss events, then the ordering is preserved as the states evolve.
Thus the partial order has a monotonic structure. This allows
us to apply CFTP to efficiently obtain an exact sample from the
stationary distribution of the window sizes of a bulk TCP con-
nection; here the stationary distribution is as seen by a random
packet.

The sampling algorithm is very simple. For notational conve-
nience, it is simplest to think of arranging matters so that packet
sequence numbers are increasing but non-positive, so that our
exact sample is obtained at the packet numbered 0. To obtain
a sample from the exact distribution of the TCP Markov chain,
we first generate an infinite packet loss pattern going backwards
from packet 0,1 and choose a small value � . Then we simulate
the TCP connection for packets numbered �� to 0 starting in
both the minimum and the maximum states. If the two states
have converged by the time we get to the packet number 0, then

1Clearly an infinite loss pattern can not be generated in the traditional sense;
in order to “generate” such a pattern, it suffices to fix a deterministic algorithm
that takes a non-positive packet sequence number as an input, and output a bit
indicating whether this packet got lost. We deal with this issue in greater detail
in section IV-A.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

the common state at the end is the desired sample. Otherwise, we
double � and repeat. Note that the work involved is just to run
the Markov chains, albeit from two states instead of just one.

In order for the CFTP paradigm to apply, the underlying
Markov chain needs to be ergodic. In the case of TCP, whether
the chain is ergodic or not depends on the nature of the loss pro-
cess that determines whether each packet gets dropped or suc-
cessfully transmitted. Two interesting loss processes that result
in ergodicity of the TCP chain are where the packet drops are
i.i.d., and where the packet drops form a Markovian On-Off pro-
cess. A further condition is that we need to be able to sample
from the stationary distribution of the loss process, and create a
loss pattern backwards in time. A more detailed explanation is
presented in section IV-A.

We also perform a running time analysis of this scheme; in
order to obtain one exact sample, we need to simulate a TCP
connection over O(Nmix logW) packets on the average, where
Nmix is the number of packets required for the TCP Markov
chain to mix (see section IV-C for a formal definition). It is un-
realistic to expect to obtain any good sample (much less an ex-
act sample) in fewer steps than the mixing time, and hence the
running time guarantees are quite strong. Finally, we show how
simple sub-sampling techniques can allow us to sample from the
stationary distribution at a random time instant (as opposed to at
a random packet departure epoch).

Several points about the CFTP approach are worth noting.
First, even though the running time guarantee involves the quan-
tity Nmix, the algorithm does not need to know this quantity to
obtain the exact sample. This is a great asset, since computing
Nmix or an upper bound onNmix can be very complicated even
for very simple Markov chains. Second, even though proving
the correctness of the CFTP approach involves the partial order
defined in section II, the resulting sampling algorithm does not
involve any knowledge of the partial order. Again, this is very
useful since the partial order and the proof of monotonicity are
quite intricate. Finally, it is important to note that CFTP does not
strictly require monotonicityunder a partial order, although these
requirements aid analysis and greatly improve the practicality of
using CFTP. Thus, although TCP variants can demonstrate non-
monotonic behaviors [9], we believe this approach can be ex-
tended to Markov chains for other TCP variants besides the chain
considered in this paper. Also, we believe that our monotonic
partial order is interesting in its own right and may lead to fur-
ther insights into the nature of TCP congestion control.

Our simulations of simple scenarios suggest that this approach
is efficient, scales well with increasing maximum window sizes,
and yields results which are close to those obtained by running
the network simulator ns for TCP-Tahoe. Our simulation results
are quite preliminary, and it would be interesting to develop a
more extensive simulation infrastructure to explore the practical
utility of the ideas in this paper.

In this paper, we restrict ourselves to bulk TCP connections,
so we ignore the connection establishment phase. Further we
assume that the TCP slow start and congestion avoidance algo-
rithms are in place, but fast retransmit and fast recovery algo-
rithms are not (see [12], [21], [2] for a detailed description of
these algorithms). Extending our approach to all variants of TCP
and to other networkingprotocols is an interestingopen problem.

Section II defines the partial order, and section III proves that
this partial order is monotonic. Section IV details how the CFTP
paradigm can be applied to this problem, section V presents the
simulation results, and section VI concludes the paper.

II. A PARTIAL ORDER ON TCP WINDOWS

In this section, we define a simplified state space for TCP, and
provide a partial order on this state space. We show that this par-
tial order has unique minimum and maximum elements, which is
useful in applying CFTP.

Definition 1: Given a TCP connection C, the stateS(C) of the
TCP window is the triplet hMODE; SSTHRESH;CWNDi where
� MODE = SS if the TCP connection is performing slow start,
and MODE = CA if the connection is performing congestion
avoidance.
� SSTHRESH denotes the slow start threshold. If MODE = CA
then the slow start threshold is irrelevant and is denoted by the
symbol ;.
� CWND denotes the congestion window of the TCP connection.
We use MODE(S); SSTHRESH(S); and CWND(S) to denote the
three components of the state S; also we overload notation and
use MODE(C) etc. to denote MODE(S(C)) etc.

Definition 2: Let S denote the space of all valid TCP states.
We do not define formally what the valid TCP states are, but in-
voke the properties of TCP as and when needed to disqualify
states from belonging to S. In particular, we assume that a TCP
connection goes out of slow start and into congestion avoidance
as soon as the congestion window becomes equal to or exceeds
the slow start threshold.

We now define a relation � on S.
Definition 3: Given two states A;B 2 S, the relationA � B

holds if and only if exactly one of the following is true:
1. MODE(A) = MODE(B) = CA and CWND(A) �
CWND(B)
2. MODE(A) = MODE(B) = SS , SSTHRESH(A) �
SSTHRESH(B), and CWND(A) � CWND(B)
3. MODE(A) = SS , MODE(B) = CA , and SSTHRESH(A) �
CWND(B)
4. MODE(A) = CA , MODE(B) = SS , and CWND(A) �
CWND(B)

This relation has some very interesting properties. In partic-
ular, we will show that this relation is a partial order. Figure 1
illustrates this partial order for a simple case.

A. The partial order property

We now claim that the relation � is a partial order i.e. it is
reflexive, anti-symmetric, and transitive.

Theorem 1: The relation � is a partial order.
Proof: X � X is trivial to prove, so reflexivity holds.

To prove anti-symmetry, we need to show that ifX 6= Y then
X � Y) Y 6� X. The proof is by contradiction. Suppose
X 6= Y;X � Y and Y � X. We consider four cases:
1. Suppose MODE(X) = MODE(Y) = CA . Then, com-
bining X � Y with rule 1 in definition 3, we know that
CWND(X) � CWND(Y). Since Y � X also holds, we know
that CWND(Y) � CWND(X) i.e. CWND(X) = CWND(Y).
Since MODE(X) = MODE(Y) = CA , we know that

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

(CA, ,4)

(SS,3,2)

(SS,4,3)

(SS,4,2)

(SS,4,1)

(SS,2,1)

(SS,3,1)

(CA, ,2)

(CA, ,3)

Fig. 1. A pictorial representation of the partial order � for a small set of TCP
window states. There is a directed path from B to A in the above graph iff
A � B. Notice that there is a minimum state (SS ; 2;1), a maximum state
(CA ; ;;4), and that there are incomparable states (eg. the states (CA ; ;;3)
and (SS ; 4; 2)).

SSTHRESH(X) = SSTHRESH(Y) = ;. Hence X = Y which
is a contradiction.
2. Suppose MODE(X) = MODE(Y) = SS . Then com-
bining rule 2 in definition 3 with X � Y and Y � X,
we get SSTHRESH(X) � SSTHRESH(Y); SSTHRESH(Y) �
SSTHRESH(X);CWND(X) � CWND(Y); and CWND(Y) �
CWND(X) simultaneously. Together, these imply that X = Y ,
which is a contradiction.
3. Suppose MODE(X) = SS and MODE(Y) = CA . Then
by rule 3 and the fact that X � Y , we get SSTHRESH(X) �
CWND(Y). Combining rule 4 with Y � X, we get
CWND(Y) � CWND(X). Together, the two imply that
SSTHRESH(X) � CWND(X). But TCP goes out of slow start
and into congestion avoidance when the congestion window be-
comes equal to or exceeds the slow start threshold. Hence state
X could not be in slow start mode, which is a contradiction.
4. Suppose MODE(X) = CA and MODE(Y) = SS . This is
symmetric with the previous case.
Since all four cases above result in a contradiction, we have es-
tablished that � is anti-symmetric.

We must now prove that � is transitive i.e. X � Y and Y �
Z together imply X � Z. Again, we divide the proof into four
steps:
1. Suppose MODE(X) = MODE(Y) = CA . If MODE(Z) =
CA , then by rule 1, we have CWND(X) � CWND(Y) �
CWND(Z) which implies that CWND(X) � CWND(Z). Invok-
ing rule 1 again, we have X � Z. If MODE(Z) = SS , then by
rules 1 and 4, we have CWND(X) � CWND(Y) � CWND(Z);
invoking rule 4 again implies that X � Z.
2. Suppose MODE(X) = MODE(Y) = SS . If
MODE(Z) = SS then by invoking rule 2, we know that
CWND(X) � CWND(Y) � CWND(Z) and SSTHRESH(X) �
SSTHRESH(Y) � SSTHRESH(Z); invoking rule 2 again, we

obtainX � Z. If MODE(Z) = CA then invoking rules 2 and 3,
we get SSTHRESH(X) � SSTHRESH(Y) � CWND(Z); rein-
voking rule 3 gives X � Z.
3. Suppose MODE(X) = SS and MODE(Y) = CA .
If MODE(Z) = CA then invoking rules 3 and 1, we get
SSTHRESH(X) � CWND(Y) � CWND(Z); invoking rule 3
again gives X � Z. The case MODE(Z) = SS is a little more
involved. Invoking rules 3 and 4, we get SSTHRESH(X) �
CWND(Y) � CWND(Z). This in itself is not enough to in-
voke rule 2 and claim that X � Z. But observe that since
X and Z are both in slow start, we know that CWND(X) <

SSTHRESH(X) and CWND(Z) < SSTHRESH(Z). Combin-
ing these two inequalities with SSTHRESH(X) � CWND(Z)
gives CWND(X) < SSTHRESH(X) � CWND(Z) <

SSTHRESH(Z). We can now invoke rule 2 to claim thatX � Z.
4. Suppose MODE(X) = CA and MODE(Y) = SS . If
MODE(Z) = SS , then rules 4 and 2 imply that CWND(X) �
CWND(Y) � CWND(Z); invoking rule 2 again gives X � Z.
If MODE(Z) = CA , then rule 4 implies that CWND(X) �
CWND(Y), MODE(Y) = SS implies that CWND(Y) <

SSTHRESH(Y), and rule 3 implies that SSTHRESH(Y) �
CWND(Z). Combining the above, we obtain CWND(X) <

CWND(Z); invoking rule 1 now gives us X � Z.

It is interesting to note that the partial order � is a total order if
restricted to only those states which are in the congestion avoid-
ance mode. The above proof illustrates how the definition of �
is carefully tailored for us to be able to prove that the relation �
is a partial order. There are other partial orders that can be de-
fined on the TCP window state space. What makes the relation
� particularly interesting is the existence of a minimum and a
maximum element.

B. The lower bound property

We now define a special “lower bound” state L̂.
Definition 4: The state L̂ is hSS ; 1; 1i i.e. the TCP connec-

tion is in slow start, and the congestion window and the slow start
threshold2 are both set to 1.
The state L̂ is a minimum i.e. L̂ � X for all X 2 S. This is
easily verified by looking at rules 2 and 3.

C. The upper bound property

We now define a special “upper bound” state Û . We use
the terms max cwnd and max ssthresh to refer to the max-
imum possible window size and the maximum possible slow
start threshold, respectively. These terms typically depend on
the TCP variant in use, the advertised window size of the re-
ceiver, and the configuration of the end-hosts. We assume that
max ssthresh� max cwnd; if not then max ssthresh can be
set equal to max cwnd without any change in TCP behavior. By
a similar argument, we assume that max cwndis no larger than
the receiver’s advertised congestion window.

Definition 5: The state Û is hCA ; ;;max cwndi i.e. the
TCP connection is in the congestion avoidance phase and the
congestion window is the maximum possible.

2Most variants of TCP set the congestion window to at least 2; for these vari-
ants we should define L̂ = hSS ;2; 1i. All the results in this paper hold with
this variation as well.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

The state Û is a maximum i.e. X � Û for all X 2 S. This is
easy to verify by looking at rules 1 and 3.

III. MONOTONICITY IN THE TCP WINDOW SPACE

We show here that the partial order � has a nice monotonic
property which allows us to apply Coupling from the Past, as-
suming the loss process satisfies certain useful properties.

Consider two valid statesX andY of a TCP connectionC such
that X � Y . Let Next(X) and Next(Y) denote the states of this
connection after sending one packet each from states X and Y
and receiving the corresponding ACK or NACK. Here we make
the following simplifying assumption: when a loss occurs, it be-
gins a loss event that causes all subsequent packets to be lost un-
til a timeout occurs. Since we are not using fast retransmit or
fast recovery, essentially this assumption provides a lower bound
on TCP performance; we ignore packets that may have been re-
ceived that and will be acknowledged later. Similar assumptions
have been made in other work, e.g. [19], [3].

If we couple the fate of the next packet sent in stateX with the
fate of the next packet sent in state Y (i.e. either both begin a loss
event, or both are successfully transmitted), then Next(X) �
Next(Y).

We recall how Next(X) depends on X.
1. If MODE(X) = SS , then a successful transmission yields
CWND(Next(X)) = CWND(X)+ 1. Also MODE(Next(X)) =
CA if CWND(Next(X)) = SSTHRESH(X) =
SSTHRESH(Next(X)).
2. If MODE(X) = CA , then a successful transmission yields
CWND(Next(X)) = CWND(X) + 1=CWND(X).
3. On a packet loss, MODE(Next(X)) = SS ,
SSTHRESH(Next(X)) = maxfdCWND(X)=2e; 2g, and
CWND(Next(X)) = 1.

Before proving the theorem for the above setup, it is worth em-
phasizing that our approach could easily apply to other common
TCP simplifications. For example, in some cases TCP is mod-
eled without slow start; it is instead assumed that the process is
always in congestion avoidance, and that a loss causes the send-
ing window to shrink by some constant factor. (See, for exam-
ple, [19], [3] for relevant discussions.) In this case our Markov
chain state space would be even simpler (we could avoid the SS
mode altogether), and we we could prove monotonicity in a man-
ner similar to the theorem below.

Theorem 2: If X � Y then Next(X) � Next(Y).
Proof: As before, we require a careful case by case analy-

sis:
1. Suppose MODE(X) = MODE(Y) = CA . Then
by rule 1 in definition 3, we know that CWND(X) �
CWND(Y). If there is no loss, then MODE(Next(X)) =
MODE(Next(Y)) = CA , CWND(Next(X)) = CWND(X)
+ 1=CWND(X), and CWND(Next(Y)) = CWND(Y) +
1=CWND(Y). Now CWND(Next(X)) � CWND(Next(Y)), as
the function f(x) = x + 1=x is increasing in x for x �
1. Hence CWND(Next(X)) � CWND(Next(Y)), so by
rule 1 in definition 3, Next(X) � Next(Y). If there is a
loss, then MODE(Next(X)) = MODE(Next(Y)) = SS ,
CWND(Next(X)) = CWND(Next(Y)) = 1,
SSTHRESH(Next(X)) = maxfdCWND(X)=2e; 2g, and
SSTHRESH(Next(Y)) = maxfdCWND(Y)=2e; 2g. Note

SSTHRESH(Next(X)) � SSTHRESH(Next(Y)). By rule 2 in
definition 3, Next(X) � Next(Y).
2. Suppose MODE(X) = MODE(Y) = SS . By rule 2 in
definition 3 we have SSTHRESH(X) � SSTHRESH(Y) and
CWND(X) � CWND(Y). If there is a loss, it is as in case
1. If there is no loss, then the SSTHRESH remain unchanged,
CWND(Next(X)) = CWND(X) + 1, and CWND(Next(Y)) =
CWND(Y) + 1, so CWND(Next(X)) � CWND(Next(Y)). If
both states remain in mode SS , then by rule 2 in definition 3,
Next(X) � Next(Y). If both states move to mode CA , then by
rule 1 in definition 3, Next(X) � Next(Y). If state X moves to
mode CA and Y does not, by rule 4 in definition 3, Next(X) �
Next(Y). If state Y moves to mode CA and X does not, then
SSTHRESH(X) � SSTHRESH(Y) � CWND(Next(X)), so by
rule 3 in definition 3, Next(X) � Next(Y).
3. Suppose MODE(X) = SS and MODE(Y) = CA . Then
by rule 3, CWND(X) < SSTHRESH(X) � CWND(Y).
If there is a loss, it is as in case 1. If there is no loss,
then SSTHRESH(X) remains unchanged, CWND(Next(X))
= CWND(X) + 1, and CWND(Next(Y)) = CWND(Y) +
1=CWND(Y). If MODE(Next(X)) = SS , then we have
CWND(Next(X)) < SSTHRESH(X) < CWND(Next(Y)), and
by rule 3 in definition3, Next(X)�Next(Y). If MODE(Next(X))
= CA , then CWND(Next(X)) = SSTHRESH(X) <
CWND(Next(Y)), and by rule 1 in definition 3, Next(X) �
Next(Y).
4. Suppose MODE(X) = CA and MODE(Y) = SS .
Then by rule 4 in definition 3, CWND(X) � CWND(Y).
If there is a loss, it is as in case 1. If there is no loss,
then CWND(Next(X)) = CWND(X) + 1=CWND(X), and
CWND(Next(Y)) = CWND(Y) + 1. If MODE(Next(Y)) =
SS , then by rule 4 in definition 3, Next(X) � Next(Y); other-
wise, it follows by rule 1.

IV. APPLYING CFTP TO THE TCP WINDOW SPACE

In this section, we demonstrate how to use our previous results
to apply CFTP to the TCP window space. We confine ourselves
to bulk TCP connections; specifically, we choose a position in
the stream and label its packet sequence number as 0, and we as-
sume there are an infinite sequence of packets prior to this one.
Our goal is to find the state of the TCP connection as seen by this
packet. All other packets have negative numbers. Further, we re-
quire that each packet is labeled with a bit that indicates whether
this packet was successfully transmitted by the network. A loss
process is a stochastic process that produces this labeling of the
infinite stream of packets.

In this paper, we are concerned with loss processes where
packet drops are governed by a Markov chain. A loss pro-
cess along with the TCP congestion control algorithms define a
Markov chain that we call the TCP Markov chain. Note that in
our TCP Markov chain, we do not include packets that are sent
out after the dropped packet (until a timeout happens); hence our
loss process really signals loss events.

A. Ergodic TCP loss processes

Definition 6: A loss process is said to be an ergodic TCP loss
process if the resulting TCP Markov chain is ergodic.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

One sufficient condition for a loss process to be an ergodic TCP
loss process is that arbitrarily long sequences of packet drops and
successful packet transmissions should occur with a non-zero
probability. Two interesting loss processes that result in ergod-
icity of the TCP chain are where the packet drops are i.i.d, and
where the packet drops form a Markovian On-Off process.

In order for the CFTP paradigm to apply, we need to be able to
generate the loss pattern from �1 to 0. Since this is an infinite
sequence, we can not enumerate it in any traditional sense; in-
stead we need to generate elements of this sequence on demand
and in a consistent fashion. For i.i.d. drops, it is easy to gener-
ate elements of this sequence on demand. For Markovian On-
Off drops, we can sample from the stationary distribution of the
On-Off process to determine whether packet 0 got dropped. We
can then do a backwards walk in the On-Off Markov chain to
generate other elements of this sequence on demand. Sampling
from the stationary distribution of a Markovian On-Off process
is easy. Similar techniques should apply for other natural loss
processes.

B. Applying CFTP to sample from the TCP state space

We use the CFTP paradigm for monotonic Markov chains as
defined by Propp and Wilson [20] to obtain a sample from the
stationary distribution of TCP window sizes. The evolution of
the states L̂ and Û in the Markov chain is simulated from event
�� to 0. If the two processes are in the same state at event 0, then
this common state is output as the sample from the stationary dis-
tribution. If not, then � is doubled and the process is repeated.
Note that doubling � is chosen for simplicity; any factor greater
than one would do. (See [20] for details.) It is important to reuse
the same random numbers at event�t during all the iterations of
the algorithm. In our scenario, this means that during all the it-
erations of the algorithm, we should have a consistent view of
whether the packet numbered �t was lost. The main intuition is
that when the sample paths starting from the bottom state L̂ and
the top state Û converge, they sandwich the entire state space in
between. It is important to follow this procedure exactly as de-
scribed and not cut corners such as simulating states L̂ and Û
forward in time from event 0 till they converge. The reader is
referred to an excellent description of the process by Propp and
Wilson [20] for more detail.

The following theorem follows from a general theorem due
to Propp and Wilson [20] regarding the correctness of the CFTP
paradigm.

Theorem 3: The algorithm outlined above samples exactly
from the stationary distribution of the Markov chain defined by
the TCP slow start and congestion avoidance mechanisms in
conjunction with an ergodic TCP loss process.

C. Running Time Analysis

We first need some definitions. Assume we are given an er-
godic Markov chain M ; further assume that the state space of
this Markov chain is equipped with a partial order, a minimum
state, a maximum state, and a monotonic property.

Definition 7: Let �d(k) = max�1 ;�2 jj�
k
1
� �k

2
jj where �k is

the distribution governing the Markov chain M after k transi-
tions, when started in a random state governed by the distribu-
tion �. The mixing time Tmix(M) is defined to be the smallest k

for which �d(k) � 1=e.
The mixing time need not necessarily be a “time;” in fact, for the
TCP Markov chain it is going to denote the number of packets
transmitted.

Definition 8: The convergence timeT �(M) denotes the num-
ber of simulation steps required by the CFTP process to return a
sample from the stationary distribution of M .

Definition 9: Given a partial order on the state of the Markov
chainM , the chain-lengthC(M) ofM is the lengthof the largest
ordered sequence of distinct states.

The following general lemma was proved by Propp and Wil-
son.

Lemma 4: E[T �(M)] � 2Tmix(M) � (1 + lnC(M)):

Let W denote the maximum congestion window size of the
TCP connection under study, and let Nmix denote the mixing
time of the TCP Markov chain.

Lemma 5: The number of distinct states in the TCP Markov
chain is O(W 3).

Proof: We need to prove that jSj = O(W 3). If a TCP
connection is in the slow start mode, then its slow start threshold
and congestion window are both integers� W . Hence the num-
ber of different slow-start states is at most W 2. Now suppose
that the TCP connection is in the congestion avoidance phase,
and that the transition from slow start to congestion avoidance
was made when the window size was x. There are at most W
choices for the value of x. Also, each successful ack during con-
gestion avoidance results in the window size being increased by
at least 1=W . Consequently, there can be at most W 2 distinct
window sizes encountered as the window increases from x to
W . Hence, there can be at most W 3 different states in the con-
gestion avoidance phase. The total number of states is at most
W 2 +W 3 = O(W 3).

Since the chain-length can not be any larger than the number
of states, we obtain the following theorem:

Theorem 6: The convergence time for the TCP Markov chain
is O(Nmix lnW).

D. Sub-sampling to obtain samples at a random time

When the window size is large, a large number of packets see
that window size. Thus the stationary distribution as seen by a
random packet is biased towards larger window sizes compared
to the stationary distribution at a random time instant. In order
to obtain a sample from the latter distribution, we need to dis-
card some of the samples returned by the CFTP process outlined
above.

We use the term sampling interval to represent the larger of
the timeout value and the RTT for the TCP connection (the time-
out value is the duration after which the sender presumes that an
unacknowledged packet has been dropped). We denote the sam-
pling interval by I. To obtain samples at a random time we use
the following sub-sampling algorithm:
1. Use CFTP to obtain a sample X from the stationary distribu-
tion of the TCP state space as seen by a random packet.
2. Simulate the TCP connection starting from X to determine
the interval I 0 after which the next packet is sent.
3. With probability I 0=I, output this sample and exit; else, go
back to step 1.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

The following theorem states that the sub-sampling algorithm is
correct and efficient.

Theorem 7: The sub-sampling algorithm outlined above re-
turns an exact sample from the stationary distributionof the TCP
Markov chain as seen at a random time instant. Further, the sub-
sampling algorithm makes at most W � (I=RTT) calls to the
CFTP algorithm on an average.

Proof:
(a) Correctness: This part is relatively straightforward, so in-
stead of giving a formal proof, we sketch the main intuition. As-
sume that the state of the TCP connection changes at packet-
departure epochs. Now the state seen by a random packet per-
sists till the next packet is sent out. This happens an interval I 0

later. Therefore we need to weight this sample by I 0. Since I 0

must be less than I (recall that I is the larger of the RTT and
the timeout), choosing to retain the sample with probability I 0=I
gives it the appropriate proportional weight.
(b) Running time: Let us artificially divide the entire packet se-
quence into chunks of W contiguous packets. Let us examine
a specific chunk B. Let I 0

1
denote the time between the first

and second packet departures in the chunk, I 0

2
denote the time

between the second and third packets in the chunk, and so on.
Further, let I 0

W denote the time between the last packet depar-
ture from chunk B and the first packet departure from the next
chunk. The CFTP algorithm in section IV-B gives a sample from
the stationary distribution as seen by a random packet. Let us
condition our sample such that the random packet must belong
to chunk B. Given this conditioning, each of the W packets on
this chunk is chosen with probability 1=W . Hence the probabil-
ity that the sub-sample succeeds is (1=W)

PW

j=1 I
0

j=I. Since the
chunk is of size W (i.e. the maximum window size), it requires
at least RTT time to go across, which implies that

PW

j=1 I
0

j �
RTT. Therefore the success probability given this conditioning
is at least (1=W) � (RTT=I). We did not use any special prop-
erties of the chunk B, so the same lower bound on the success
probability holds if we remove the conditioning. It now follows
that the expected number of samples required for success is at
most W � (I=RTT).

The sub-sampling algorithm as stated above seems to require
a knowledge of the exact values of the timeout and the RTT.
However, the same algorithm continues to work if we use any
I � maxfRTT, timeoutg.

V. SIMULATION RESULTS

We built a simple implementation to test the feasibility and
utility of our CFTP framework. We present results only for the
case where each packet is lost independently with probability p.
(Of course in this case the equilibrium distribution for the TCP
Markov chain we have described could be calculated explicitly,
but the number of states grows rapidly in the window size.)

Our implementation takes as input the maximum window size
max cwnd, and a drop probability p. The maximum slow start
threshold is assumed to be the same as the maximum window
size. We allow a congestion window of size one, and the mini-
mum slow start threshold after a drop is two. Initially we simu-
late two steps of the Markov chain, and then we double the num-
ber of time steps simulated if coupling has not occurred between

Drop max cwnd= 40 max cwnd= 400
Rate p Avg. Max. Avg. Max.
0.001 1585.4 16384 5479.0 16384
0.01 350.8 1024 451.0 2048
0.02 174.1 1024 211.8 1024
0.03 121.3 512 130.9 512
0.04 83.6 256 93.2 512
0.05 68.7 256 72.7 512
0.06 53.6 256 56.7 256
0.07 44.3 256 47.6 256
0.08 38.4 256 44.3 256

TABLE I

QUICK SAMPLES FROM THE CFTP METHOD.

Drop max cwnd= 40 max cwnd= 400
Rate p Avg. CWND Avg. CWND

0.001 33.71 47.36
0.01 14.16 14.25
0.02 9.77 10.09
0.04 6.93 7.07
0.08 4.97 5.02

TABLE II

AVERAGE CWND VALUE FROM CFTP SAMPLES.

the upper and lower bound states. Hence when we describe the
number of steps required before coupling, our implementation
always gives a power of two. Recall that this is not a require-
ment, but simply a convenient choice.

In Table I, we show the average and maximum number of time
steps (or equivalently packets) required before a state was out-
put over 1,000 trials and various drop rates when the window
size was set to 40 and 400 packets. The average is significantly
smaller than the maximum; often CFTP yields an exact sam-
ple quickly. When the probability of a drop p is small, the cou-
pling time is essentially dominated by the time for the conges-
tion window of the lower bound state to reach its maximum size
max cwnd. When p is larger, the bounding states tend to cou-
ple more quickly, as the congestion window of the upper state
quickly decreases toward the lower state. As predicted in the the-
ory of Section IV, scaling up to a large maximum window size
does not dramatically increase the running time required, partic-
ularly when the drop rate is high. Importantly, this suggests that
CFTP may be a useful alternative approach when the number of
states grows too large for explicit calculations of the equilibrium
distribution.

In Table II, we show the average CWND for our simulation.
Note that this average is the average CWND experienced by each
packet, and not the average over time. It is interesting to note that
CWND still appears to follows the square root law (see e.g. [19])
in our simulations; that is, CWND falls roughly proportionally
to 1=

p
p. Also, as one might expect, the difference between the

average CWND value does not differ significantly between the
smaller and larger window size unless the drop rate is low.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

We also provide results comparing our CFTP implementation
to a ns simulation with 10,000 packets using the Tahoe proto-
col. We examined the specific case where the drop probability
p is 0:01 and the maximum congestion window, max cwnd, is
40. We re-ran our CFTP simulation to obtain 1,000 new samples
for this comparison. We found that the average congestion win-
dow over all packets was 14.77 in our CFTP samples, while it
was 14.33 for the ns simulation. As another point of comparison,
5.2% of the samples were in the slow start mode for our CFTP
samples, while 5.7% of the packets were in slow start mode for
the ns simulation. We would expect the agreement to be rough,
both because we are sampling and because our Markov chain is
not a true faithful representation of the Tahoe protocol. These re-
sults suggest that our approach can lead to good approximations
for actual TCP behavior.

VI. CONCLUSIONS

We presented a partial order on the space of TCP window
states that possesses a natural monotonic property. This leads
to an efficient application of the “Coupling From The Past”
paradigm to sample from the stationary distributionof TCP win-
dow states as seen by a random packet. The convergence time
of this scheme is O(Nmix lnW) where Nmix is the number of
steps required for the underlying TCP Markov chain to mix and
W is the maximum window size of. It is unrealistic to expect
an exact sample in less thanNmix steps. Hence, the above algo-
rithm is only a small factor (lnW) away from the optimum. At
the same time, the algorithm does not need to know Nmix. We
also showed how a simple sub-sampling algorithm can be used
to obtain a sample at a random time instant. Our partial order
and proof of monotonicity may well be of independent interest
and may yield new insight into the structure of TCP congestion
control algorithms. Our simulations of simple scenarios suggest
that this approach is efficient, scales well with increasing max-
imum window sizes, and yields results which are close to those
obtained by running the network simulator ns for TCP-Tahoe.

The above approach can potentially give rise to the following
new paradigm for network simulations: instead of simulating a
protocol over long times, or explicitly finding the stationary dis-
tributionof the states of the protocol, try to quickly obtain a “typ-
ical” sample of the state of the protocol. Our approach currently
works for a simplified TCP model that does not employ fast re-
covery. Extending these ideas to other TCP variants and other
network protocols is an important open problem. Also, it would
be interesting to develop a simulation infrastructure to explore
the practical utility of the ideas in this paper.

REFERENCES

[1] D.J. Aldous. A random walk construction of uniform spanning trees and
uniform labelled trees. SIAM Journal on Discrete Mathematics, 3(4):450–
465, 1990.

[2] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP Congestion Con-
trol. 1999.

[3] Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat. A stochastic
model of TCP/IP with stationary randomlosses. In SIGCOMM, pages231–
242, 2000.

[4] S. Asmussen, P. Glynn, and H. Thorisson. Stationary detection in the ini-
tial transient problem. ACM trans. on modeling and comp. simulation,
2(2):130–157, 1992.

[5] A. Broder. Generating random spanning trees. 30th Annual Symposium on
Foundations of Computer Science, pages 442–447, 1989.

[6] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling TCP la-
tency. In INFOCOM, pages 1742–1751, 2000.

[7] S. Cho and A. Goel. Exact sampling in machine scheduling problems. To
appear in the 5th international workshop on Randomization and Approxi-
mation Techniques in Computer Science (RANDOM ’01), 2001.

[8] P. Diaconis and L. Saloff-Coste. What do we know about the metropo-
lis algorithm? Twenty-Seventh Annual ACM Symposium on the Theory of
Computing, pages 112–129, 1995.

[9] K Fall and S Floyd. Simulation-based comparisons of Tahoe, Reno and
SACK TCP. Computer Communication Review, 26(3):5–21, 1996.

[10] J. Fill. An interruptible algorithm for perfect sampling via Markov chains.
Annals of Applied Probability, 8(1):131–162, 1998.

[11] M. Huber. Exact sampling and approximate counting techniques. 30th
ACM Symposium on the Theory of Computing, pages 31–40, 1998.

[12] V. Jacobson. Congestion avoidance and control. Computer Communica-
tion Review, 18(4):314–29, 1988.

[13] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an
approach to approximate counting and integration. In ”Approximation Al-
gorithms for NP-hard Problems,” D.S.Hochbaum ed., 1996.

[14] L. Lovász and P. Winkler. Exact mixing in an unknown Markov chain.
Electronic Journal of Combinatorics, 2, paper #R15, 1995.

[15] Vishal Misra, Wei-Bo Gong, and Donald F. Towsley. Fluid-based analysis
of a network of AQM routers supporting TCP flows with an application to
RED. In SIGCOMM, pages 151–160, 2000.

[16] M. Mitzenmacher and R. Rajaraman. Towards more complete models of
tcp latency and throughput. Journal of Supercomputing, 2001.

[17] ns: UCB/LBNL/VINT network simulator. http://www-
mash.cs.berkeley.edu/ns/.

[18] J. Padhye, V. Firoiu, and D. Towsley. A stochastic model of TCP Reno
congestion avoidance and control. CMPSCI Technical Report 9902, Uni-
versity of Massachusetts, Amherst, MA, 1999.

[19] Jitedra Padhye, Victor Firoiu, Don Towsley, and Jim Krusoe. Modeling
TCP throughput: A simple model and its empirical validation. In ACM
SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication, pages 303–314, Vancouver,
CA, 1998.

[20] J.G. Propp and D.B. Wilson. Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Structure & Algorithms,
9:223–252, 1996.

[21] W. R. Stevens. TCP/IP Illustrated, Volume 3; TCP for Transactions, HTTP,
NNTP and the UNIX Domain Protocols. Addison Wesley, Reading, 1995.

[22] M. Zorzi, A. Chockalingam, and R. Rao. Throughput analysis of tcp on
channels with memory. IEEE J. Selected Areas Comm., 18:1289–1300,
July 2000.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

