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Abstract 

COUNTER algorithms, a family of randomized algorithms for the list update problem, were introduced by Reingold, 
Westbrook, and Sleator (1994). They showed that for any E > 0, there exist COUNTER algorithms that achieve a 
competitive ratio of & + E. In this paper we use a mixture of two COUNTER algorithms to achieve a competitiveness of 
12/7, which is less than a. Furthermore, we demonstrate that it is impossible to prove a competitive ratio smaller than 
12/7 for any mixture of COUNTER algorithms using the type of potential function argument that has been used so far. We 
also provide new lower bounds for the competitiveness of COUNTER algorithms in the standard cost model, including a 
1.625 lower bound for the variant BIT and a matching 12/7 lower bound for our algorithm. @ 1997 Elsevier Science B.V. 
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1. Introduction 

The list update problem, a fundamental and exten- 
sively studied on-line problem, is to maintain an un- 
sorted linear linked list so as to minimize the total 
cost of accesses on a sequence of requests. (The for- 
mal definition of the problem is given in the next sec- 

tion.) List update algorithms are useful for maintain- 
ing small dictionaries and can be used as subroutines 
in adaptive data compression schemes. For more in- 
formation, see, for example, [ 41 or [ 21. 

The best competitive ratio that can be achieved 
by deterministic on-line algorithms is 2. Sleator and 
Tarjan [ 81 proved that the Move-To-Front rule is 2- 
competitive, and Karp and Raghavan [5] observed 
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that this is the best achievable competitive ratio for 

any deterministic on-line algorithm for the problem. 
More recent work has focused on randomized list up- 

date algorithms. Here we consider algorithms against 
the oblivious adversary, see [ 31. Against adaptive ad- 
versaries, no randomized on-line algorithm for list up- 
date can be better than 2-competitive. 

Reingold et al. [ 71 developed an elegant family of 
so-called COUNTER algorithms. On each request to 
an item in the list, these algorithms either move the 
item to the front of the list or leave it where it is. The 
decision whether to move or not depends on the value 
of a counter that is initialized randomly. For any posi- 

tive E, there are algorithms in this family that achieve 
a competitive ratio of &+c M 1.73 +E. Randomized 
algorithms achieving a better competitive ratio were 
presented in [ 11, A drawback of these algorithms is 
that, in a straightforward implementation, a second 

0020-0190/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved. 

PUSOO20-0190(97)00160-9 



156 S. Albers, M. Mitzenmacher/lnformation Processing Letters 64 (1997) 155-160 

pass through the list is required after each request to 
an item. In some applications, such as data compres- 
sion, this may not be of concern; however, in other ap- 

plications, the simplicity and ease of implementation 
of COUNTER algorithms may be preferable. 

This paper is motivated by the goal of finding im- 
proved simple randomized list update algorithms. In 
particular we reconsider the COUNTER algorithms 

and show that, by properly mixing variants of these 

algorithms, one can achieve a competitive ratio of 
12/7, which is less than 4. Furthermore, we demon- 

strate that it is impossible to prove a competitive ratio 
smaller than 12/7 for any mixture of COUNTER al- 
gorithms using the type of potential function argument 

that has been used so far. 
Next, we develop new lower bounds on the com- 

petitive ratio of COUNTER algorithms in the standard 
model that are very close to the upper bounds devel- 
oped by Reingold et al. [ 71. Our results demonstrate 
that BIT, the simplest and most well-known member 
of the COUNTER family, is not better than 1.625 

competitive. Also, it demonstrates that our analysis of 
the 12/7-competitive mixed algorithm is tight. 

Finally, we briefly describe how the technique of 

mixing COUNTER algorithms can be also used to 
improve similar counter-based on-line algorithms for 

page migration from [ 91. 

2. The list update problem and COUNTER 
algorithms 

We formally define the list update problem. Con- 
sider n items stored in an unsorted linear linked list. 
A list update algorithm receives a sequence of re- 
quests, where each request specifies one item in the 
list. To serve a request, the algorithm must access the 
requested item, i.e. it starts at the front of the list and 
proceeds linearly through the items until the desired 
item is found. In the standard model, serving an ac- 
cess to the item at position i in the list incurs a cost 
of i. Immediately after an access, the accessed item 
may be moved at no extra cost to any position closer 
to the front of the list. These exchanges are calledfree 
exchanges. At any time two adjacent items in the list 
may also be exchanged at a cost of 1; these exchanges 
are called paid exchanges. The goal is to serve a se- 
quence of requests so that the total cost is as small as 

possible. A list update algorithm typically works on- 
line, i.e., when serving a present request, the algorithm 

has no knowledge of future requests. 
A randomized list update algorithm A is c- 

co.mpstitive against any oblivious adversary if there 

exists a constant a such that, for all list sizes and all 
request sequences cr, 

E[CA(~)I < C. COFT(~) + a. 

Here E[ CA(a) ] denotes the expected cost incurred 
by A, and Cop~( (+) denotes the cost incurred by an 
optimal ofline algorithm on c. An optimal offline al- 
gorithm knows the entire request sequence in advance 
and can serve it with minimum cost. 

In 171, Reingold et al. first presented an elegant ran- 
domized algorithm, called BIT. For each item x in the 
list, BIT maintains a bit b(x). These bits are initial- 
ized independently and uniformly at random. When- 
ever an item x is accessed, its bit is complemented. 
If the bit changes to 0, the item is moved to the front 
of the list; otherwise the position of the item remains 
unchanged. Reingold et al. [7] showed that BIT is 
1.75competitive. 

The COUNTER algorithms are a generalization of 
the BIT algorithm. Let s be a positive integer, which 
we shall call the counter size, and let S be a nonempty 

subset of (0,. . . , s - 1). A COUNTER(s, S) algo- 

rithm maintains a counter modulo s for each item in 
the list. The counters are initialized independently and 
uniformly at random to a value in (0, . , . , s - 1). On 
each access to an item X, the counter of x is decre- 
mented by 1, and x is moved to the front of the list if 
the counter value is in S. Reingold et al. [7] showed 
that for any E > 0, there is a (& + E)-competitive 
COUNTER algorithm. Note that COUNTER algo- 

rithms are barely random, which means that they use 
only a constant number of random bits (for the ini- 
tialization of the counters) regardless of the number 

of requests. Reingold et al. [7] also demonstrate a 
&-competitive algorithm that is not barely random, 
based on the similar family of RANDOM RESET al- 
gorithms. 

3. Improved COUNTER algorithms 

In this section, we show how to mix COUNTER 
algorithms to achieve a better competitive ratio of 
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12/7. We first extend the notation to include mix- 

tures of COUNTER algorithms. If CL, qi = 1, we 
let COUNTER(sl,S1,ql;...;sk,&,qk) be the ran- 
domized on-line algorithm that uses the algorithm 

COUNTER( Si, Si) with probability qi. Note that, if 
all the si are distinct, this is equivalent to choosing 
the counter size randomly. 

Given a particular COUNTER algorithm and a se- 
quence u = g(l),a(2),...,a(m) of accesses, let 

Cm( a( t) ) and Cop~( a( t) ) denote the actual costs 
incurred by COUNTER and OPT on a(t), 1 < t < m. 

In [ 61, it was shown that there exists an optimal of- 
fline algorithm that only uses paid exchanges to move 
items in the list; we will implicitly use this in what 
follows. Reingold et al. [ 71 analyzed list update algo- 

rithms using potential functions. 

Definition 1. Given a sequences of accesses u and a 
non-negative potential function @, a 

COUNTER(sl,S1,ql;...;sk,Sk,qk) 

algorithm is called 

(a> 

(b) 

cl-competitive on accesses if for every access 

a(t) in g, 

E[Ccr((+(t))l +E[A@l < clCom-(dt)). 

Here E[A@] is the expected change in potential 
during the operation. 
~-competitive on paid exchanges if E[ A@] 6 c2 
for any paid exchange made by OPT. 

The bounds of [ 71 are obtained by noting that if a 

COUNTER( s, S) algorithm is cl -competitive on ac- 
cesses and c2-competitive on paid exchanges, then it is 
max{cl , cz}-competitive. We improve on this by tak- 
ing mixtures of COUNTER algorithms. 

We introduce a key proposition, taken from Theo- 
rem 3.5 in [ 71, that describes the competitiveness of 
COUNTER( s, S) algorithms on accesses and paid ex- 
changes. For a COUNTER( s, S) algorithm, let pj be 
the probability that an item will next move to the front 
after j accesses. (For example, in the BIT algorithm, 

PI =p2 = l/2.) 

Proposition 2. COUNTER( S, S) is ( 1 +pl cJ=, jpj) - 

competitive on accesses and ( CJ=, jpj ) -competitive 

on paid exchanges. 

The following theorems show that a simple mixture 

of COUNTER algorithms yields a smaller competitive 
ratio than any individual COUNTER algorithm under 
current methods of analysis, and that the mixture we 
present is currently the best possible: 

Theorem 3. The algorithm 

COUNTER(2, {0},4/7; 3, {0}, 3/7) 

is 12/7-competitive. 

Note that 12/7 = 1.714.. . < & = 1.732.. . . 
Moreover, this mixture of COUNTER algorithms is 

barely random and uses a very small number of ran- 
dom bits and bits of memory per item. 

Proof. By Proposition 2, COUNTER( 2, (0)) is 7/4- 
competitive on accesses and 3/2-competitive on paid 
exchanges. Similarly, COUNTER( 3, (0)) is 5/3- 
competitive on accesses and 2-competitive on paid 
exchanges. It is straightforward to check using the 
linearity of expectations that COUNTER( 2, {0}, 4/7; 

3, {0}, 3/7) is then 12/7-competitive on accesses 
as well as on paid exchanges and therefore 12/7- 
competitive. 0 

Theorem 4. It is impossible to prove a competitive 
ratio smaller than 1217 for any COUNTER algorithm 

using only Proposition 2. 

Proof. The proof is a standard game-theoretical ar- 
gument; here we use geometry to simplify matters. If 
a COUNTER algorithm is cl-competitive on accesses 
and c2-competitive on paid exchanges by Proposi- 
tion 2, let us plot its location in the (x, y) plane by 

(~2, cl ) . The possible mixtures of COUNTER algo- 
rithms can be represented as convex combinations of 
these points, and hence lie on the convex hull deter- 
mined by these points. 

Any point obtained by Proposition 2 has the form 

(z, 1 +pl z ), where z = cJ=, jpj. Also note that p1 2 

P2 > ... 3 pS for any COUNTER algorithm. We now 
take cases for p1 to show that it is impossible for any 

point determined by Proposition 2 to lie below the line 
determined by (3/2,7/4) and (2,5/3) (given by y = 
2 - x/6). This suffices to prove the claim. 

Note that all points we consider are of the form 
y = 1 + plx. This intersects the line y = 2 - x/6 at 
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x=6/(1+6pl),andhence,ifz >6/(1+6pt),the 
corresponding point lies above the line. We therefore 
only need to show that ‘& jpj = z 3 6/( 1 + 6pt ), 

with equality only when pt = l/2 or p1 = l/3. 

Note that the minimum value of z for a given value 

of pt is obtained by successively setting all pz = 

PlvP3 =p1,..., as far as possible, and setting the last 
pj as large as possible SO as to satisfy & pj = 1. 
Using this fact, we now take cases. 

If 0 6 p1 < l/6, then 

Z=kjpj2e’ ./pl +7(1-6~1) =7-21~1. 
j=l j=l 

One may now easily check that z > 6/( 1 + 6~1) 
over this interval. Similarly, for l/6 < p1 < l/3, z 3 

C;=, jpt + 4( 1 - 3~1 I = 4 - 6~1, which is at least 

6/( 1 + 6pt ) over the interval. For l/3 < p1 < l/2, 
z b 3 - 3pt; and for l/2 < p1 Q 1, z 3 2 - pl. 
Again, these are both at least 6/ ( 1 + 6pt ) over the 
appropriate intervals. The proof follows. Cl 

We note that the lower bound argument of Theo- 
rem 4 also applies to the RANDOM RESET algo- 
rithms of [ 71. Choosing the counter size randomly can 
be used to obtain algorithms with marginally better 
competitive ratios in the Pd model for the list update 
problem described in [ 71 as well. 

4. Lower bounds 

We now consider lower bounds on the competi- 
tive ratio of COUNTER algorithms in the standard 
model. First we give a general lower bound for 

COUNTER(s, S) algorithms that is very close to 
the upper bounds presented in Proposition 2. Us- 
ing this general lower bound, we are able to derive 
a lower bound for BIT. Previous lower bounds for 
BIT were given by Reingold et al. [7] in the i - 1 
cost model, in which an access to the ith item in 
the list incurs a cost if i - 1 rather than i. In fact, 
they showed that in this model, BIT is exactly 1.75 
competitive. We prove that BIT is no better than 
1.625competitive in the standard model. As a sec- 
ond corollary of our general lower bound, we find 
that COUNTER(2, {0},4/7; 3, {0}, 3/7) is exactly 
12/7-competitive. 

Theorem 5. lf s is independent of the list size n, then 
the competitive ratio achieved by COUNTER( s, S) in 
the standard model is at least i . ( 1 + p1 C;=, jpj + 

CJ=l jP.i ). 

Note that the lower bound given in Theorem 5 is 
composed of the average of the terms from Proposi- 
tion 2. 

Proof. Consider a list of n items. We assume without 
loss of generality that COUNTER( s, S) and an opti- 
mal off-line algorithm OPT start with the same ini- 
tial list, with the items in order 1,2,. . . ,n. Let k 2 

max(2, s} be a constant and let ik denote a sequence 

of k consecutive requests to i. The request sequence 
generated by an adversary consists of a sequence of 
rounds. Each round is a concatenation of two sub- 
rounds RI and R2, where 

RI = 1,2,3,.. .,n, lk,2k,3k,. . .,nk 

and R2 is the reverse sequence, 

Rz=n,n- 1 ,..., 2,1,nk,(n-l)k ,..., 2k,lk. 

That is, in each subround, every item in the list is 
first requested exactly once and then requested k times 
in a row. By generating rounds in this manner, the 
adversary can construct an infinitely long request se- 
quence. 

We assume without loss of generality that when- 

ever OPT serves at least two consecutive requests 
to an item i, it moves i to the front of the list on 
the first of these requests. This cannot incur a higher 
cost on the remaining request sequence than mov- 
ing i part-way to the front or leaving it where is 

was. Thus, at the beginning of each round the items 
in OPT’s list are arranged in the order 1,2,3,. . . , n. 
The same is true for COUNTER( s, S)‘s list because 
after k 2 s consecutive requests to the same item, 
COUNTER( s, S) must have that item at the front of 
its list. 

We analyze an arbitrary round and first show that 
OPT’s cost in each round is 2n(n + k). Consider 
the first subround RI. When serving the first n re- 
quests R11 = 1,2,... ,n, OPT does not move the 
items. On the next kn requests Rt2 = lk,2k.. . ,nk, 
OPT always moves the requested item to the front of 
the list on its first appearance, giving a total cost of 
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$n(n+l)+in(n+l)+(k-l)n=n(n+k)forthe 
processing of RI. At the beginning of R2, the items in 
OPT’s list are arranged in the order n, n - 1,. . . ,2,1. 
Thus, processing R2 incurs again a cost of n( n + k) 

to OPT. 
Next we evaluate COUNTJZR( s, S)‘s cost. Recall 

again that at the beginning of each round the items 

in COUNTER( S, Q’s list are arranged in the order 
I, 2,3, . . . ) n. Within RI, serving the first n requests 

R,, = 1,2 ,... , n incurs a cost of in< n + 1). We 

have to analyze the expected cost on the following 
requests R12 = lk,2k,. . . , nk. Within Rl2, consider k 

requests ik, 1 < i < n. At the first of these requests, 
i’s expected position in the list is i -t p1 (n - i). This 

is because (a) all items j with j < i were requested 
k times since the last request to i and thus precede i 

in COUNTER( S, S) ‘s list; (b) the expected number 
of items j with j > i that were moved to the front 
of the list during the processing of RI, is p1 (n - i). 

Moreover, from this argument, one may deduce that i’s 
position is in fact independent of how many accesses 
to i are necessary to move it to the front. Thus, the 
expected number of accesses until i is moved to the 
front is just c=, jpj. Hence, the expected cost to 
COUNTER( S, S) on RI is 

$n(n+ 1) 
L 

+$!J(i+p,(n-i))(ejpj)+k-gjpj] 

i=l j=l j=l 

=in(n+l)+kn 

+(kjpj)(e(i-l+pl(n-i))) 

.j=l i=l 

= kn(n+ 1) +kn+ in(n- l,(ejPj) 
j=l 

+ in(n - 1) (PI 2jPj). 
.j=l 

COUNTER(s, S)‘s expected cost on R:! is the 
same because, at the beginning of R2, the items in 
COUNTER( s, S) ‘s list are arranged in the order 
n,n- l,..., 2,1. The dominant terms in the cost to 

both OPT and COUNTER( s, S) over one round are 

clearly proportional to n2. Since we may take n to be 
arbitrarily large, the theorem now follows by taking 
the appropriate ratio of these terms. Cl 

Corollary 6. The competitive ratio achieved by BIT 

in the standard model is at least 13/g = 1.625. 

Proof. The corollary follows immediately from The- 
orem 5, because in the BIT algorithm p1 = p2 = 
l/2. 0 

Based on Theorem 5, we can also show that 

COUNTER(2, {0},4/7; 3, {0}, 3/7) is exactly 12/7- 
competitive. 

Corollary 7. The competitive ratio achieved by 
COUNTER(2, {0},4/7; 3, {0}, 3/7) in the standard 

model is exactly 1217. 

Proof. We consider the request sequence used in the 
proof of Theorem 5, where each round consists of 
subrounds 

RI = 1,2,3 ,..., n,13,23,33 ,..., n3 

and 

Rz=n,n- 1,. ..,2,1,n3,(n- 1)3 ,..., 23,13. 

The proof of Theorem 5 shows that, for every E > 
0, there exists an no such that for every n 2 no. the 

cost incurred by COUNTER( 2, (0)) on this sequence 
is at least 13/8 - E times the optimum offline cost. A 
similar statement holds for COUNTJZR( 3, (0)) with 
a ratio of 11/6. Hence the combination is at best 12/7- 
competitive. The corresponding upper bound is proven 
in Theorem 3. q 

5. Page migration algorithms 

Choosing a counter size randomly to obtain algo- 
rithms with improved competitive ratios can also be 
applied to the randomized page migration algorithms 
found in [9], which are similarly based on simple 
counters. For example, in the notation of [9], for 
uniform graphs where the page size D = 1, a 2.75- 
competitive randomized algorithm is given using a 
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modulo 2 counter. This can be improved to a 29/l l- With our lower bounds, we have achieved nearly 
competitive algorithm by using an algorithm that ran- tight bounds on members of the COUNTER fam- 

domly chooses an algorithm with either a modulo 2 ily. We conclude that beating the 1.6-competitive 

counter (with probability 8/ 11) or a modulo 3 counter algorithm for list update from [ 1 ] will require 

(with probability 3/ 11) . As D grows to infinity, how- different types of algorithms, although the simple 

ever, the improvement obtainable using this method COUNTER algorithms may be more useful in prac- 

falls to 0. tice. 

It is interesting to note for uniform graphs the anal- 
ysis of [ 91 uses different potential functions for each 

possible counter size. This poses no barrier to analyz- 
ing mixtures of algorithms, as analyzing mixtures re- 

quires knowing how competitive each algorithm is on 
a request or a move by the optimal algorithm; it does 
not matter what potential function is used to obtain 

the result. 
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