Distributed Beamforming with Binary Signaling
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Abstract—We consider a distributed beamforming problem models real communication systems. The problem also appear
in which nodes are restricted to sending binary phases to a interesting in its own right.
receiver that has access to a one-bit feedback channel. Our
simplified model allows us to prove lower bounds, as well as Il. PROBLEM STATEMENT

explore algorithmic techniques and analyses. We demonstia Wi ider th icati t h in Fi
both upper and lower bounds on the convergence time that are € consider the communication system shown in rFigure

linear in the number of nodes in the System_ Our upper bound 1. There areN diStributed transmitters Wh|Ch Communicate

is given by analyzing a simple randomized algorithm. We also with a receiver over noisy channels. In roupdnode: sends

discuss methods for accurately approximating the convergee g value éz[.]l € {+1,—1}. The output of the channel is

time numerically that apply to our algorithm, as well as more X;[j] = C; - Cilj], whereC; € {+1,—1} denotes the channel

general algorithms. Finally, we investigate modificationsof the L

basic algorithm which improve the constant factor in the running state. The _Channel state \_/ec@N is fixed, but uj\r;known to

time. the transmitters. The receiver measu¥&g| = | > ., X;[j]|,

the magnitude of the received signal, and then broadcasts

one bit of feedback to the transmitters over a noiseless

channel. The feedback[j] can in general be a function
Beamforming is a technique that can be employed @f (Y[1],Y[2],...,Y][j]). Each signal’;[j] can be based on

significantly increase communication efficiency in senset n all previous history, and a random number generdtor To

works [1], [2]. By carefully synchronizing the phases ofeduce complexity, we consider algorithms that base theasig

many transmitters, their signals will constructively irfieze C;[j + 1] on the feedback at timg, the previous signal’; 5],

at a receiver and large SNR gains can be realized. Howewnd R;.

achieving this synchronization in a distributed enviromnie

|. INTRODUCTION

a challenging problem, particularly when there are strrige ‘

cost and complexity constraints on the nodes. An algorithm ¢

that yields impressive resul_ts through the use of a single bi £60) : Receiver
of feedback from the receiver to the transmitters has been . Y[j]

recently proposed [3]. Both analysis [4], [5] and experina¢n Gl |Gal]

prototyping [6] have confirmed its advantages. o
Our work, inspired by Mudumbai, et al. [3], takes a different Sne Bit Noiseless

approach to the beamforming problem. Instead of considerin 1 Ry

nodes that can transmit carrier signals at arbitrary, oomotiis

valued phases, we restrict the nodes to send one of two signal Fig. 1. Model of the communication system

denoted byX = +1 and X = —1. Similarly, the correspond-

ing channel output is one of the same two signals. While The goal is for the transmitters to choose signals such that

this restriction to binary signal phases is not represesetaif Y[j] > BN for a given parametef < 1, i.e., a constant

wireless channels, it allows us to apply powerful combinato fraction of the maximum possible signal magnitude. When

techniques to the problem. In particular, we are able t%0[j] > 3N for the first time, we say that the algorithm has

prove a rigorous lower bound on the convergence time ofcanverged. Because the transmitters are spatially diserih

class of distributed beamforming algorithms. We also u&e thhey cannot coordinate. Hence, trivial solutions that sequ

simplified model to explore possible algorithmic technisju&ially cycle through the transmitters are not viable.

and analyses. We provide a simple randomized algorithm and

give a closed-form upper bound on its performance; we also !ll- A RANDOMIZED BEAMFORMING ALGORITHM

examine techniques to numerically determine its perfomean We propose a simple randomized beamforming algorithm.

more exactly. We believe that the insights derived from thiBhe intuition behind our approach is to try to mimic the taivi

study of the binary problem will lead to similar results forcentralized solution, which changes the transmission attyx

the case with\/ > 2 transmit phases, which more accuratelpne node each round to check if this increases the magnitude

Z[j]




at the receiver. Such an algorithm could achi&ve- N after number of transmitters sending the “right” signal; thatth!e
only N rounds. We use randomization to make up for the lackumber whose output is the same as the agEcSZfl .In
of central coordination. this setting, the convergence condition requirgs)] to reach
Our algorithm begins at roung = 0 with each node %N = aN. In what follows, when we refer to the state, we
choosing its signal independently and uniformly at randson, mean the value o¥”[j].
that the initial channel outputs ar€;[0] = 1 or X;[0] = —1, We definep; as the probability ofY” transitioning from
with probability 1/2 each. Note that a node toggling itsstate: to statei + 1 in the modified chain. When = N/2,
transmitted signalC; is equivalent to toggling the channelp; is simply the probability that one node toggles its value.
output X;; we use the expressions interchangeably. At eatltheni > N/2, we observe thap, is equal to the probability
subsequent round, the algorithm proceeds as follows: that exactly one node toggles multiplied by the probability
1) Each node flips an mdependent coin that lands on hedbiat this node had been transmlttmg the “wrong” signal lfwit
with probability p = X, with v a fixed constant that output opposite to the sign OE 1 Xilj]). The probability
will be subsequently 0pt|m|zed that exactly one node toggles is equal to

2) All nodes whose coins were heads will toggle their N ~ N\ N-1 N\ N-1
( )'N'(l‘ﬁ) =1(1-%)

signal X;. The nodes whose coins were tails transmit 1
the same signal as in the previous round.

3) The receiver will compare the valug[;] that it mea- Which approachese™” as NV gets large. We use this approx-
sures at the current iteration t6[j — 1]. If Y[j] > imation freely henceforth, as it only slightly affects ctargt
Y[j—1], then the receiver send&j] = +1 as feedback, factors in the asymptotic analysis. Given that exactly ooeen
otherwise the receiver send§j] = —1. toggles its transmitted signal, that node is equally likelyoe

4) When the receiver sendg[j] = +1, the nodes that any of the N nodes in the system, so the probab|I|ty that the
toggled their signal in the current round change thethange increases the received sigtiak 2~ Y MY Therefore,

signal to its new value, and the algorithm then returns tg — % for i > N/2. As we are onIy seeking an

step 1. When the receiver send$;j] = —1, the nodes ypper bound on the convergence time, we may also use this
that toggled their signal instead reject the change amstmula to computey; wheni = N/2.
revert to their previous value. The number of roundq” until the modified chain moves
The operation of the algorithm is quite intuitive: in eaclirom state N/2 to stateaN is the sum of a sequence of
round, a random set of nodes flip their signals, and if thggeometric random variableg with parameterg; That is,
new configuration results in an increaseln then the new N1
configuration is retained. Otherwise, the new configuratson T — T.
disregarded. It follows that[j] is a non-decreasing function
of j. Further, because of the symmetry of the syst&fj] is
a Markov chain. That is, it does not matter which transnstted Ne expectation of" is computed as

i=N/2

send the same value, or whether that value-isor —1. All aN—1
that matters is the number of transmitters whose outpuesgre E[T] = Z E[T,
A. Mean Convergence Time Analysis F]év / f
We prove that this algorithm must converge in expected time _ az <
O(N) via a simple upper bound approach. As stated above, ieny2 P
Y'[j] defines the state of a Markov chain. For the purpose of WN 1
simplifying the analysis of the convergence time, we coasid _ Z 1 N
a modified Markov chain, in which the only valid transitions N2 ye =V N —i
are those which occur due to exactly one node toggling its Ne 1
signal. In the modified chain, whenever more than one node ~ 1n< ) )
toggles its signal in a given round, the new configuration is v 2(1-a)

automatically rejected. A simple coupling argument clasfi Thus, the average time required to satisfy the convergence

that the convergence time of the modified chain is still agondition E[T7] is in fact linear inN (regardless of the choice

upper bound on the convergence time of the true chain. of ~). For the modified chain, the optimal value ofis 1,
The number of rounds until the modified chain first reachegiving an upper bound (up to lower order terms) of

the stateSN obviously depends on the initial state of the 1

process at timg = 0. Because we are interested in bounding E[T] =~ Neln ( )

the convergence time, we analyze the worst case where the -8

modified chain starts in statg that isY[0] = 0. Note that It is worth noting that the asymptotic behavior in— 3

Y increases by two when a successful change occurs. Faund in this upper bound is to be expected. Any algorithm

convenience, we let”’[j] = (Y[j] + N)/2, so that when that is based on a constant-sized subset of transmittesenho

Y jumps by two,Y’ jumps by one. In wordsY’ is the uniformly at random attempting to change their behaviot wil



face bounds implicit from the coupon collector’s problerniH(CN,C*N) < DN. Furthermore, if the goal is to obtain a
In particular, whens = 1, the expected time would bereconstruction with distortion either less th@nV or greater
Q(N1InN). than (1 — D)N, then at leastV(1 — h(D) — €) — 1 channel
uses are required. (This follows since wittadditional bit the
encoder can instruct the decoder whether or not to invert its
The upper bound naturally raises the question of what tlearrent reconstruction, to obtain a distortion less thanN with
minimum expected convergence time is, and in particuld(1 — h(D) — €) channel uses.) Because our virtual system
whether our algorithm is order optimal. In this section, wés a special case of a general point-to-point system, and the
prove a correspondin@(N) lower bound. virtual system is strictly more informed than the real syste
First, we note that if the Hamming distandg;, between the convergence time of the beamforming algorithm cannot be
the channel state vecta@V and the transmitted signats™ less thanN (1 — h(D) — ¢) — 1.
equalsDN, thenY = (1 —2D)N|. If Y > BN, then either  This lower bound is in fact quite general. For example, it
D < 52 or D > 12 e, there must be enough nodesan be extended to show that a linear number of rounds would
sending+1 or enough sending-1 to reach the target receivedbe required to reach the convergence condition if the receiv
magnitude. could send a constant number of feedback bits (greaterithan
We achieve our lower bound via a reduction, by relaxingut independent ofV) per round, or if the initial transmitted
the binary beamforming problem and then giving a corrgignals were chosen independently and identically but with
spondence between any algorithm for this new problem abihs.
a standard point-to-point communication problem. We begin
by m0d|fy|ng the aCtUaI System in Figure 1 to produce the V APPROX|MAT|ONS OFCONVERGENCET|ME
virtual system shown in Figure 2, where the virtual encoder
contains the noisy channels and the receiver while thealirtu While these upper and lower bounds prove that the con-
decoder contains th& transmitters. Note that the commorvergence time is linear iV, they are both quite loose. For
randomnessx is independent of the sourcg . example, forV = 1000 and3 = 0.7, the upper bound is equal
to 3273 and the lower bound is equal tl9. We therefore
Virtual Encoder O"ec‘?:;r’:‘:;?e'ess Vitual Decoder -~ also develop numerical methods to approximate the expected
OO vee [eaé convergence time of our algorithm, both asymptotically and
Z[j] Z[j] for finite values of V.
] To begin, we note that the original Markov chain is neces-
R=(Ry,...Ry) sarily more complex than the modified chain used to derive
the closed-form upper bound, as larger jumps can occur and
jumps occur in many different ways. For example, one way
for Y’ to increase by one is if three transmitters decide to
toggle their signal, and two of them are currently wrong.sThi
logic extends to further cases. L¢t = (N —i)/N, and let
pi,; be the probability oft” transitioning from state to state
j in the original chain. To simplify, we think ofV going to

, . infinity, and use the Poisson approximation thatansmitters
There are differences between the virtual system and tﬁﬁempt to toggle their value with probabiliey '~ /k!. With
actual system, which all give the virtual encoder more infofyis in mind. we find fori > N/2

mation and freedom, and therefore can only reduce the number
of channel uses required to achieve the convergence conditi >, eV 2hti
o The N nodes can be globally coordinated. Piiti = Z (k+ )k
o The virtual encoder has complete access to the random k=0
bits R. Because of this, the encoder can exactly replicatgnlike for our simplified chain, we have not derived a simple
the behavior of the decoder without feedback. closed form expression for the expected convergence time fo
« The virtual encoder outpufZ[j] can be an arbitrary this chain. We make one high-level point, verified by analysi
function of C™¥ and R, instead of being constrained toand experiment. For reasonable valuesjofve find it better
be computed by our beamforming algorithm. to choosey > 1; this lessens the chance of having only one
The virtual system is a special case of a general point-tsansmitter toggle, but the additional chances for gairmfro
point communication system. From Shannon’s source-cantwo (or more) transmitters toggling makes up for this. Indlee
separation theorem [7] and from the rate-distortion boword fthe best choice would be to have the parametesmry with
Bernoulli(3) sources under a Hamming distortion constraintjme, but this is beyond the scope of this summary.
it is clear that with high probability, for any and for large = Equation 1 can be used to derive fluid limit (mean field)
enoughh, at leastN (R(D) —¢€) = N(1 —h(D) —¢€) channel equations that allow numerical approximations to be derive
uses are required to obtain a reconstruction with distorticSpecifically, in the limiting system, iff is the fraction of

IV. CONVERSE

Channe|
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Fig. 2. The virtual communication system derived from thaaktsystem.

(1= f)*H (fi)". 1)



transmitters with the correct sign, let
2k-+j

po= Ak
k=

O(kT _f)kJrJ(f)k

Then, after scaling time so thaf rounds occur per unit time,
the corresponding mean field differential equation is

o0
ijj-
j=1
The infinite sums can be truncated at appropriately largeegl

to obtain good asymptotic approximations of behavior.
For smaller N, the fluid limit might deviate non-trivially

value with some probabilityv. Thus, in subsequent rounds,
with probability 1 — w the node will operate as before, but
with probability w it will not flip a coin and simply resend
the value that has been locked. The intuition for this apgnoa
is that if toggling the value at théh transmitter improved
the signal, then it is likely thafX; has the same sign as.
Locking the value thus prevenfs; from being flipped to the
incorrect value in later rounds. However, due to more tham on
node toggling in a given round, a node may actually lock the
wrong value, making it harder to converge. The right trafleof
is not immediately clear, and hence depends on the tatget
This approach improves if unlocked transmitters corre-
spondingly increase their probability of toggling eachmdu

from actual performance. We therefore note that, for a fixdflthe number of locked transmittes were known, it would
N, one can compute the exact expected time to convergeheenatural to change the toggle probability frgm= % to

directly using (backward) dynamic programming. A% rep-
resents the expected number of rounds uritilreachesa NV
from 4, and qfk is the probability of Y’ transitioning from
statej to statek for the specific value ofV, we have

N—i
1+ Z Qi itj ity
j=0

Note thaty; ;, can be determined exactly. Such calculations c

4

be done in time)(N?), and very good approximations can b h

p = wx~7, keeping an average of toggles per round. But
since the transmitters are distributed, they cannot desterii
exactly. Here, we consider the following approximatione th
transmitters count the number of successful rouSdshere
Z[j] = +1, and toggle with probability = 5.

While this generalization can be studied in simulation, we
also point out that both the dynamic programming and fluid
limit approaches of Section V can be generalized to this more
neral class of algorithms, albeit with greater complesas
e number of locked transmitters and successful round$ mus

found even more quickly (near-linear time) by only consider,
also be tracked.
ing jumps up to a certain amount (truncating the summation

atmin(c, N —7) for a constant). Similar calculations can be
performed to for example find the probability that converggen

VII. SIMULATIONS AND COMPARISON
Simulations of the basic beamforming algorithm support the

occurs within a specific number of rounds, keeping track @heoretical results in previous sections. Figure 3 showa p

the probability of being in each state after each number

time steps. Let?; ; be the probability that it takes more tharsignal magnitude of3N as a function ofN, for v =

t rounds forY”’ to reachaN from i. Then

N—1i
E Qiitj Pitjt—1-
=0

For a linear number of rounds, calculating tRg; can be done
in time O(N?3).

Finally, we point out that standard tail bounds (e.g.,
Azuma’s tail inequality, or tail bounds based on the meau fiel
limit) can be used to show the number of time steps to reach

convergence is tightly concentrated around its expectatith
high probability. The only technical difficulty is that ther

is some small probability of a large jump in the number of

transmitters choosing the right direction at each step;dven
since the probability ofc transmitters toggling their values
when~ is constant falls even faster than geometricallykin
standard methods show that tight concentration still aecur

VI. IMPROVEDALGORITHMS

of the average number of rounds needed to achieve a received
1.0
and three values of.. The curves confirm that the expected
convergence time for the algorithm is linear .

Average number of rounds

1500 -

1000 -

400 500 600 700 800 900
Number of transmitters, N
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g. 3. The average number of rounds needed to achieve a sigrmitude

We discuss a further approach to generalize our prewogsmv as a function ofN, for three values ofs.

algorithm. Because of limited space, we consider this aggro
only briefly; further results will appear in future work.

In addition, it is possible to numerically optimize the valu

Suppose that a node toggles its transmission, and leaafisy. Figure 4 shows a plot of the average convergence time

via the feedback channel that the magnitude at the receiversus~ for N =

1000 and two values of3. From these

increased during that round. The node then decides to latk thurves, the optimum values (to the nearest tenth) are found



Upper bound 3273 Upper bound 6259
Fluid limit approximation,y = 1.0 2256 Fluid limit approximation,y = 1.0 4880
Dynamic programmingy = 1.0 2247 Dynamic programmingy = 1.0 4850
Simulation of basic algorithmy = 1.0 2250 Simulation of basic algorithmy = 1.0 4852
Simulation of “locking” algorithm,w = 1.0, v = 1.0 | 1777 Simulation of “locking” algorithm,w = 0.8, v = 1.0 | 3048
Fluid limit approximation,y = 2.2 1869 Fluid limit approximation,y = 1.5 4594
Dynamic programmingy = 2.2 1860 Dynamic programmingy = 1.5 4563
Simulation of basic algorithny = 2.2 1865 Simulation of basic algorithmy = 1.5 4565
Simulation of “locking” algorithm,w = 0.7, v = 2.2 | 1265 Simulation of “locking” algorithm,w = 0.8, v = 1.5 | 2223
Lower bound 119 Lower bound 531
TABLE | TABLE I
NUMERICAL COMPARISON FOR3Z = 0.7 AND N = 1000 NUMERICAL COMPARISON FOR3Z = 0.9 AND N = 1000

to be~yoPt = 2.2 for 3 = 0.7 and~°P* = 1.5 for 3 = 0.9. in the case of binary phases, there remain interesting open
Simulation results support the earlier intuition that thtimal problems. While the difference between the upper and lower
value of v is greater thanl, becausey > 1 increases the bounds on the number of rounds required for convergence
probability of a large jump in the Markov chain. Additionalis only a constant factor, such factors are quite significant
simulations showed that these optimum values are largétypractice. Improving the upper bound via better algorishm
invariant to changes iiv. and improving the lower bound via better analysis are both
interesting in their own right and may shed light on more
general cases. In particular, allowing time-varying passers

is an intriguing future direction.

In addition, while our fluid limit and dynamic programming
approaches are computationally useful, they do not nayural
give rise to formulae that can be used to predict behavior or
allow us to optimize parameters algebraically. Findinganm
closed forms (or at least good approximations) remains an
important problem. Finally, we will also investigate théeet
of noise on the beamforming problem, both in the receiver's
measurement of signal magnitude and in the feedback channel
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