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Abstract— We consider a distributed beamforming problem
in which nodes are restricted to sending binary phases to a
receiver that has access to a one-bit feedback channel. Our
simplified model allows us to prove lower bounds, as well as
explore algorithmic techniques and analyses. We demonstrate
both upper and lower bounds on the convergence time that are
linear in the number of nodes in the system. Our upper bound
is given by analyzing a simple randomized algorithm. We also
discuss methods for accurately approximating the convergence
time numerically that apply to our algorithm, as well as more
general algorithms. Finally, we investigate modificationsof the
basic algorithm which improve the constant factor in the running
time.

I. I NTRODUCTION

Beamforming is a technique that can be employed to
significantly increase communication efficiency in sensor net-
works [1], [2]. By carefully synchronizing the phases of
many transmitters, their signals will constructively interfere
at a receiver and large SNR gains can be realized. However,
achieving this synchronization in a distributed environment is
a challenging problem, particularly when there are stringent
cost and complexity constraints on the nodes. An algorithm
that yields impressive results through the use of a single bit
of feedback from the receiver to the transmitters has been
recently proposed [3]. Both analysis [4], [5] and experimental
prototyping [6] have confirmed its advantages.

Our work, inspired by Mudumbai, et al. [3], takes a different
approach to the beamforming problem. Instead of considering
nodes that can transmit carrier signals at arbitrary, continuous
valued phases, we restrict the nodes to send one of two signals,
denoted byX = +1 andX = −1. Similarly, the correspond-
ing channel output is one of the same two signals. While
this restriction to binary signal phases is not representative of
wireless channels, it allows us to apply powerful combinatorial
techniques to the problem. In particular, we are able to
prove a rigorous lower bound on the convergence time of a
class of distributed beamforming algorithms. We also use this
simplified model to explore possible algorithmic techniques
and analyses. We provide a simple randomized algorithm and
give a closed-form upper bound on its performance; we also
examine techniques to numerically determine its performance
more exactly. We believe that the insights derived from this
study of the binary problem will lead to similar results for
the case withM > 2 transmit phases, which more accurately

models real communication systems. The problem also appears
interesting in its own right.

II. PROBLEM STATEMENT

We consider the communication system shown in Figure
1. There areN distributed transmitters which communicate
with a receiver over noisy channels. In roundj, nodei sends
a value Ĉi[j] ∈ {+1,−1}. The output of the channel is
Xi[j] = Ci · Ĉi[j], whereCi ∈ {+1,−1} denotes the channel
state. The channel state vectorCN is fixed, but unknown to
the transmitters. The receiver measuresY [j] = |

∑N
i=1 Xi[j]|,

the magnitude of the received signal, and then broadcasts
one bit of feedback to the transmitters over a noiseless
channel. The feedbackZ[j] can in general be a function
of (Y [1], Y [2], . . . , Y [j]). Each signalĈi[j] can be based on
all previous history, and a random number generatorRi. To
reduce complexity, we consider algorithms that base the signal
Ĉi[j +1] on the feedback at timej, the previous signal̂Ci[j],
andRi.
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Fig. 1. Model of the communication system

The goal is for the transmitters to choose signals such that
Y [j] ≥ βN for a given parameterβ < 1, i.e., a constant
fraction of the maximum possible signal magnitude. When
Y [j] ≥ βN for the first time, we say that the algorithm has
converged. Because the transmitters are spatially distributed,
they cannot coordinate. Hence, trivial solutions that sequen-
tially cycle through the transmitters are not viable.

III. A R ANDOMIZED BEAMFORMING ALGORITHM

We propose a simple randomized beamforming algorithm.
The intuition behind our approach is to try to mimic the trivial
centralized solution, which changes the transmission of exactly
one node each round to check if this increases the magnitude



at the receiver. Such an algorithm could achieveY = N after
only N rounds. We use randomization to make up for the lack
of central coordination.

Our algorithm begins at roundj = 0 with each node
choosing its signal independently and uniformly at random,so
that the initial channel outputs areXi[0] = 1 or Xi[0] = −1,
with probability 1/2 each. Note that a node toggling its
transmitted signalĈi is equivalent to toggling the channel
output Xi; we use the expressions interchangeably. At each
subsequent round, the algorithm proceeds as follows:

1) Each node flips an independent coin that lands on heads
with probability p = γ

N , with γ a fixed constant that
will be subsequently optimized.

2) All nodes whose coins were heads will toggle their
signal Xi. The nodes whose coins were tails transmit
the same signal as in the previous round.

3) The receiver will compare the valueY [j] that it mea-
sures at the current iteration toY [j − 1]. If Y [j] >
Y [j−1], then the receiver sendsZ[j] = +1 as feedback,
otherwise the receiver sendsZ[j] = −1.

4) When the receiver sendsZ[j] = +1, the nodes that
toggled their signal in the current round change their
signal to its new value, and the algorithm then returns to
step 1. When the receiver sendsZ[j] = −1, the nodes
that toggled their signal instead reject the change and
revert to their previous value.

The operation of the algorithm is quite intuitive: in each
round, a random set of nodes flip their signals, and if this
new configuration results in an increase inY , then the new
configuration is retained. Otherwise, the new configurationis
disregarded. It follows thatY [j] is a non-decreasing function
of j. Further, because of the symmetry of the system,Y [j] is
a Markov chain. That is, it does not matter which transmitters
send the same value, or whether that value is+1 or −1. All
that matters is the number of transmitters whose output agrees.

A. Mean Convergence Time Analysis

We prove that this algorithm must converge in expected time
O(N) via a simple upper bound approach. As stated above,
Y [j] defines the state of a Markov chain. For the purpose of
simplifying the analysis of the convergence time, we consider
a modified Markov chain, in which the only valid transitions
are those which occur due to exactly one node toggling its
signal. In the modified chain, whenever more than one node
toggles its signal in a given round, the new configuration is
automatically rejected. A simple coupling argument clarifies
that the convergence time of the modified chain is still an
upper bound on the convergence time of the true chain.

The number of rounds until the modified chain first reaches
the stateβN obviously depends on the initial state of the
process at timej = 0. Because we are interested in bounding
the convergence time, we analyze the worst case where the
modified chain starts in state0, that is Y [0] = 0. Note that
Y increases by two when a successful change occurs. For
convenience, we letY ′[j] = (Y [j] + N)/2, so that when
Y jumps by two, Y ′ jumps by one. In words,Y ′ is the

number of transmitters sending the “right” signal; that is,the
number whose output is the same as the sign of

∑N
i=1 Xi[j]. In

this setting, the convergence condition requiresY ′[j] to reach
1+β

2 N = αN . In what follows, when we refer to the state, we
mean the value ofY ′[j].

We definepi as the probability ofY ′ transitioning from
statei to statei + 1 in the modified chain. Wheni = N/2,
pi is simply the probability that one node toggles its value.
Wheni > N/2, we observe thatpi is equal to the probability
that exactly one node toggles multiplied by the probability
that this node had been transmitting the “wrong” signal (with
output opposite to the sign of

∑N
i=1 Xi[j]). The probability

that exactly one node toggles is equal to
(

N

1

)

·
γ

N
·
(

1 −
γ

N

)N−1

= γ
(

1 −
γ

N

)N−1

which approachesγe−γ asN gets large. We use this approx-
imation freely henceforth, as it only slightly affects constant
factors in the asymptotic analysis. Given that exactly one node
toggles its transmitted signal, that node is equally likelyto be
any of theN nodes in the system, so the probability that the
change increases the received signalY is N−Y ′[j]

N . Therefore,

pi = γe−γ(N−i)
N for i > N/2. As we are only seeking an

upper bound on the convergence time, we may also use this
formula to computepi when i = N/2.

The number of roundsT until the modified chain moves
from stateN/2 to stateαN is the sum of a sequence of
geometric random variablesTi with parameterspi That is,

T =

αN−1
∑

i=N/2

Ti.

The expectation ofT is computed as

E[T ] =

αN−1
∑

i=N/2

E[Ti]

=

αN−1
∑

i=N/2

1

pi

=
αN−1
∑

i=N/2

1

γe−γ

N

N − i

≈
Neγ

γ
ln

(

1

2(1 − α)

)

.

Thus, the average time required to satisfy the convergence
conditionE[T ] is in fact linear inN (regardless of the choice
of γ). For the modified chain, the optimal value ofγ is 1,
giving an upper bound (up to lower order terms) of

E[T ] ≈ Ne ln

(

1

1 − β

)

.

It is worth noting that the asymptotic behavior in1 − β
found in this upper bound is to be expected. Any algorithm
that is based on a constant-sized subset of transmitters chosen
uniformly at random attempting to change their behavior will



face bounds implicit from the coupon collector’s problem.
In particular, whenβ = 1, the expected time would be
Ω(N lnN).

IV. CONVERSE

The upper bound naturally raises the question of what the
minimum expected convergence time is, and in particular
whether our algorithm is order optimal. In this section, we
prove a correspondingΩ(N) lower bound.

First, we note that if the Hamming distancedH between
the channel state vectorCN and the transmitted signalŝCN

equalsDN , thenY = |(1 − 2D)N |. If Y ≥ βN , then either
D ≤ 1−β

2 or D ≥ 1+β
2 , i.e., there must be enough nodes

sending+1 or enough sending−1 to reach the target received
magnitude.

We achieve our lower bound via a reduction, by relaxing
the binary beamforming problem and then giving a corre-
spondence between any algorithm for this new problem and
a standard point-to-point communication problem. We begin
by modifying the actual system in Figure 1 to produce the
virtual system shown in Figure 2, where the virtual encoder
contains the noisy channels and the receiver while the virtual
decoder contains theN transmitters. Note that the common
randomnessR is independent of the sourceCN .
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Fig. 2. The virtual communication system derived from the actual system.

There are differences between the virtual system and the
actual system, which all give the virtual encoder more infor-
mation and freedom, and therefore can only reduce the number
of channel uses required to achieve the convergence condition:

• The N nodes can be globally coordinated.
• The virtual encoder has complete access to the random

bits R. Because of this, the encoder can exactly replicate
the behavior of the decoder without feedback.

• The virtual encoder outputZ[j] can be an arbitrary
function of CN and R, instead of being constrained to
be computed by our beamforming algorithm.

The virtual system is a special case of a general point-to-
point communication system. From Shannon’s source-channel
separation theorem [7] and from the rate-distortion bound for
Bernoulli(12 ) sources under a Hamming distortion constraint,
it is clear that with high probability, for anyǫ and for large
enoughN , at leastN(R(D)− ǫ) = N(1−h(D)− ǫ) channel
uses are required to obtain a reconstruction with distortion

dH(CN , ĈN ) ≤ DN . Furthermore, if the goal is to obtain a
reconstruction with distortion either less thanDN or greater
than (1 − D)N , then at leastN(1 − h(D) − ǫ) − 1 channel
uses are required. (This follows since with1 additional bit the
encoder can instruct the decoder whether or not to invert its
current reconstruction, to obtain a distortion less thanDN with
N(1 − h(D) − ǫ) channel uses.) Because our virtual system
is a special case of a general point-to-point system, and the
virtual system is strictly more informed than the real system,
the convergence time of the beamforming algorithm cannot be
less thanN(1 − h(D) − ǫ) − 1.

This lower bound is in fact quite general. For example, it
can be extended to show that a linear number of rounds would
be required to reach the convergence condition if the receiver
could send a constant number of feedback bits (greater than1,
but independent ofN ) per round, or if the initial transmitted
signals were chosen independently and identically but witha
bias.

V. A PPROXIMATIONS OFCONVERGENCETIME

While these upper and lower bounds prove that the con-
vergence time is linear inN , they are both quite loose. For
example, forN = 1000 andβ = 0.7, the upper bound is equal
to 3273 and the lower bound is equal to119. We therefore
also develop numerical methods to approximate the expected
convergence time of our algorithm, both asymptotically and
for finite values ofN .

To begin, we note that the original Markov chain is neces-
sarily more complex than the modified chain used to derive
the closed-form upper bound, as larger jumps can occur and
jumps occur in many different ways. For example, one way
for Y ′ to increase by one is if three transmitters decide to
toggle their signal, and two of them are currently wrong. This
logic extends to further cases. Letfi = (N − i)/N , and let
pi,j be the probability ofY ′ transitioning from statei to state
j in the original chain. To simplify, we think ofN going to
infinity, and use the Poisson approximation thatk transmitters
attempt to toggle their value with probabilitye−γγk/k!. With
this in mind, we find fori > N/2,

pi,i+j =

∞
∑

k=0

e−γγ2k+j

(k + j)!k!
(1 − fi)

k+j(fi)
k. (1)

Unlike for our simplified chain, we have not derived a simple
closed form expression for the expected convergence time for
this chain. We make one high-level point, verified by analysis
and experiment. For reasonable values ofβ we find it better
to chooseγ > 1; this lessens the chance of having only one
transmitter toggle, but the additional chances for gain from
two (or more) transmitters toggling makes up for this. Indeed,
the best choice would be to have the parameterγ vary with
time, but this is beyond the scope of this summary.

Equation 1 can be used to derive fluid limit (mean field)
equations that allow numerical approximations to be derived.
Specifically, in the limiting system, iff is the fraction of



transmitters with the correct sign, let

pj =
∞
∑

k=0

e−γγ2k+j

(k + j)!k!
(1 − f)k+j(f)k.

Then, after scaling time so thatN rounds occur per unit time,
the corresponding mean field differential equation is

df

dt
=

∞
∑

j=1

jpj .

The infinite sums can be truncated at appropriately large values
to obtain good asymptotic approximations of behavior.

For smallerN , the fluid limit might deviate non-trivially
from actual performance. We therefore note that, for a fixed
N , one can compute the exact expected time to convergence
directly using (backward) dynamic programming. IfEi rep-
resents the expected number of rounds untilY ′ reachesαN
from i, and qN

j,k is the probability ofY ′ transitioning from
statej to statek for the specific value ofN , we have

Ei = 1 +
N−i
∑

j=0

qi,i+jEi+j .

Note thatqj,k can be determined exactly. Such calculations can
be done in timeO(N2), and very good approximations can be
found even more quickly (near-linear time) by only consider-
ing jumps up to a certain amount (truncating the summation
at min(c, N − i) for a constantc). Similar calculations can be
performed to for example find the probability that convergence
occurs within a specific number of rounds, keeping track of
the probability of being in each state after each number of
time steps. LetPi,t be the probability that it takes more than
t rounds forY ′ to reachαN from i. Then

Pi,t =

N−i
∑

j=0

qi,i+jPi+j,t−1.

For a linear number of rounds, calculating thePi,t can be done
in time O(N3).

Finally, we point out that standard tail bounds (e.g.,
Azuma’s tail inequality, or tail bounds based on the mean field
limit) can be used to show the number of time steps to reach
convergence is tightly concentrated around its expectation with
high probability. The only technical difficulty is that there
is some small probability of a large jump in the number of
transmitters choosing the right direction at each step; however,
since the probability ofk transmitters toggling their values
when γ is constant falls even faster than geometrically ink,
standard methods show that tight concentration still occurs.

VI. I MPROVED ALGORITHMS

We discuss a further approach to generalize our previous
algorithm. Because of limited space, we consider this approach
only briefly; further results will appear in future work.

Suppose that a node toggles its transmission, and learns
via the feedback channel that the magnitude at the receiver
increased during that round. The node then decides to lock that

value with some probabilityw. Thus, in subsequent rounds,
with probability 1 − w the node will operate as before, but
with probability w it will not flip a coin and simply resend
the value that has been locked. The intuition for this approach
is that if toggling the value at theith transmitter improved
the signal, then it is likely thatXi has the same sign asY .
Locking the value thus preventsXi from being flipped to the
incorrect value in later rounds. However, due to more than one
node toggling in a given round, a node may actually lock the
wrong value, making it harder to converge. The right tradeoff
is not immediately clear, and hence depends on the targetβ.

This approach improves if unlocked transmitters corre-
spondingly increase their probability of toggling each round.
If the number of locked transmittersL were known, it would
be natural to change the toggle probability fromp = γ

N to
p = γ

N−L , keeping an average ofγ toggles per round. But
since the transmitters are distributed, they cannot determine L
exactly. Here, we consider the following approximation: the
transmitters count the number of successful roundsS where
Z[j] = +1, and toggle with probabilityp = γ

N−Sw .
While this generalization can be studied in simulation, we

also point out that both the dynamic programming and fluid
limit approaches of Section V can be generalized to this more
general class of algorithms, albeit with greater complexity as
the number of locked transmitters and successful rounds must
also be tracked.

VII. SIMULATIONS AND COMPARISON

Simulations of the basic beamforming algorithm support the
theoretical results in previous sections. Figure 3 shows a plot
of the average number of rounds needed to achieve a received
signal magnitude ofβN as a function ofN , for γ = 1.0
and three values ofβ. The curves confirm that the expected
convergence time for the algorithm is linear inN .
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Fig. 3. The average number of rounds needed to achieve a signal magnitude
of βN as a function ofN , for three values ofβ.

In addition, it is possible to numerically optimize the value
of γ. Figure 4 shows a plot of the average convergence time
versusγ for N = 1000 and two values ofβ. From these
curves, the optimumγ values (to the nearest tenth) are found



Upper bound 3273
Fluid limit approximation,γ = 1.0 2256
Dynamic programming,γ = 1.0 2247

Simulation of basic algorithm,γ = 1.0 2250
Simulation of “locking” algorithm,w = 1.0, γ = 1.0 1777

Fluid limit approximation,γ = 2.2 1869
Dynamic programming,γ = 2.2 1860

Simulation of basic algorithm,γ = 2.2 1865
Simulation of “locking” algorithm,w = 0.7, γ = 2.2 1265

Lower bound 119

TABLE I

NUMERICAL COMPARISON FORβ = 0.7 AND N = 1000

to be γopt = 2.2 for β = 0.7 and γopt = 1.5 for β = 0.9.
Simulation results support the earlier intuition that the optimal
value of γ is greater than1, becauseγ > 1 increases the
probability of a large jump in the Markov chain. Additional
simulations showed that these optimum values are largely
invariant to changes inN .

1 1.5 2 2.5 3
1850

1900

1950

2000

2050

2100

2150

2200

2250

γ

A
ve

ra
ge

 n
um

be
r 

of
 r

ou
nd

s

 

 
β = 0.7

1 1.5 2 2.5 3
4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

γ

 

 
β = 0.9

Fig. 4. The average number of rounds needed to achieve a signal magnitude
of βN as a function ofγ, for β = 0.7 (left) andβ = 0.9 (right).

Table I compares the simulated convergence time of the
basic algorithm from Section III, forβ = 0.7 and N =
1000, to the upper and lower bounds, as well as the fluid
limit approximation and dynamic programming. Results are
provided both forγ = 1.0 and γopt = 2.2, and all results
are rounded to the nearest integer. It also provides simulation
results for the improved algorithm from Section VI, with an
empirically optimized locking probability. Table II provides
similar results forβ = 0.9, whereγopt = 1.5. While the two
bounds are rather weak, the results are indeed close to the
dynamic programming calculation, and the gains provided by
optimizingγ and locking nodes are readily apparent. The fluid
limit approximation is also quite accurate.

VIII. C ONCLUSION

One main area of our future work is to generalize these
approaches and results from the case of binary phases to the
case of general phases. The combinatorial techniques can be
extended to the problem withM discrete phases, which closely
approximates continuous phases for largeM . Moreover, even

Upper bound 6259
Fluid limit approximation,γ = 1.0 4880
Dynamic programming,γ = 1.0 4850

Simulation of basic algorithm,γ = 1.0 4852
Simulation of “locking” algorithm,w = 0.8, γ = 1.0 3048

Fluid limit approximation,γ = 1.5 4594
Dynamic programming,γ = 1.5 4563

Simulation of basic algorithm,γ = 1.5 4565
Simulation of “locking” algorithm,w = 0.8, γ = 1.5 2223

Lower bound 531

TABLE II

NUMERICAL COMPARISON FORβ = 0.9 AND N = 1000

in the case of binary phases, there remain interesting open
problems. While the difference between the upper and lower
bounds on the number of rounds required for convergence
is only a constant factor, such factors are quite significant
in practice. Improving the upper bound via better algorithms
and improving the lower bound via better analysis are both
interesting in their own right and may shed light on more
general cases. In particular, allowing time-varying parameters
is an intriguing future direction.

In addition, while our fluid limit and dynamic programming
approaches are computationally useful, they do not naturally
give rise to formulae that can be used to predict behavior or
allow us to optimize parameters algebraically. Finding simple
closed forms (or at least good approximations) remains an
important problem. Finally, we will also investigate the effect
of noise on the beamforming problem, both in the receiver’s
measurement of signal magnitude and in the feedback channel.
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