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I. EXTENDED SUMMARY

Recently, a serial concatenation coding scheme was pro-
posed to approach the capacity of a partial response (PR)
channel [1]. The design of the inner trellis code (named a
matched information rate code (MIRC)) relies on the first-
order statistics (marginal distribution) of the (sub)optimal
discrete input process. In this paper, we investigate the
second-order statistics of the MIRC sequence.

Consider a linear Gaussian channel [2].  The well-
known water-filling theorem specifies a Gaussian process that
achieves the capacity under the (input) power constraint.
If the channel has spectral nulls, the power spectral den-
sity (p.s.d.) of the optimal Gaussian input process must vanish
at those spectral nulls. Therefore, if the input variables are not
constrained to finite constellations, good codes (in the sense
defined in [3]) should match the spectral nulls. However, this
may not be the case if input variables are limited to a finite
constellation. In this paper, we will compute the power spec-
tral density (p.s.d.) of the suboptimal input process under the
constraint that the input at time ¢ can only take values from
{£A}. In this case, the channel is also known as a partial re-
sponse (PR) channel, which is a basic model for digital record-
ing systems [4]. In order to compute the p.s.d. of the discrete
input process, a direct numerical method is utilized and jus-
tified. In contrast to analytical methods presented, e.g. in [5],
the numerical method applies to most hidden Markov chains
of interest. The outline of this work is listed as follows.

1. Introduce trellises of several types by generalizing the
trellis representation of the PR channels [6]. Then de-
fine the input process by assigning a nonzero transition
probability to each branch of a given trellis.

2. Find the (near) optimal (in the sense that the mutual
information rate is maximized) transition probabilities
by applying Kav¢ié’s algorithm [7] to a fixed trellis.

3. Define a hidden Markov process X by treating branches
of the trellis as vertexes of a new graph with edges prop-
erly defined. Then compute the autocorrelation coeffi-
cients Ry(k) = E(X1X14%) for —N < k < N and the
partial sum S (f) = Y Nenen EXP(=27 fly/—1).

The p.s.d. Sz(f) of X is well approximated by SQ(CN)(f) for
suitably large N because SQEN)( f) is geometrically and uni-
formly convergent to S (f). This is true because

Theorem: If the finite Markov model is irreducible and ape-
riodic, then there exist constants ¢ > 0 and 0 < r» < 1 such
that |R. (k)| < cr”.

Proof: The proof, which is omitted here, is based on the
convergence of the given Markov chain. More properties re-
lated to the convergence of a general Markov chain can be
found, for example, in [8].
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Fig. 1: The power spectral densities of the optimal continuous input
process (specified by the water-filling theorem), a suboptimal binary
input process (obtained by Kavéié’s algorithm), and the constructed
MIRC in [1] based on this binary process. The channel considered
here is the dicode channel and SNR = 0 dB.

Numerical results (see Fig. 1) illustrate that (i) the main
powers of the suboptimal binary input process concentrate in
the frequency band where the water-filling solution does not
vanish and (ii) the MIRC sequence [1] matches the suboptimal
process very well in terms of second-order statistics and does
have low powers (but not zero) at channel spectral nulls.

REFERENCES
[1] A. Kav¢ié, X. Ma, and N. Varnica, “Matched information
rate codes for partial response channels.” submitted to IEEE
Trans. Inform. Theory. It was presented in part at ISIT’2002,
Lausanne, Switzerland, June 30-July 5, 2002., June 2002.

[2] G. D. Forney, Jr. and G. Ungerboeck, “Modulation and coding
for linear Gaussian channels,” IEEE Trans. Inform. Theory,
vol. 44, pp. 2384-2415, October 1998.

[3] S. Shamai and S. Verdd, “The empirical distribution of good
codes,” IEEE Trans. Inform. Theory, vol. 43, pp. 836-846, May
1997.

[4] K. A.S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inform. Theory, vol. 44, pp. 2260—
2299, October 1998.

[5] A. Gallopoulos, C. Heegard, and P. H. Siegel, “The power
spectrum of run-length-limited codes,” IEEE Trans. Commun.,
vol. 37, pp. 906-917, Sept. 1989.

[6] G.D. Forney Jr., “The Viterbi algorithm,” Proc. IEEFE, vol. 61,
pp. 268-278, March 1973.

[7] A.Kavcié, “On the capacity of Markov sources over noisy chan-
nels,” in Proceedings IEEE Global Communications Confer-
ence 2001, (San Antonio, Texas), November 2001.

[8] J. S. Rosenthal, “Convergence rates for Markov chains,” SIAM
Review, vol. 37, no. 3, pp. 387-405, 1995.



