
The Power of Two Choices in Randomized Load Balancing

by

Michael David Mitzenmacher

B.A. (Harvard University) 1991

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Alistair Sinclair, Chair
Professor Christos Papadimitriou
Professor David Aldous

1996

The dissertation of Michael David Mitzenmacher is approved:

Chair Date

Date

Date

University of California at Berkeley

1996

The Power of Two Choices in Randomized Load Balancing

Copyright Fall 1996

by

Michael David Mitzenmacher

1

Abstract

The Power of Two Choices in Randomized Load Balancing

by

Michael David Mitzenmacher

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Alistair Sinclair, Chair

Suppose that n balls are placed into n bins, each ball being placed into a bin chosen

independently and uniformly at random. Then, with high probability, the maximum load

in any bin is approximately logn
log logn . Suppose instead that each ball is placed sequentially

into the least full of d bins chosen independently and uniformly at random. It has recently

been shown that the maximum load is then only log logn
logd +O(1) with high probability. Thus

giving each ball two choices instead of just one leads to an exponential improvement in

the maximum load. This result demonstrates the power of two choices, and it has several

applications to load balancing in distributed systems.

In this thesis, we expand upon this result by examining related models and by

developing techniques for studying similar randomized load balancing schemes. We �rst

remove the restriction above that the balls be placed sequentially. We provide a lower

bound demonstrating a tradeo� between the number of rounds of communication used and

the maximum load achieved. Our lower bound shows that one cannot achieve a maximum

load of O(log logn) with only a constant number of rounds of communication. We also

provide simple algorithms that match our lower bounds within a constant factor.

We then consider dynamic models, where balls enter and leave the system over

time. This leads to a natural queueing problem: customers arrive as a Poisson stream

at a collection of n servers. Each customer chooses d of these servers independently and

uniformly at random and queues at the server currently containing the fewest customers.

Customers require an exponentially distributed amount of service time before leaving the

system. We call this model the supermarket model. We determine the behavior of the

2

supermarket model by de�ning an idealized process, corresponding to a system of in�nite

size, which is cleaner and easier to analyze. We then relate the idealized system to the �nite

system, bounding the error between them. Using this technique, we also study several

generalizations of the supermarket model and many other load balancing schemes. Our

results demonstrate the e�ectiveness of having two choices in many situations.

Professor Alistair Sinclair
Dissertation Committee Chair

iii

To all the teachers

who have helped me reach this far.

iv

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Load balancing problems . 1
1.1.1 The balls and bins model . 2
1.1.2 The power of two choices . 3
1.1.3 Questions to address . 4
1.1.4 Theory and practice . 6
1.1.5 Thesis outline . 6
1.1.6 Previous work . 7

1.2 The greedy algorithm . 9

2 Parallel randomized load balancing 14
2.1 Introduction . 14

2.1.1 The model . 15
2.2 Lower bounds . 17

2.2.1 The random graphs model . 17
2.2.2 The d = 2, r = 2 case . 18
2.2.3 The general case . 23

2.3 The Poisson approximation . 27
2.4 Parallel greedy . 31

2.4.1 A two round parallelization of greedy 31
2.4.2 Multiple round strategies . 35

2.5 The threshold strategy . 39
2.5.1 Thresholds with a �xed number of rounds 40
2.5.2 The case of T = 1 . 41

2.6 Simulation results . 43

3 The supermarket model 46
3.1 Introduction . 46

3.1.1 The problem and model . 46
3.1.2 Methodology and results . 48

v

3.2 In�nite systems: the epidemic example . 50
3.3 The analysis of the supermarket model . 51

3.3.1 Preliminaries . 51
3.3.2 Finding a �xed point . 54
3.3.3 Convergence to the �xed point . 54
3.3.4 The expected time in the in�nite system 59

3.4 From in�nite to �nite: Kurtz's theorem . 62
3.4.1 Kurtz's theorem . 63

3.5 Proofs for �nite systems . 69
3.6 Simulation results . 72

4 In�nite systems for other load balancing problems 74

4.1 Introduction . 74
4.2 The static model . 76

4.2.1 The empty bins problem . 77
4.2.2 Bins with �xed load . 79
4.2.3 A new proof of O(log logn) bounds 80

4.3 Constant service times . 81
4.3.1 Constant versus exponential service times 84
4.3.2 Simulations . 88
4.3.3 Other service times . 88

4.4 Other dynamic models . 89
4.4.1 Customer types . 90
4.4.2 Bounded bu�ers . 90
4.4.3 Closed models . 91
4.4.4 The threshold model . 92
4.4.5 Load stealing models . 95
4.4.6 The edge orientation problem . 96

4.5 Simulations . 98
4.5.1 The weak threshold model . 98
4.5.2 Customer types . 99

4.6 Convergence and stability of in�nite systems 101
4.6.1 General stability and convergence results 103
4.6.2 The threshold model: stability and convergence 105

4.7 Open problems and future work . 108

Bibliography 110

vi

List of Figures

2.1 Confused balls. 19
2.2 A (4,2) tree. 19
2.3 A (3,2,3) tree. 23
2.4 Comparing greedy with ties and mpgreedy. 37

3.1 The supermarket model. 47
3.2 A
uid
ow intuition. 58

4.1 Gamma distributed service times. 82
4.2 Weak and strong threshold models. 93
4.3 Expected time versus probability (p) of choosing two locations (� = 0:99). 101

vii

List of Tables

2.1 Simulation results for greedy and other strategies. 45

3.1 Simulations versus estimates for the supermarket model: 100 queues. 73
3.2 Simulations versus estimates for the supermarket model: 500 queues. 73

4.1 Predicted behavior for greedy(d) and average results from 100 simulations
with 1 million balls. 80

4.2 Simulations versus estimates for constant service times: 100 queues. 88
4.3 Simulations versus estimates for the weak threshold model: 100 queues. . . 100
4.4 Simulations versus estimates for the weak threshold model: 500 queues. . . 100
4.5 Simulations versus estimates for two customer types: 100 queues. 102

viii

Acknowledgments

This thesis could not have come about without the assistance and encouragement

of many people. The most important of these is my advisor, Alistair Sinclair. His helpful

ideas and motivating discussions have impacted and improved this research in countless

ways. I cannot imagine my years here without the bene�t of his guidance and support.

I would also like to thank Andrei Broder, with whom I worked during a summer

internship at Digital Systems Research Center. Besides assisting me in my research, Andrei

inspired me to �nish my thesis.

The infectious enthusiasm of the Berkeley faculty have made it an exciting place

to be. Richard Karp, Umesh Vazirani, Raimund Seidel, Christos Papadimitriou, Michael

Luby, David Aldous, and Manuel Blum have always been there to answer questions or to

o�er an encouraging word when it was needed.

The other students at Berkeley have made my research and my extracurricular life

much richer. Steve Lumetta, who always listened to my craziest ideas, often helped me to

see things more clearly. Micah Adler, Soumen Chakrabarti, and Lars Rasmussen deserve

special recognition, both for their part in the work that we did together, and for always

being there to talk about problems. Diane Hernek and Dana Randall, my uno�cial big

siblings, gave me useful advice often over the years. John Byers, David Blackston, Debbie

Weisser, Eric Vigoda, Je� Erickson, and all the others I have had the pleasure of working

and playing with all have my deepest appreciation.

Finally, I would like to thank my family, who always believed I could.

This work was supported in part by an O�ce of Naval Research Fellowship and

by NSF Grant CCR-9505448.

1

Chapter 1

Introduction

1.1 Load balancing problems

Load balancing is the act of distributing objects among a set of locations as evenly

as possible. For example, suppose one has a set of tasks S to distribute among a set of

processors P , such that only one task can run on a processor at any time, a task must be

run entirely on a single processor, tasks cannot be preempted, and processors compute at

the same rate. Given the execution time of each task, how should one distribute them to

minimize the �nal completion time? This problem is motivated by the increasing use of

parallel machines to run large programs, many of which can be broken down into smaller

subprocesses to be divided among the processors.

Surprisingly, even in the case where there are only two processors, �nding the exact

answer to this question is an NP-complete problem, and hence, presumably, computationally

intractable. In fact, this was one of the original problems shown to be NP-complete by Karp

[33, p. 238]. Because in general even simple load balancing problems such as this prove

computationally intractable, one is often forced to look for e�ective strategies that provide

suitable performance in practice. For example, one may consider load balancing in an on-

line setting, where tasks appear one at a time and must be placed upon arrival. In the

on-line setting, achieving the optimal load balance for a set of tasks is generally impossible,

since one does not know what the future will bring. Hence, one's goal must change to �nding

an algorithm that does well over all (or most) inputs. Another possibility, which can lead to

more accurate estimates of the behavior of an algorithm, is to look at average-case analysis,

if the execution times vary according to a �xed, known probability distribution. In average-

2

case analysis, one attempts to make statements about the distribution of completion time

of an algorithm based on assumptions about the distribution of the input parameters, such

as the number of jobs and the execution times. Most of the work of this thesis will focus

on on-line algorithms and average-case analysis.

In developing simple, e�ective load balancing algorithms, randomization often

proves to be a useful tool. For example, if we have a set of tasks S and processors P ,

one possible way to distribute the tasks is to simply place each task on a random processor,

that is, a processor chosen independently and uniformly at random. With this strategy,

the expected load at each processor is the same, and hence intuitively, if there are enough

tasks and the task sizes are not too disparate, then this strategy should load the processors

almost equally.

In this thesis, we will examine the e�ectiveness of this and other similar random-

ized load balancing strategies. Our emphasis will be the tradeo� between the amount of

coordination and the distribution of load. The simple randomized strategy described above

requires no coordination among the tasks or the processors. We will show that with just a

small amount of coordination, one can often achieve a much better distribution of load.

1.1.1 The balls and bins model

The best way to describe the sort of problems we will be studying is to begin

with some examples. We adopt a simpli�ed model historically used by mathematicians:

the balls and bins model, e.g. [40, 47]. Suppose that n balls are placed into n bins, with

each ball being placed into a bin chosen independently and uniformly at random. Let the

load of a bin be the number of balls in that bin after all balls have been thrown. What

is the maximum load over all the bins once the process terminates? It is well known that

with high probability, the maximum load upon completion will be approximately logn
log logn

[35].1 In the processor model mentioned above, this says that if we distribute n tasks to

n processors randomly, with each task requiring unit time, then all tasks will complete in

time logn
log logn with high probability.

Clearly we can do better. If we did not place balls randomly, then we could

easily distribute the tasks so that exactly one ball ends up in each bin. It is therefore

1Throughout this thesis, when we say with high probability we shall mean with probability at least
1 � O(1=n), where n is the number of balls. Also, log will always mean the natural logarithm, unless
otherwise noted.

3

not immediately clear that this result has any practical signi�cance; however, it actually

has many applications. For example, suppose we hash n items into a hash table of n

buckets, assuming that the results of the hashes yield an independent random location for

each item. Then the above result shows that, with high probability, the largest bucket has

approximately logn
log logn entries, and hence the search time for an item in the hash table will

be O(logn
log logn).

2

The result also has more subtle implications in the processor model. Placing one

ball in each bin requires a centralized system, where either some agent controls the destina-

tion bin of each ball, or the balls communicate in order to agree on a placement strategy.

Consider instead a distributed system, where the tasks may not have any direct communi-

cation (or where such communication is expensive). In a distributed system, placing the

balls randomly may be appropriate. There is a tradeo� between the maximum load and

the communication required: a maximum load of 1 with complete coordination versus a

maximum load of logn
log logn with no coordination. Given this tradeo� in the extreme cases, it

makes sense to consider strategies with limited communication, or partial coordination.

1.1.2 The power of two choices

We now state a surprising result, proven in a seminal paper by Azar, Broder,

Karlin, and Upfal [11]. (We shall present a proof of this result in Section 1.2 of this

introduction.) Suppose that the balls are placed sequentially, so that for each ball we

choose two bins independently and uniformly at random and place the ball into the less

full bin (breaking ties arbitrarily). In this case, the maximum load drops to log logn
log 2 +O(1)

with high probability. If each ball instead has d choices, then the maximum load will be
log logn
log d +O(1) with high probability. Having two choices hence yields a qualitatively di�erent

type of behavior from the single choice case, leading to an exponential improvement in the

maximum load; having more than two choices further improves the maximum load by only

a constant factor. Following Azar et al., we refer to this algorithm in which each ball has d

choices as greedy(d).

2The same result clearly holds even if the hashes are not completely independent, but only O(log n
log log n)-

wise independent, since this does not a�ect the probability that O(log n
log log n) balls are in the same bin. In

this thesis we make the simplifying assumption that random choices are completely independent. In most
cases, the amount of randomness required can be reduced in a straightforward manner up to a certain
point; however, the development of suitable hash functions using only small amounts of randomness is an
interesting subject. See [42] for a powerful family of hash functions, or [54] for an introduction to limited
independence and universal families of hash functions.

4

Again, this result has some remarkable practical implications. For example, if one

hashes n items sequentially into n buckets using two hash functions, placing an item only in

the bucket with the smaller load, then by using both hash functions to search for an item,

one reduces the maximum time to �nd an item to O(log logn) with high probability. If we

use this strategy in the processor model where all tasks take unit time, then the time until

termination drops to only O(log logn), with only a small amount of coordination.

At a more basic level, this result demonstrates the power even a small amount of

additional information can have on a natural performance measure. The gain from each

ball having two choices is dramatic, but more choices prove much less signi�cant: the law

of diminishing returns appears remarkably strong in this scenario!

1.1.3 Questions to address

A natural question to ask is whether this fundamental idea, the power of two

choices, is a paradigm that applies to many situations, or is merely an artifact of the

idealized models.

Question 1: What is the key feature that leads to the log logn+O(1) bounds? Does this

feature appear in other systems?

Upon re
ection, other questions also arise from this result and its proof. Indeed,

like most interesting results, this one leaves at least as many questions as it does answers.

Here we discuss some of the most striking. A �rst natural question regards an obvious limi-

tation of the model: the sequentiality requirement. When each ball has two choices, placing

the balls sequentially is an important part of the process: the decisions of previous balls

a�ect the placement of the next ball. If all the balls only make one random choice, however,

then they can all move to their destinations simultaneously. If the speed of the algorithm

is important as well as the �nal maximum load, this may be an important consideration.

Question 2: Is it necessary that the balls be placed sequentially in order to achieve an

O(log logn) bound on the maximum load? Can the balls be placed in parallel without

degrading performance?

Our next question concerns the type of model being used. The result we have

presented concerns a static system, where the number of balls is �xed and the process

5

terminates after all balls have been placed. In the task-processor model, however, it seems

reasonable to ask what happens if tasks enter over time and leave upon completion. Let

us suppose that tasks enter at a certain rate and complete at a certain rate. We call such

a system a dynamic system, since the process does not have a �nal completion point, but

one is instead interested in the behavior of the system over time.3 Azar et al. also study

a dynamic model, but it is a closed model, where the number of balls remains �xed. The

question of how more natural models, such as those based on queueing systems, behave has

remained open.

Question 3: What if the number of balls is not �xed, but balls enter and leave the system

over time?

To convince system designers and other practitioners of the potential bene�t of

the power of two choices, it appears necessary to be able to gauge this bene�t accurately.

The proof by Azar et al. uses various bounds and approximations which make it unclear

how useful it is in predicting performance; in particular, it is not clear how large n has

to be before the asymptotic result describes a noticeable e�ect. Although for this speci�c

problem simulations could provide such information, it would also be more e�ective to have

a general approach for other similar models as well.

Question 4: Is there a way to accurately predict the actual performance of greedy (and

other strategies), instead of providing loose asymptotic bounds?

A �nal question, which in some sense subsumes the others, is how one should go

about analyzing these types of load balancing problems. Our goal is to develop new tools

and methods that can be applied not just to the speci�c problem at hand, but to future

questions that arise in this area.

Question 5: What tools and methods can one use in studying these kinds of load balancing

systems?

3The static/dynamic distinction has been made before in the routing literature; we adopt it here for
scheduling.

6

1.1.4 Theory and practice

As is perhaps clear from the above questions, we are motivated to develop not only

interesting theoretical results, but also tools and techniques for practitioners. Although the

analyses provided in this thesis often utilize idealized models and our results are developed

as theorems and proofs, we are guided by the principle that this underlying idea of two

choices is more than an amusing mathematical trick, but instead a potentially important

consideration for designers of distributed computing systems. This principle a�ects our

approach in several ways, some of which are worth explicitly mentioning here. First, we

avoid excessively esoteric models and instead focus on those that appear applicable to real

situations. By contrast, some approaches to distributed models have emphasized mathe-

matical elegance over practicality. This type of technically challenging analysis is certainly

interesting in its own right; however, such results are not the goal of this work. Second, we

shall attempt to provide numerical results and comparisons with simulations whenever pos-

sible. While such results may not have much theoretical interest, they dramatically impact

the signi�cance of the results to practitioners. Third, we highlight the mathematical tools

that we use in the analysis, with the hope that by developing these tools appropriately, we

can make them accessible to theoreticians and non-theoreticians alike.

1.1.5 Thesis outline

The remainder of the thesis is structured as follows: in Section 1.2 of the present

introduction, we brie
y present a proof of the result of Azar et al. using the original proof

in [11] as our guide. This result has been the primary inspiration for this thesis, and its

proof will be necessary as a point of comparison for both the results and the techniques we

present here.

Chapter 2 considers the sequentiality restriction, and what happens if we try to

remove the restriction from the static load balancing problem. We introduce a simple

model of parallel communications, based on rounds of messages passed between the balls

and bins. The goal of this chapter is to determine a tradeo� between the load balance and

the number of rounds of communication. Surprisingly, we �nd that the O(log logn) upper

bound on the maximum load no longer applies if we restrict algorithms to a constant number

of communication rounds. We provide both lower bounds for this model and practical

algorithms that achieve these bounds, up to a constant factor. The work described in

7

this chapter was done in conjunction with Micah Adler, Soumen Chakrabarti, and Lars

Rasmussen and appeared in [6] in preliminary form.

In Chapter 3 we introduce a dynamic variant of the load balancing problem analo-

gous to similar models from queueing theory. We then analyze this dynamic variant, using

a new technique based on comparison with in�nite systems, or systems that are arbitrarily

large. The primary purpose of this section is to develop new methods for analyzing load

balancing problems and to demonstrate the application of these methods to one speci�c

problem. The dynamic model we consider, however, is interesting in its own right. This

model corresponds to a scenario where tasks enter and leave a system of several processors

over time at given rates. Besides the maximum load on any processor, it is also interesting

to study the expected time a task spends in the system. We show that this dynamic model

exhibits many of the same properties as the static model; in particular, both the maxi-

mum load and the expected time improve exponentially when incoming customers have two

choices for their destination. A preliminary version of this work has appeared in [61].

In Chapter 4 we use the tools from Chapter 3 to study a host of other load bal-

ancing models, both static and dynamic. The purpose of this section is to demonstrate that

our methodology has several features that give it an advantage over previous techniques:

generality, accuracy, and simplicity. For example, we show how to obtain accurate predic-

tions of the performance of the greedy strategy, and then compare our predictions with

simulations. We follow the same procedure with several other realistic randomized load

balancing schemes.

1.1.6 Previous work

Although we strive to mention the relevant work in context throughout, we provide

here a brief overview of the previous work done in the area. On-line static load balancing

against a worst-case adversary has been the subject of a great deal of work [9, 12, 13];

however, in the worst case competitive ratios are extremely high, suggesting that a proba-

bilistic analysis may lead to more insight. The idea of using two (or more) hash functions

to achieve better load balancing was introduced by Karp, Luby, and Meyer auf der Heide

in a paper on PRAM simulation [42]. They demonstrate O(log logn) bounds by using a

universal class of hash functions, showing not only that two hash functions provide an ex-

ponential improvement over a single hash function, but also that complete independence is

8

unnecessary. The more detailed analysis of the greedy strategy presented by Azar et al.

[11] extended this work in several directions. A later paper by Broder et al. considers a

related problem, where edges of a tree arrive randomly and must orient themselves towards

a vertex [22]. Dietzfelbinger and Meyer auf der Heide [28], Goldberg et al. [34], MacKenzie

et al. [55], and Stemann [72] have all developed further PRAM simulation algorithms using

similar ideas. Most of these utilize collision-based protocols: if too many balls land in a

bin, all of them must be rethrown.

Dynamic variations of the problem have been much less well understood. Azar et

al. [11] do consider a dynamic variant of the problem, but it appears much less realistic

than the natural queueing model we propose. A di�erent dynamic load balancing problem,

where tasks remain permanently, was considered by Atjai et al. in [8]. In the queueing

theory literature, Schwartz [69] and Green [36] have examined parallel systems where tasks

have a type that determines which servers can used, with limited success in special cases.

Researchers have placed more emphasis on the model where incoming customers choose the

shortest queue. Even the case where the system has just two queues is di�cult; however,

the problem of determining the limiting equilibrium distribution seems to have been settled

for all practical purposes by Adan et al. using what they call the \compensation approach"

[4]. For the two queue case, Adan et al. also settle the asymmetric case [5]. For more than

two queues, Adan, van Houtum, and van der Wal derive upper and lower bounds based on

comparisons with related systems [3]. The above articles, and the book by Adan discussing

the compensation approach [2], provide a history of the shortest queue problem and some

of its variants.

Distributed load balancing strategies based on information about only a limited

number of other processors have been studied by Eager et al. [29, 30, 31] and Zhou [77].

In fact, the work of Eager et al. examines load balancing strategies similar to many of

those we examine, and they also use an approach based on Markov chains for their analysis

[29, 30, 31]. However, in order to perform their analysis, the authors assume that the state

of each queue is stochastically independent of the state of any other queue (for example,

see [29, p. 665]). The authors also claim, without justi�cation, that this approach is exact

in the asymptotic limit as the number of queues grows to in�nity. Our work substantially

improves upon their work by avoiding these assumptions, as well as by introducing several

new directions in the analysis of these systems. Incidentally, as a byproduct of our work, one

can also see that their claim about the asymptotic limit is correct. Zhou's work examines

9

the e�ectiveness of the load balancing strategies proposed by Eager et al. as well as others

in practice using a trace-driven simulation. Both Eager et al. and Zhou suggest that simple

randomized load balancing schemes, based on choosing from a small subset of processors,

appear to perform extremely well.

Our analysis of dynamic systems will be based on viewing the associated queueing

problems as density dependent jump Markov processes. These processes have an interesting

behavior: as the size of the system (measured by the number of queues) grows to in�nity,

the limiting behavior can be described by a deterministic process. Our treatment of density

dependent jump Markov processes is based on the work of Kurtz [32, 49, 50, 51, 52]; more

modern treatments of the underlying theory are given by Dembo and Zeitouni [27] and

Shwartz and Weiss [70]. Kurtz's work has been applied to matching problems on random

graphs [38, 43, 44] as well as to some queueing models [70]; here, we apply it for the �rst

time to load balancing problems.

1.2 The GREEDY algorithm

We begin by presenting the main result and proof of Azar et al. from [11]. As

previously mentioned, this result has been the primary inspiration for our work, and we

shall refer back to the proof at several points. The proof and notation we present here is

extremely close to the original; we have made some minor changes in the interest of clarity.

Any mistakes or unclear statements introduced by the changes are of course our own.

We introduce some notation. In an (m;n; d) problem, m balls are placed into n

initially empty bins sequentially, with the possible destinations of each ball being given by

d choices made independently and uniformly at random (with replacement). The greedy

algorithm places each ball in the least loaded of its d chosen bins at every step, with ties

broken arbitrarily.

Theorem 1.1 The maximum load achieved by greedy on a random (n; n; d)-problem is

less than log logn
logd +O(1) with high probability.

Before presenting the proof, which is somewhat technical, we brie
y sketch an

intuitive analysis. For any given i, instead of trying to determine the number of bins with

load exactly i, it will be easier to study the number of bins with load at least i. The argument

proceeds via what is, for the most part, a straightforward induction. Let the height of a ball

10

be one more than the number of balls already in the bin in which the ball is placed. That

is, if we think of balls as being stacked in the bin by order of arrival, the height of a ball

is its position in the stack. Suppose we know that the number of bins with load at least i,

over the entire course of the process, is bounded above by �i. We wish to �nd a �i+1 such

that, with high probability, the number of bins with load at least i + 1 is bounded above

by �i+1 over the course of the entire process with high probability. We �nd an appropriate

�i+1 by bounding the number of balls of height at least i + 1, which gives a bound for the

number of bins with at least i+ 1 balls.

A ball will have height at least i + 1 only if, for each of the d times it chooses

a random bin, it chooses one with load at least i. Conditioned on the value of �i, the

probability that each choice �nds a bin of load at least i is �i
n . Therefore the probability

that a ball thrown any time during the process joins a bin already containing i or more

balls is at most
�
�i
n

�d
. For d � 2, we can conclude that the sequence �i=n drops at least

quadratically at each step in the following manner. The number of balls with height i+ 1

or more is stochastically dominated by a Bernoulli random variable, corresponding to the

number of heads with n (the number of balls)
ips, with the probability of a head being�
�i
n

�d
(the probability of being placed in a bin with i or more customers). We can �nd

an appropriate �i+1 using standard bounds on Bernoulli trials, yielding �i+1 � cn
�
�i
n

�d
for some constant c. The fraction �i

n therefore drops at least quadratically at each step, so

that after only j = O(log logn) steps the fraction drops below 1=n, and we may conclude

that �j < 1. The proof is technically challenging primarily because one must handle the

conditioning appropriately.

We shall use the following notation: the state at time t refers to the state of the

system immediately after the tth ball is placed. B(n; p) is a Bernoulli random variable with

parameters n and p. The variable ht is the height of the tth ball, and �i(t) and �i(t) refer

to the number of bins with load at least i and the number of balls with height at least i at

time t, respectively. We use �i and �i for �i(n) and �i(n) when the meaning is clear.

In preparation for the detailed proof, we make note of two elementary lemmas.

The �rst statement can be proven by standard coupling methods:

Lemma 1.2 Let X1; X2; : : : ; Xn be a sequence of random variables in an arbitrary domain,

and let Y1; Y2; : : : ; Yn be a sequence of binary random variables, with the property that Yi =

11

Yi(X1; : : : ; Xi�1). If

Pr(Yi = 1 jX1; : : : ; Xi�1) � p;

then

Pr(
nX
i=1

Yi � k) � Pr(B(n; p) � k);

and similarly, if

Pr(Yi = 1 jX1; : : : ; Xi�1) � p;

then

Pr(
nX
i=1

Yi � k) � Pr(B(n; p) � k):

The second lemma presents some useful Cherno�-type bounds that will be used

frequently throughout the thesis; proofs may be found in [37].

Lemma 1.3 If Xi (1 � i � n) are independent binary random variables, Pr[Xi = 1] = p,

then the following hold:

For t � np; Pr

nX
i=1

Xi � t

!
�

�
np

t

�t
et�np: (1.1)

For t � np; Pr

nX
i=1

Xi � t

!
�

�
np

t

�t
et�np: (1.2)

In particular, we have

Pr

 X
i

Xn
i=1 � enp

!
� e�np; and (1.3)

Pr

 X
i

Xn
i=1 � np=e

!
� e(2=e�1)np: (1.4)

Proof of Theorem 1.1: Following the sketch earlier, we shall construct values �i so that

�i(n) � �i for all i with high probability. Let �6 = n
2e , and �i+1 =

e�di
nd�1 for i � 6 � i�,

where i� is to be determined. We let Ei be the event that �i(n) � �i. Note that E6 holds

12

with certainty. We now show that, with high probability, if Ei holds then Ei+1 holds for

6 � i � i� � 1.

Fix a value of i in the given range. Let Yt be a binary random variable such that

Yt = 1 i� ht � i+ 1 and �i(t� 1) � �i:

That is, Yt is 1 if the height of the tth ball is at least i+ 1 and at time t� 1 there

are fewer than �i bins with load at least i.

Let !j represent the bins selected by the j'th ball. Then

Pr(Yt = 1 j !1; : : : ; !t�1) � �di
nd

= pi:

Thus, from Lemma 1.2, we may conclude that

Pr(
Pn

i=1 Yt � k) � Pr(B(n; pi) � k):

Conditioned on Ei, we have PYt = �i+1. Thus

Pr(�i+1 � k j Ei) � Pr(�i+1 � k j Ei)
= Pr(

P
Yt � k j Ei)

� Pr(
P
Yt � k)

Pr(Ei)
� Pr(B(n; pi) � k)

Pr(Ei)
We bound the tail of the binomial distribution using the formula (1.3). Letting

k = �i+1 in the above, we have

Pr(�i+1 � �i+1 j Ei) � 1

epinPr(Ei) ;

or

Pr(:Ei+1 j Ei) � 1

n2Pr(Ei)
whenever pin � 2 logn.

Hence, whenever pin � 2 logn, we have that if Ei holds with high probability then

so does Ei+1: To conclude we will need to handle the case where pin � 2 logn separately {

we shall show that if this is the case, then with high probability there are no balls of height

at least i + 2. Let i� be the smallest value of i such that
�di
nd

� 2 logn
n . It is easy to check

inductively that �i+6 � n=2d
i
, and hence i� � log logn

log d + O(1).

13

We have

Pr(�i�+1 � 6 logn j Ei�) � Pr(B(n; 2 logn=n) � 6 logn)

Pr(Ei�) � 1

n2Pr(Ei�) ;

where the second inequality again follows from (1.3). Also,

Pr(�i�+2 � 1 j �i�+1 � 6 logn) � Pr(B(n; (6 logn=n)d) � 1)

Pr(�i�+1 � 6 logn)
� n(6 logn=n)d

Pr(�i�+1 � 6 logn)
;

where the second inequality comes from applying the crude union bound. We remove the

conditioning using the fact that

Pr(:Ei+1) � Pr(:Ei+1 j Ei)Pr(Ei) +Pr(:Ei);

and obtain that

Pr(�i�+2 � 1) � (6 logn)d

nd�1
+
i� + 1

n2
= O

�
1

n

�
;

which implies that with high probability the maximum load achieved by greedy is less

than i� + 2 = log logn= log d+O(1).

The proof of Theorem 1.1 demonstrates a useful methodology for attacking these

problems. We refer to this general method as the iterated tail bounds approach, since the

main idea is to bound the successive tails �k inductively.

For future reference, we summarize some of the other problems analyzed in [11]

and [10]. A variation on the proof above su�ces to handle general (m;n; d)-problems. A

corresponding lower bound of log logn= log d�O(1) is presented for the case m = n, based

on the following idea: bound the number of bins with load at least 1 after the (n=2)th ball,

then bound the number of bins of height 2 after the (3n=4)th ball, etc. Azar et al. also study

a dynamic model, described as follows: initially, n bins contain n balls in some arbitrary

con�guration. At each step, a random ball is removed and replaced into the system into one

of d bins chosen independently and uniformly at random. The greedy strategy places the

ball into the least loaded of the d bins. Azar et al. show that within O(n2 log log n) steps,

the maximum load is O(log logn) with high probability. All of these results are proved by

using the iterated tail bounds approach.

14

Chapter 2

Parallel randomized load balancing

2.1 Introduction

In this chapter, we shall consider the question of whether the sequentiality re-

quirement of the original result of Azar et al. is necessary. Although part of our interest in

this problem derives from mathematical curiosity, there are interesting practical reasons for

considering parallel versions of their scheme. For example, recall the task-processor model

described in Section 1.1.2, where we use the greedy scheme to divide tasks among proces-

sors in a distributed setting. It may happen that several tasks become ready for distribution

at approximately the same time. Using the sequential variation of greedy, only one task

can be placed at a time, and hence the �nal task is placed only after all others; this can

result in a large latency between the time the task is ready and the time it is actually placed

at a processor. Avoiding this latency requires parallel placement.

To consider parallelizations of the greedy strategy, we will begin by introducing

a model of communication: communication between balls and bins will take place over a

number of rounds. We �rst show lower bounds that hold for a wide class of load balancing

strategies, including natural parallelizations of the method of Azar et al. Our lower bound

shows that, for any r-round algorithm within our class, the load is at least

�

r

q
logn

log logn

�
with at least constant probability, and hence no algorithm can achieve a maximum load of

O(log logn) with high probability in a �xed constant number of rounds. We then demon-

strate a parallelization of greedy for two communication rounds that matches the lower

bounds to within a constant factor, and we examine alternative parallelizations of greedy

that are e�ective when the number of communication rounds is approximately equal to the

15

maximum load. We also examine an alternative strategy used in [42] (and often used in

practice) based on setting a threshold at each bin: balls that attempt to enter a bin that has

already accepted a number of balls equal to its threshold in that round must be rethrown.

This strategy matches the lower bounds up to a constant factor for any constant number

of rounds. Our results show that thresholding strategies can achieve a useful tradeo� be-

tween communication cost and the maximum load achieved. We conclude by presenting

simulation results verifying our theoretical work.

Besides the connections to the work of Karp, Luby, and Meyer auf der Heide

[42] and of Azar et al. [11], our work is related to other work in the area of contention

resolution. For example, MacKenzie, Plaxton, and Rajaraman [55], extending previous

work by Dietzfelbinger and Meyer auf der Heide [28], examine contention resolution models

based on the c-collision crossbar: if more than c items attempt to access a resource, none

get through. Following our original work in this area, Volker Stemann [73] has developed

collision-based protocols that match our lower bound over the entire range of r. He also

considers extensions where n players have � balls to distribute into the bins, and wish to

do so in a way that minimizes both the time to distribute all the balls and the maximum

time to distribute each ball.

2.1.1 The model

We �rst describe our model in terms of balls and bins. Each of m balls is to be

placed in one of n bins. Each ball begins by choosing d bins as prospective destinations,

each choice being made independently and uniformly at random with replacement from all

possible bins. The balls decide on their �nal destinations using r rounds of communication,

where each round consists of two stages. In the �rst stage each ball is able to send, in

parallel, messages to any of its prospective destination bins, and in the second stage each

bin is able to send, in parallel, messages to any ball from which it has ever received a

message. In the �nal round, the balls commit to one of the prospective bins and the process

terminates. Although our lower bounds will hold more generally, for our upper bounds

we will constrain our messages to be of size polylog(n;m). This restriction follows from

practical considerations; messages should be short, consisting of an index number or other

easily handled information. The goal is to minimize the maximum load, which is de�ned to

be the maximum number of balls in any bin upon completion.

16

This model is motivated by the following realistic scenario: modern computer

networks often have decentralized compute-servers (bins) and client workstations issuing

tasks (balls). A distributed load-balancing strategy has to assign tasks to servers. Clients

are ignorant of the intention of other clients to submit tasks; contention is known only from

server load. Servers are ignorant of tasks from clients that have not communicated with

them. It is also prohibitively expensive for clients to globally coordinate task submissions.

The primary objectives are to minimize the maximum load achieved as well as the number

of communication rounds required. Reducing the number of rounds is an important goal

since, in a network setting, the time to complete a round is determined by network latency,

which is generally orders of magnitude higher than CPU cycle times.

We will examine a class of simple strategies that include many of the standard

algorithms presented in the literature [11, 42, 55, 72, 73]. The strategies we restrict our

attention to are non-adaptive, in that the possible destinations are chosen before any com-

munication takes place. We will also restrict our discussion to strategies that are symmetric,

in the sense that all balls and bins perform the same underlying algorithm and all possible

destinations are chosen independently and uniformly at random. We believe that these

restrictions have practical merit, as an algorithm with these properties would be easier to

implement and modify even as the underlying system changes.

Informally, we shall say that an algorithm functions asynchronously if a ball (or

bin) has to wait only for messages addressed to it (as opposed to messages destined else-

where). That is, balls and bins are not required to wait for a round to complete before

continuing. An algorithm requires synchronous rounds if there must exist a synchroniza-

tion barrier between some pair of rounds; that is, a ball or bin must explicitly wait for an

entire previous round to complete before sending a message. In many distributed settings,

the ability of an algorithm to function asynchronously can be a signi�cant advantage; an

algorithm with synchronous rounds needs some notion of global time to maintain coordina-

tion. Note that the algorithm of Azar et al. achieves �nal load no worse than O(log logn),

but requires
(n) synchronous rounds. Also, the obvious strategy of having the balls choose

random I.D. numbers and applying standard sorting methods requires much more sophis-

ticated centralized communication.

17

2.2 Lower bounds

2.2.1 The random graphs model

We �rst develop a general model for lower bounds that captures a class of non-

adaptive, symmetric load balancing strategies. Our lower bounds are expressed in terms

of the number of rounds of communication, r, and the number of choices available to each

ball, d. In Section 2.2.2, we will focus on the case where d = 2 and r = 2, extending the

results to arbitrary values of r and d in Section 2.2.3.

For our bounds, we will rephrase the balls and bins problem in terms of a random

graph orientation problem. The relationship between balls and bins problems and random

graphs has been noted previously [8, 42, 55]; we thank Claire Kenyon and Orli Waarts

for suggesting this model and several helpful related ideas. Here, we show that proving a

lower bound for the balls and bins problem is equivalent to showing that, with su�ciently

high probability, a speci�c subgraph appears in a random graph. These results on random

graphs may be of independent interest.

We temporarily restrict ourselves to the case of d = 2. Associate with each bin

a vertex of a graph with n vertices. Each ball can be represented by an undirected edge

in this graph, where the vertices of the edge correspond to the two bins chosen by the

ball. (For convenience, in this section, we assume that each ball chooses two bins without

replacement. This has the e�ect of ensuring that no self-loops arise in the graph. Multiple

edges, however, may arise: these correspond to two balls that have chosen the same pair of

bins. Our proofs may be modi�ed to allow self-loops, and our restriction does not change

our asymptotic results.) With each edge we shall associate an orientation. An edge, or

ball, shall be oriented toward the vertex, or bin, that it chooses as its �nal destination.

The goal of the algorithm is thus to minimize the maximum indegree over all vertices of

the graph. In the case where there are m balls and n bins, the corresponding graph is a

random graph from the set of all graphs with n vertices and m edges, where an edge may

occur with multiplicity greater than one. We shall focus on the case m = n, since this is

the most interesting case in terms of behavior.

We now characterize communication in this model. For each round of communi-

cation, every ball and bin will determine a larger portion of the graph around it. Following

standard terminology, we de�ne the neighborhood of an edge e, denoted by N(e), to be

the set of all edges incident to an endpoint of e. For a set S of edges, we write N(S) for

18

[e2SN(e). The neighborhood of a vertex v, denoted by N(v), is the set of all edges incident

to v. We shall also make use of the following de�nitions:

De�nition 2.1 The l-neighborhood of an edge e, denoted by Nl(e), is de�ned inductively

by: N1(e) = N(e), Nl(e) = N(Nl�1(e)).

De�nition 2.2 The (l; x)-neighborhood of an edge e = (x; y), denoted by Nl;x(e), is de�ned

inductively by: N1;x(e) = N(x)� feg, Nl;x(e) = N(Nl�1;x(e))� feg.

Intuitively, for each round of communication, a ball learns about a larger neigh-

borhood in the graph. Speci�cally, since we are working towards lower bounds, we may

assume that the messages sent by the bins contain all available information whenever pos-

sible. Consider an r round protocol for the balls and bins problem where balls commit to

their �nal choice in the rth round. In this case, we may assume a ball knows everything

about the balls in its (r � 1)-neighborhood, and no more, before it must commit to a bin

in the rth round; this may be veri�ed formally by a simple induction argument.

We now describe an assumption that we use to show that the �nal load is high

with constant probability. The l-neighborhood of a ball e = (x; y) splits into two subgraphs

corresponding to Nl;x(e) and Nl;y(e); these are the parts of the neighborhood the ball learns

about from each bin. Suppose that these two subgraphs of the ball's l-neighborhood are

isomorphic rooted trees, with the roots being x and y. In this case we say that the ball

has a symmetric l-neighborhood, or, more graphically, we say that the ball is confused (see

Figure 2.1). The ball has no reason to prefer one bin over another, and must essentially

choose randomly. For the moment, we explicitly assume that in this situation the ball

chooses a bin randomly with probability 1
2 ; we shall expand on this shortly.

Assumption 2.3 If a ball has a symmetric (r� 1)-neighborhood, then in any protocol of r

rounds it chooses a destination bin with a fair coin
ip.

2.2.2 The d = 2, r = 2 case

If many confused balls are incident on one bin, with constant probability, over

half of them will opt for the bin, which will become overloaded. We show that for r and

T suitably related to n, a random graph G with n vertices and n edges has, with high

probability, an isolated (T; r)-tree, de�ned as follows:

19

e

Confused Ball

x y

Figure 2.1: The central edge corresponds to a confused ball{ its left and right neighborhoods
(N2;x(e) and N2;y(e)) appear the same.

De�nition 2.4 A (T; r) tree is a rooted, balanced tree of depth r, such that the root has

degree T and each internal node has T � 1 children. A (T; r) tree is isolated in a graph G

if it is a connected component of G with no edges of multiplicity greater than one.

Note that a (T; r) tree is slightly di�erent from a T -ary tree of depth r. (See

Figure 2.2.)

B4B1 B2 B3

Figure 2.2: A (4,2) tree. Each vertex has degree 4, and the depth of the tree is 2. Balls
B1-B4 will be confused after one just round of communication, and hence each orients itself
to the root with probability 1/2.

We shall show that random graphs contain (T; r) trees of a suitable size. For

convenience, we begin with the simple case of d = 2 and r = 2.

20

Theorem 2.5 With constant probability, a random graph with n vertices and n edges con-

tains an isolated (T; 2) tree with T = (
p
2� o(1))

q
logn

log logn .

Since, with constant probability, half of the confused edges in an isolated (T; 2)

tree adjacent to the root will orient themselves toward it (by Assumption 2.3), the above

theorem immediately yields the following corollary:

Corollary 2.6 Any non-adaptive, symmetric load distribution strategy for the balls and

bins problem with n balls and n bins satisfying Assumption 2.3, where d = 2 and r = 2, has

a �nal load at least
�p

2
2 � o(1)

�q
logn

log logn with at least constant probability.

Corollary 2.6 demonstrates that the O(log logn) bounds achieved by Azar et al.

using the greedy strategy cannot be achieved by any two round strategy where each ball

has two choices.

Although we prove Theorem 2.5 for the case where m, the number of edges, and n,

the number of bins, are equal, it will be useful to write the number of edges as m throughout

the proof. Besides making the proof clearer, this will allow us to extend the theorem easily

to a broader range of m; this is discussed after the proof.

Proof of Theorem 2.5: Let ~v = (v0; v1; : : : ; vT 2) be a vector of T 2 + 1 vertices. Let

X~v be an indicator random variable that is 1 if v0 is the root of an isolated (T; 2) tree,

v1; : : : ; vT are the nodes of depth 1, vT+1; : : : ; v2T�1 are the children of v1, and so on, and

let X =
P

~vX~v. We show that X > 0 with at least constant probability by determining the

expectation and variance of X and applying the simple bound (from [21], equation (3) of

I.1):

Pr(X = 0) � 1� E[X]2

E[X2]
:

The multinomial coe�cient
� n
1;T ;T�1;:::;T�1

�
, where the sum of the lower terms

1 + T + (T � 1) + : : :+ (T � 1) is T 2 + 1, gives the number of possible choices for ~v; we

must �rst choose the root, and then the T children of the root, and then the T � 1 children

for each child. We now choose a speci�c ~v and determine the probability p that X~v is 1. If

X~v is 1, there must be T
2 edges corresponding to the (T; r) tree connecting the vertices of

~v and no other edges incident to these vertices. We must �rst choose T 2 of the m edges to

make up the tree: there are
�m
T 2

�
(T 2)! ways of doing this. The remaining edges must lie on

21

the remaining n� (T 2 + 1) vertices so that the tree is isolated. Hence

p =

�n�(T 2+1)
2

�m�T 2�m
T 2

�
(T 2)!�n

2

�m :

Using the linearity of expectations, we have

E[X] =

� n
1;T ;T�1;:::;T�1

��n�(T 2+1)
2

�m�T 2�m
T 2

�
(T 2)!�n

2

�m :

This unwieldy expression can be simpli�ed by canceling appropriately and noting that we

will choose T small enough so that many terms are o(1) (in the case m = n). For instance,

if T = o(logn), then we have

�n�(T 2+1)
2

�m�T 2

�n
2

�m�T 2 = e�2(T 2+1)m=n(1 + o(1)) ; (2.1)

�m
T 2

�
(T 2)!

nT
2 =

�
m

n

�T 2

(1 + o(1)) ; (2.2)� n
1;T ;T�1;:::;T�1

�
(n� 1)T

2 =
n

((T � 1)!)T+1T
(1 + o(1)) ; : (2.3)

We thus obtain

E[X] =
n
�
2m
n

�T 2

e2(T 2+1)m=n((T � 1)!)T+1T
(1 + o(1)): (2.4)

We now examine how to compute E[X2]. Note that, because we are considering

only isolated (T; 2) trees, if ~v 6= ~w then X~v and X~w can both equal 1 if and only if ~v and

~w consist of disjoint sets of vertices or are equal. This simpli�es the calculation of E[X2]

considerably. Since

E[X2] = E[X] +
X
~v 6=~w

E[X~vX~w];

it su�ces to compute the second term. The calculation is similar to that for E[X].

The number of possible disjoint pairs ~v and ~w is
� n
1;T ;T�1;:::;T�1;1;T ;T�1;:::;T�1

�
, and

the probability q that a given disjoint pair ~v and ~w yields two isolated (T; 2) trees is

q =

�n�(2T 2+2)
2

�m�2T 2� m
2T 2

�
(2T 2)!�n

2

�m :

22

From these terms we derive
P

~v 6=~w E[XvXw] = E[X]2(1+o(1)), by simplifying with equations

entirely similar to equations (2.1), (2.2), and (2.3). We thus have that E[X2] = E[X] +

E[X]2(1 + o(1)). It now su�ces to choose a T such that E[X] is bounded below by a

constant. Taking the logarithm of both sides of Equation 2.4, we �nd this will hold as long

as

T 2 logT +
2T 2m

n
� T 2 log

2m

n
� logn+ o(logn): (2.5)

Hence for m = n there exists a (T; 2) tree with T = (
p
2 � o(1))

q
logn

log logn with

constant probability.

Remark: Although we have stated Theorem 2.5 only for the case m = n, it is clear that

nearly the same proof, and hence equation (2.5), applies for a range of m. For example,

if m = n
logk n

for some �xed k, then we again have

�q

logn
log logn

�
bounds on the maximum

load with at least constant probability. The important points to check are where we have

stated that some terms go to o(1), as in equations (2.1), (2.2), and (2.3), which places

restrictions on the possible values of m and T . It is also worth noting that equation (2.5)

can be improved somewhat. We have insisted up to this point that our trees be isolated,

even though there is no reason that the leaf nodes cannot be adjacent to nodes outside the

tree. Taking advantage of this fact would reduce the 2T 2m
n terms of equation (2.5) to 2Tm

n .

Although this does not a�ect the bound when m = n in this case, it will be important in

the generalization we consider in the following section.

Although it may at �rst seem unreasonable to insist that balls with symmetric r-

neighborhoods choose a bin randomly, obvious tie-breaking schemes do not a�ect the lower

bound. For instance, if the balls are ordered at the bins, either by random I.D. numbers

or by a random permutation, and then choose a bin according to their rank, the balls are

essentially choosing a bin at random. The proof can also easily be modi�ed for the case

where the balls are ranked at the bins by some �xed ordering by using the symmetry of

the destination choices of the balls. Similarly, if bins are numbered and given a preferred

ordering in case of ties, then with constant probability there is still a (T; 2) tree whose root

has the given �nal load.

23

2.2.3 The general case

One can extend Theorem 2.5 to the case where d > 2 and r > 2; in fact, the

extension also applies if r and d grow su�ciently slowly with n.

When r > 2 and d = 2, the balls and bins scenario can again be reduced to

a random graph problem; instead of showing the existence of a (T; 2) tree, one needs to

demonstrate the existence of a (T; r) tree. When d > 2 we must consider hypergraphs

instead of graphs. In this model, balls correspond to hyperedges of d distinct vertices in

the hypergraph. The degree of a vertex is the number of incident hyperedges. A tree of

hyperedges is simply a connected acyclic hypergraph, and the depth of a tree is the number

of hyperedges in a longest path from the root to a leaf.

De�nition 2.7 A (T; r; d) tree is a rooted, balanced tree of depth r with edges of size d,

such that the root has degree T and each internal node has T � 1 children. A (T; r; d) tree

is near-isolated in a graph G if it has no edges of multiplicity greater than one and no edge

of G other than the tree edges are incident to any non-leaf node of the tree.

Figure 2.3 gives an example of a (3; 2; 3) tree. We have also de�ned the notion of

a near-isolated tree, since, as suggested in the remark after Theorem 2.5, by considering

near-isolated trees we will be able to tighten our bounds in the general case.

Figure 2.3: A (3,2,3) tree. Each triangle corresponds to a hyperedge of three vertices.

The l-neighborhood and (l; x)-neighborhood of a ball can be de�ned for hyper-

graphs similar to De�nitions 2.1 and 2.2. As in Assumption 2.3, we will assume that if a

ball has a symmetric (r�1)-neighborhood, it chooses one of the d bins uniformly at random

24

at the end of an r round algorithm; for convenience, we still call this Assumption 2.3. Thus

the root of a near-isolated (T; r; d) tree will end with T
d balls with at least constant proba-

bility. As we shall see, whether a near-isolated (T; r; d) tree exists is essentially a matter of

its size, in terms of the number of edges it contains.

In the remainder of this section, we shall prove the following theorem:

Theorem 2.8 For any �xed r and d, there exists a T =

�

r

q
logn

log logn

�
such that with

constant probability, a random graph with n vertices and n edges of size d contains a near-

isolated (T; r; d) tree.

The theorem immediately yields the following corollary:

Corollary 2.9 Any non-adaptive, symmetric load distribution strategy for the balls and

bins problem satisfying Assumption 2.3 where d and r are constants and m = n has a �nal

load at least

�

r

q
logn

log logn

�
with constant probability.

Corollary 2.9 generalizes Corollary 2.6 by demonstrating that the O(log logn)

bounds achieved by Azar et al. using the greedy strategy cannot be achieved by any

strategy in which each ball has a �xed constant number of choices and in which only a

constant number of rounds are used.

The constant factor in the lower bound (for r and d �xed) is dependent on d. The

proof of the theorem also yields results when d grows with n. With constant probability

the �nal load is T
d if there is a (T; r; d) tree in the corresponding hypergraph. Similarly,

if there is a (T; r; d) tree in the corresponding hypergraph, then with probability d�T the

�nal load is T ; this can be used to give negative results by showing that no non-adaptive,

symmetric load distribution strategy achieves load T with high probability when dT = o(n).

For example, we have the following corollary:

Corollary 2.10 Any non-adaptive, symmetric load distribution strategy for the balls and

bins problem satisfying Assumption 2.3 with m = n where d = O
�

log logn
log log logn

�
and r =

O
�

log logn
log log logn

�
has a �nal load at least

�
log logn

log log logn

�
with probability at least O (1= logc n)

for some constant c (dependent on d and r).

We warn the reader that the proof of Theorem 2.8, although not di�cult, is some-

what technical, and it can be skipped on the �rst reading without a�ecting the understand-

ing of the rest of the thesis.

25

Proof of Theorem 2.8: As in Theorem 2.5, although we are considering only the case

m = n, we continue to distinguish m and n when writing the proof, in the interests of

enhancing clarity and allowing generalizations to other values of m where suitable.

We begin by �nding the expected number of (T; r; d) trees. Let V denote the total

number of vertices in the desired (T; r; d) tree, let VI denote the number of vertices on

internal edges of the tree, and let E denote the total number of hyperedges of the tree. A

given list of V vertices corresponds to a unique (T; r; d) tree in a canonical way. For a given

list of V vertices, the probability p that the corresponding tree component exists is

p =

�n�VI
d

�m�E�m
E

�
E!�n

d

�m :

That is, we must choose from the m edges the E edges of the tree, and all other

edges cannot be incident to an internal vertex.

To compute the number of possible trees, we consider all lists of V vertices, where

the �rst vertex corresponds to the root, the next T (d� 1) vertices correspond to the �rst T

edges, and so on. Each possible re-ordering of the vertices that make up an edge leads to

the same tree; also, the subtrees at each level can be permuted without changing the tree.

Keeping these facts in mind, we �nd the total possible number of vectors corresponding to

distinct near-isolated trees, which we denote by N , is

N =

� n
1;T (d�1);(T�1)(d�1);:::;(T�1)(d�1)

�� T (d�1)
d�1;:::;d�1

��(T�1)(d�1)
d�1;:::;d�1

�(E�T)=(T�1)

T ![(T � 1)!](E�T)=(T�1)

=
n!

(n� V)![(d� 1)!]ET [(T � 1)!](E�1)=(T�1)
;

where in the �rst multinomial coe�cient, the sum of the terms on the second level, 1 +

T (d� 1) + (T � 1)(d� 1) + : : :+ (T � 1)(d� 1), is V .

Routine calculations yield that V = 1 + T (d � 1) [(T�1)(d�1)]r�1
(T�1)(d�1)�1 , E = V�1

d�1 , and

VI = 1 + T (d � 1) [(T�1)(d�1)]r�1�1
(T�1)(d�1)�1 . For suitable values of T (and hence E and V), after

absorbing lower order terms the product Np reduces to:

Np =
n
�m
n

�E
dE(1 + o(1))

eVIdm=nT ((T � 1)!)(E�1)=(T�1)
:

26

Hence the expected number of (T; r; d) trees can be made at least a constant for suitable

choices of T , r, and d; this requires

log n+ E log
m

n
+E log d � VIdm

n
+ (E � 1) log(T � 1) + o((E � 1) log(T � 1)):

Noting that E � (Td)r, we �nd that (up to lower order terms) we require log n �
(Td)r log T when m = n. In particular, when d is a �xed constant we can �nd a T of size

at least

�

r

q
logn

log logn

�
such that the expected number of (T; r; d) trees is at least a constant

when m = n.

We must now also show that the variance is not too large. Recall that

E[X2] = E[X] +
X
~v 6=~w

E[X~vX~w]:

Finding
P

~v 6=~w E[X~vX~w] is more di�cult than in Theorem 2.5, because the trees

are not isolated. There are two cases: ~v and ~w share no internal vertices, or they share at

least one internal vertex. If ~v and ~w share no internal vertices, then the probability p that

X~v and X~w are both 1 is

p =

�n�2VI
d

�m�2E�m
2E

�
2E!�n

d

�m :

The number of pairs of disjoint ~v and ~w can be found in the following manner: we �rst

choose the 2VI internal vertices, and then for each tree we choose the remaining the V �VI

vertices from the n � 2VI vertices. Hence, the number of pairs is

n!(n� 2VI)!(n� 2VI)!

(n� 2VI)!(n� VI � V)!(n� VI � V)![(d� 1)!]2ET 2[(T � 1)!]2(E�1)=(T�1)
:

If ~v and ~w share an internal vertex, then the root of one tree must be the internal

vertex of another. Without loss of generality let ~v be the tree whose root is not an internal

vertex. Then we use the following argument to bound E[X~vX~w].

E[X~vX~w] = Pr(X~v = 1 and X~w = 1)

= Pr(X~v = 1)Pr(X~w = 1jX~v = 1)

= E[X~v]Pr(X~w = 1jX~v = 1):

Let us now look at a speci�c, �xed ~v. Let SI be the set of internal vertices for ~v,

and let z be a �xed vertex sharing an edge with the root of ~v. We then have the following

27

bound:

X
~w 6=~v

E[X~vX~w] = E[X~v]Pr(X~w = 1jX~v = 1)

�
X
y2SI

E[X~v]Pr(y is a root of a (T; r; d) tree jX~v = 1)

� VI E[X~v]Pr(z is a root of a (T; r; d) tree jX~v = 1):

The last line captures the fact that the greater the overlap between ~v and ~w, the more likely

both trees lie in the graph.

Let pz = Pr(z is a root of a (T; r; d) tree jX~v = 1), and let E2 be the number

of new hyperedges one must add to the tree given by ~v so that z is also the root of a

near-isolated (T; r; d) tree. We have E2 = [(T�1)(d�1)]r

d�1 , and from this we calculate pz to

�nd

pz =

� n�VI
(T�1)(d�1);:::;(T�1)(d�1)

� �((T�1)(d�1)
d�1;:::;d�1)
(T�1)!

�E2=(T�1) �n�VI�(E2=(T�1))
d

�m�E�E2�m�E
E2

�
E2!�n�VI

d

�m�E :

Or, more conveniently,

pz � dE2e�mdE2=n(T�1)(m=n)E2

(T � 1)!E2=(T�1)
:

It is easy to check that pz = o(1=VI) when m = n. Summing over all cases yields

E[X2] = (E[X] + E[X]2)(1 + o(1));

which is su�cient to prove the theorem.

2.3 The Poisson approximation

We now switch from proving lower bounds to examining parallel algorithms for load

balancing based on the greedy idea. Before developing any particular algorithms, it will

be useful to derive a general tool that we will use often in what follows. The main di�culty

in analyzing balls and bins problems is that it is often hard to handle the dependencies

that naturally arise in such systems. For example, if one bin is empty, then it is less likely

that another bin is empty; the loads of the various bins are correlated. It will be useful to

28

have a general way to circumvent these sorts of dependencies. We show here how to do so

when we are examining the probability of a rare event. This idea { �nding ways around

natural dependencies that frustrate analysis { is a common theme that will occur again in

this thesis.

It is well known that after throwing m balls independently and uniformly at ran-

dom into n bins, the distribution of the number of balls in a given bin is approximately

Poisson with mean m
n . We would like to say that the joint distribution of the number of balls

in all the bins is well approximated by assuming the load at each bin is an independent Pois-

son random variable with mean m
n . This would allow us to treat bin loads as independent

random variables, and hence use standard techniques such as Cherno� bounds.

Suppose m balls are thrown into n bins independently and uniformly at random,

and let X
(m)
i be the number of balls in the i-th bin, where 1 � i � n. Let Y

(m)
1 ; : : : ; Y

(m)
n

be independent Poisson random variables with mean m
n . We will omit the superscript when

it is clear from the context. In this section we will derive some relations between these

two sets of random variables, adapting an argument used by Gonnet [35] to determine the

expected maximum number of balls in a bin. We note that the close relationship between

these two models has been observed and made use of previously, for example in [23], and

tighter bounds on speci�c problems can often be obtained with more detailed analyses, as

can be seen, for example, in [16, Chapter 6] or [41]. An advantage of the approach we

present is that it is quite general and easy to apply.

Theorem 2.11 Let f(x1; : : : ; xn) be a non-negative function. Then

E[f(X1; : : : ; Xn)] �
p
2�emE[f(Y1; : : : ; Yn)]: (2.6)

Further, if E[f(X1; : : : ; Xn)] is either monotonically increasing or monotonically decreasing

with m, then

E[f(X1; : : : ; Xn)] � 4E[f(Y1; : : : ; Yn)]: (2.7)

Proof: We have that

E[f(Y1; : : : ; Yn)] =
1X
k=0

E

h
f(Y1; : : : ; Yn)

���P Yi = k
i
Pr(

P
Yi = k)

� E

h
f(Y1; : : : ; Yn)

���PYi = m
i
Pr(

P
Yi = m)

= E[f(X1; : : : ; Xn)]Pr(
P
Yi = m)

29

where the last equality follows from the fact that the joint distribution of the Yi givenP
Yi = m is exactly that of the Xi, as can be checked by comparing the probabilities of

any given set of bin loads in both cases. As
P
Yi is Poisson distributed with mean m, we

now have

E[f(Y1; : : : ; Yn)] � E[f(X1; : : : ; Xn)]
mme�m

m!
;

and using Stirling's approximation now yields equation (2.6).

If E [f(X1; : : : ; Xn)] increases with m, then by a similar argument we have

E[f(Y1; : : : ; Yn)] �
1X

k=m

E

h
f(Y1; : : : ; Yn)

���P Yi = k
i
Pr(

P
Yi = k)

� E

h
f(Y1; : : : ; Yn)

���PYi = m
i
Pr(

P
Yi � m)

= E [f(X1; : : : ; Xn)]Pr(
P
Yi � m)

It is easy to check that Pr(
P
Yi � m) can be bounded below by 1/4, and equation (2.7)

follows. The case where E [f(X1; : : : ; Xn)] decreases with m is similar.

From this theorem, we derive a corollary that will be central to most of our proofs.

Let us call the scenario in which bin loads are taken to be independent Poisson random

variables with mean m
n the Poisson case, and the scenario where m balls are thrown into n

bins independently and uniformly at random the exact case. Also, let a load based event be

an event that depends solely on the loads of the bins.

Corollary 2.12 A load based event that takes place with probability p in the Poisson case

takes place with probability at most p
p
2�em in the exact case. If the probability of the event

is monotonically increasing or decreasing with the total number of balls, then the probability

of the event is at most 4p in the exact case.

Proof: Let f be the indicator function of the load based event. In this case E[f] is just the

probability that the event occurs, and the result follows immediately from Theorem 2.11.

To demonstrate the utility of this corollary, we provide a simple representative

example that will prove useful later.

30

Lemma 2.13 Suppose m < n
logn , and suppose m balls are thrown independently and uni-

formly at random into n bins. Then, with high probability, the maximum load is �(logn
log n

m
).

Proof: By Corollary 2.12, since the maximum load is monotonically increasing with the

number of balls, it is su�cient to prove that the bounds hold in the Poisson case. Let pk

be the probability that any particular bin contains k or more balls.

For the lower bound, note that

pk � (mn)
ke�m=n

k!
;

as the right hand side is simply the probability that a bin has exactly k balls. The probability

that no bin has k or more balls is thus at most (1 � pk)
n � e�pkn, and we need to show

that e�pkn � 1
n when k =
(logn

log n
m
). Taking logarithms twice yields the following su�cient

condition:

log k! + k log(nm) � log n� O(log log n): (2.8)

It is now simple to check that choosing k = a logn
log n

m
for any constant a < 1

2 su�ces as long

as m < n
logn .

For the upper bound, note that

pk � 2(mn)
ke�m=n

k!
; (2.9)

as can be found by bounding the probability that a bin has k or more balls by a geometric

series (and using just that m < n). It is easy to show that when k � 3 logn
log n

m
, this probability

is less than 1
n2
, and thus no bin contains 3 logn

log n
m

or more balls with probability at least

1�O(1=n) in the exact case.

For completeness, we also prove a weak form of the result we stated back in

Chapter 1 for the case of n balls and n bins in a similar fashion:

Lemma 2.14 Suppose n balls are thrown independently and uniformly at random into n

bins. Then, with high probability, the maximum load is �(logn
log logn).

Proof: By Corollary 2.12 it is su�cient to prove that the bounds hold in the Poisson case.

Let pk be the probability that any particular bin contains k or more balls.

31

For the lower bound, note that pk � 1
ek! : Now, as in Lemma 2.13, we �nd that

e�pkn � 1
n when k =
(logn

log logn).

For the upper bound, note that pk � 1
k! , and hence for some k of size O(logn

log logn),

pk is O(1=n2), from which the claims follows.

We emphasize that Corollary 2.12 will prove useful to us because in the Poisson

case all bin loads are independent. This independence allows us to use various forms of

Cherno� bounds in the Poisson case, and then transfer the result to the exact case, greatly

simplifying the analysis.

2.4 Parallel GREEDY

The lower bounds in Section 2.2 show that if the number of communication rounds

and possible destinations for a ball are �xed, the log logn
log d + O(1) maximum load bound of

[11] no longer applies. We therefore seek ways to parallelize the greedy strategy, with the

aim of matching the lower bounds. We �rst deal with the case of two rounds in Section

2.4.1, and then consider multiple rounds in Section 2.4.2. For these sections, we restrict

ourselves to the case d � 2.

2.4.1 A two round parallelization of GREEDY

We begin with a more formal description of greedy. Each ball a will at some

point in the algorithm independently choose d destination bins i1(a); i2(a); : : : id(a) (with

replacement). We may assume that these choices are made in parallel as the �rst step in the

algorithm; this assumption makes it clear that greedy is non-adaptive. Next, each ball a

decides, solely by communicating with i1(a); : : : ; id(a), to which bin it shall commit. Once

a ball has committed to a bin, its decision cannot be reversed. We note that ties in this and

other algorithms are broken arbitrarily and the d bin choices are made with replacement

unless stated otherwise.

32

CHOOSE(d):

in parallel: each ball a

chooses u.a.r. d bins i1(a); : : : ; id(a)

GREEDY(d):

call CHOOSE(d)

sequentially: each ball a

queries bins i1(a); : : : ; id(a) for current load

commits to bin with smallest load

We will break the sequentiality of greedy by letting the balls choose between

i1(a); : : : ; id(a) according to the selections made by the other balls in the initial stage of

the process. Let all the balls inform their d choices that they have been chosen by sending

them each a request. We shall refer to the d requests as siblings.

Each bin then creates a list of the requests it has received. The bins may order their

lists arbitrarily. However, if they handle requests in the order they arrive, the algorithm

may function asynchronously. Notice that we make no claim that the requests arrive at the

bins in any particular order.

The height of a request is its position in the request list it belongs to. The bins

now send back the heights of their requests to the balls. Finally, each ball commits to the

bin in which its request had the smallest height. This allows the entire process, which we

call pgreedy, to �nish in only two rounds:

33

PGREEDY(d):

call CHOOSE(d)

in parallel: each ball a

sends requests to bins i1(a); : : : ; id(a)

in parallel: each bin i

creates list of received requests

sends heights to requesting balls

in parallel: each ball a

commits to bin with smallest height

Note that Corollary 2.8 provides a lower bound for the pgreedy strategy. We

now prove a matching upper bound on the maximum load achieved by pgreedy.

Theorem 2.15 For �xed d and m = n, the maximum load achieved by pgreedy(d) is at

most O
�q

logn
log logn

�
with high probability.

Proof: As in Theorems 2.5 and 2.8, although we are considering only the case m = n, we

maintain the distinction between m and n when writing the proof.

The outline of the proof is as follows: consider any bin i, and consider all balls

with requests of height larger than some T1 in bin i. For such a ball to choose bin i, all

of its siblings' requests must have height at least T1, and hence they must all have landed

in bins that received at least T1 requests. By choosing T1 large enough, we can make the

probability that a request at bin i of height at least T1 chooses bin i very small, and thereby

bound the number of balls that choose bin i.

We begin with some technical details. First, there may be balls that have one or

more siblings choose bin i. The expected number of such balls is O
�
md2

n2

�
; as m = n and d

is �xed, with high probability the number of such balls is bounded by a constant. We can

therefore absorb these balls in the O(1) term and ignore them in the remainder of the proof.

Second, we choose a bound M such that with high probability, bin i receives no more than

M requests. (For example, in this case, we may take M = O(logn).) Conditioned on both

these high probability events occurring, the set R of requests sent to a bin other than i are

distributed in the remaining n � 1 bins independently and uniformly.

34

Consider all requests in i of height at least T1, all of whose siblings lie outside i;

call this set of requests I . We prove that, with su�ciently high probability, fewer than T2

elements of i have siblings whose heights are all T1 or more.

Consider the subprocess of requests R arriving at the bins other than i. We can

imagine these requests arriving sequentially at the bins according to some arbitrary ordering.

Let time t be the instant immediately after the t'th such request arrives.

We now use an innovation from the proof of Theorem 1.1. Let Et be the event

that, at time t, no more than N bins have received more than T1 requests from R, for some

N to be determined later. Also, let the random variable Xt equal 1 if the height of the t'th

request is greater than T1, and 0 otherwise. Now, for r 2 I , let S(r) be the set of arrival

times for the siblings of r, and let the random variable Yr equal 1 if, for every t 2 S(r),

Xt = 1 and Et occurs; Yr is 0 otherwise. That is, Yr = 1 if and only if all the siblings of r

are of height at least T1, but the number of bins of height T1 has not become higher than

N before all siblings of r arrive.

We de�ne E to be the event that Et is true for all t. Conditioned on E , we have thatP
r2R Yr is an upper bound on the number of balls with requests of height at least T1 at bin

i that choose bin i as their �nal destination. Note that Pr(Yr = 1) �
�
N
n

�d�1
. It follows

that the sum of any subset of the Yi is stochastically dominated by the sum of the same

number of independent Bernoulli variables with parameter
�
N
n

�d�1
by Lemma 1.2. Now we

choose an N so that E is true with high probability. In the Poisson case, the probability

that a bin has T1 requests is e�md=n(md=n)T1

T1!
. As long as T1 > 2md=n, then the probability

that a bin has at least T1 requests is at most 2e�md=n(md=n)T1

T1!
. Applying Cherno� bounds

(Lemma 1.3, equation (1.1)), with high probability the number of bins with at least T1

requests is at most N = 4ne�md=n(md=n)T1

T1!
in the Poisson case. Since the number of bins

with at least T1 requests is monotonically increasing in the number of requests, the same is

true in the exact case as well by Corollary 2.12.

We use the bound on N to bound the number of balls with requests of height

at least T1 in i whose siblings all have height at least T1. Again, using Cherno� bounds

(Lemma 1.3, equation (1.1)), we have

Pr

"X
r2R

Yr � T2

#
�

eM

�
N

n

�d�1
!T2

:

35

We want the probability on the left to be at most, say, O(1
nc) for some constant

c � 1. Hence we require

"
eM

�
N

n

�d�1
#T2

� 1

nc
:

We now take logarithms of both sides and remove lower order terms. Note that as M =

O(logn) its contribution is only a lower order term. Simplifying yields:

T2

�
T1 logT1 � T1 log

md

n

�
� c logn

d� 1
: (2.10)

For m = n, we may choose T1 = T2 = �
�q

logn
log logn

�
, and the result follows.

One would be inclined to believe that increasing d would decrease the �nal load.

The equation (2.10) indicates that this is true when m = n for very large n, as in this

case the e�ect of d is to reduce the required values of T1 and T2 by a constant factor. In

practice, however, for reasonable values of n, increasing d yields no improvement, and in

fact increasing d can increase the �nal load. This can be explained by the term �T1 log
md
n

in equation (2.10), which has a disproportionate e�ect when T1 and T2 are small. Also,

the constant factor is dictated by our attempt to have the probability of failure be at most

O
�
1
n

�
; if one is willing to accept slightly larger error probabilities one can improve it slightly.

2.4.2 Multiple round strategies

Our lower bounds suggest that with more rounds of communication, one might

achieve a better load distribution. We thus suggest an alternative parallelization of greedy

called mpgreedy that makes use of more rounds. Although this algorithmmay not be useful

in practical settings, its connection to the greedy scheme appears interesting in its own

right.

The algorithm proceeds in a number of rounds, until every ball has committed.

In each round, each bin will allow at most one of its requesting balls to commit to it. If a

ball receives that privilege from more than one bin, the ball commits to the bin with the

smallest current load. Once a ball has committed, the bins holding the other requests are

informed that they may discard those requests:

36

MPGREEDY(d):

call CHOOSE(d)

in parallel: each ball a

chooses a random I.D. number

sends requests with I.D. to bins i1(a); : : : ; id(a)

in parallel: each bin i

sorts requests by I.D. number

sequentially: repeat until all balls have committed

in parallel: each bin i

sends current load to �rst uncommitted ball on request list

in parallel: each ball a

if received at least one message

commits to the bin with smallest current load

tells bins holding other requests to discard

One can imagine the algorithm by picturing a scanline moving level by level up

the request lists of the bins. When the scanline moves up to a new level, bins send messages

to all the balls that the scanline has just passed through. When bins receive responses,

they delete the corresponding balls in the request list above the scanline. The algorithm

terminates when every request has either been passed through or deleted.

A practical disadvantage of this algorithm is that it requires synchronous rounds;

the discards for each round must complete before the next round can begin. We also require

a partial order on the balls, given in this case by randomly chosen I.D. numbers (chosen

from a suitably large set to ensure uniqueness with high probability), to instill some notion

of sequentiality.

Clearly, the maximum number of balls in any bin upon completion is bounded

above by the number of rounds taken to �nish. We analyze the latter.

Theorem 2.16 With high probability mpgreedy(d) �nishes in at most log logn
log d +2d+O(1)

rounds, and hence the maximum load is also log logn
logd + 2d+O(1).

In order to prove the above statement, we relate mpgreedy to the following variant

of greedy (for any d � 2): if, when placing a ball, there is a tie for the least loaded bin,

37

6

2

2

11 3

3

4

4

55

66

2

2

11 3

3

4

4

55

66

2 11 3 4

55

6

6

2 11 3 4

55

6

Figure 2.4: Comparing greedy with ties and mpgreedy. Each level is one round of
communication. The crossed and dashed balls are discarded by the mpgreedy process.
The greedy with ties process includes the dashed balls.

then a copy of the ball is placed in each bin with the minimal load. We call this scheme

greedy with ties.

Lemma 2.17 The number of communication rounds used by mpgreedy is one more than

the maximum load produced by greedy with ties when the balls are thrown in the order

given by the I.D. numbers and the bin choices made by the balls are the same for both trials.

Proof: Consider a modi�cation of mpgreedy where a ball commits to all bins from which

it receives a message. The number of communication rounds used by this modi�ed version

of mpgreedy is the same as for the original. With a little thought one can see that this

scheme exactly mimics the greedy with ties scheme, and hence the two methods give

the same �nal distribution of the balls. (See Figure 2.4.) Since the height of the scanline

moves up one level each round, the number of communication rounds used by mpgreedy

is one more than the maximum load of greedy with ties.

Remark: Using ties as we have done may seem unnecessary, but it allows the scanline to

be at the same height for all bins after each round. It may appear that it would improve

the �nal maximum load if, after ties are deleted, heights in the request lists are updated

to re
ect the deletions. This is di�cult to prove, because once heights are updated in this

38

way, the connection between the scanline scheme and the greedy scheme is not readily

apparent.

We now suggest a modi�cation of the proof of Theorem 1.1 to handle the case

where there may be ties. The following statement is su�cient:

Theorem 2.18 The maximum load achieved by greedy with ties when n balls are thrown

into n bins is at most log logn
logd + 2d+O(1) with high probability. In particular, for any �xed

d the maximum load is log logn
log d + O(1).

Proof: The proof is almost entirely the same as Theorem 1.1: we review the di�erences

here. Recall that ht is the height of the tth ball, and �i(t) and �i(t) refer to the number of

bins with load at least i and the number of balls with height at least i at time t, respectively.

The main consideration is that for each ball placed in the system up to d copies can be

placed if ties remain. As before we let Ei be the event that �i(n) � �i, but we must use a

di�erent inductive de�nition of �i, As our base case, we may take �6d2 = n=2de; then E6d2
holds with certainty. We set �i+1 = ed�di =n

d�1.

For a �xed i consider a sequence of random variables Yt where

Yt =

8<
: d i� ht � i+ 1 and �i(t� 1) � �i;

0 otherwise.

Note that over any given set of choices for the balls before time t, Pr(Yt = d) �
(�i=n)

d = pi; hence by Lemma 1.2

Pr(
P
Yt � k) � Pr

h
B(n; pi) � k

d

i
;

where B(n; p) is the sum of n independent Bernoulli random variables. Conditioned on Ei
we have �i+1 � �i+1 �P Yt, so

Pr(�i+1 � k j Ei) � Pr(
P
Yt � k j Ei)

� Pr(B(n; pi) � k
d j Ei)

� Pr(B(n; pi) � k=d)

Pr[Ei]
The proof now proceeds along the same lines as that of Theorem 1.1. This shows

that the maximum load log logn
logd + 6d2 + O(1). We can improve this by taking a di�erent

base case: for d > 8, �2d = n=2de holds with high probability even if all balls are simply

39

placed into d random bins, and hence we can start the induction from this point instead.

Theorem 2.16 follows immediately from Lemma 2.17 and Theorem 2.18. Moreover,

an extension to the case where d grows with n is interesting.

Corollary 2.19 When mpgreedy is run with d = log logn
log log logn +O(1), the number of rounds

and maximum load are at most O(log logn
log log logn) with high probability.

Theorem 2.18 demonstrates that one can match the performance of greedy using

only log logn
log d + 2d + O(1) rounds of communication, rather than the obvious n rounds.

Corollary 2.19 also matches the lower bound of Corollary 2.10, up to constant factors.

It is an open question whether one can extend mpgreedy to avoid the need for

the partial order on the balls or the synchronous rounds while achieving a similar maximum

load. Stemann, using a di�erent algorithm, also achieves a maximum load as good as the

mpgreedy algorithm [73]. This algorithm is also not completely asynchronous, although

it seems to require weaker synchrony than mpgreedy.

2.5 The threshold strategy

We now examine another strategy, previously exploited in [24] and [42] in similar

contexts, to achieve good load balancing. Given a threshold T , we imagine throwing the

balls over r rounds. If more than T balls enter a bin during a round, the excess balls are

rethrown in the next round. We wish to set T as small as possible while ensuring that, with

high probability, at most T balls are thrown into any bin in the rth round. Then, after all

r rounds, the fullest bin will contain at most rT balls. Note that a ball can choose its bins

for all r rounds before any messages are sent, so this scheme again falls into the general

model of Section 2.2 for which our lower bounds apply.

There are several advantages this method has over the pgreedy strategy already

presented. First, this method can work in completely asynchronous environments: as long

as a request includes the number of its current round as part of the message, messages from

distinct rounds can be handled simultaneously at the bins. Secondly, balls send and receive

at most one message per round. Finally, as we shall show, this method demonstrates a

potentially useful tradeo� between the maximum load and the number of rounds.

40

THRESHOLD(T):

while there exists a ball that has not been accepted

in parallel: each unaccepted ball a

chooses u.a.r. a bin i(a)

sends a request to i(a)

in parallel: each bin i

chooses maxfT;#receivedg requests from current round

sends these balls acceptances

sends other requesting balls rejections

The question is how to set the parameter T so that the procedure terminates with

high probability within some speci�ed number of rounds. In Section 2.5.1, we show how to

set T for any constant number of rounds. We then show in Section 2.5.2 that, when T = 1,

threshold(T) takes at most O(log logn) rounds and has maximum load
(log logn) with

high probability. Our proofs demonstrate the essential techniques needed to derive the

relationship between T and r for any values of T and r.

2.5.1 Thresholds with a �xed number of rounds

Theorem 2.20 If r is �xed independent of n, then threshold(T) terminates after r

rounds with high probability, where T = O
�

r

q
logn

log logn

�
.

Proof: Let ki be the number of balls to be (re)thrown after i rounds (k0 = n). We will

show by induction that

ki � n

�
4 logn

T !

�Ti�1
T�1

(2.11)

for all i � r�1 with high probability. From this statement one may verify that for constants

r and 0 < � < 1, and suitably large n, T = O
�

r

q
logn

log logn

�
su�ces to reduce kr�1 to less than

n1��. We may then conclude that only one more round is necessary by applying Lemma 2.13

with m = n1��.

We now inductively prove equation (2.11). The case i = 0 is readily veri�ed. Now

consider the situation when ki balls are thrown into n bins in the (i+ 1)-st round. It can

41

be veri�ed from equation (2.11) that for large enough n, ki=n < T for all i 2 f0; : : : ; rg.
We can thus apply the Poisson approximation and Corollary 2.12 to obtain that, with high

probability, in the (i+ 1)-st round,

Pr(a given bin receives > T requests) � 2e�ki=n(ki=n)T

T !
: (2.12)

Therefore (via the Cherno� bounds of Lemma 1.3) with high probability the number of bins

with more than T requests is at most 4ne�ki=n(ki=n)T

T ! . We can make the conservative upper

bound assumption that with probability exponentially close to one, none of these over-full

bins has more than logn requests, so that with high probability,

ki+1 � n

�
4 logn

T !

�T (Ti�1)
T�1 +1

: (2.13)

Equation (2.11) now follows by induction, as long as the number of rethrows is large enough

so that the Cherno� bound holds. This immediately implies a maximum load of O(rT),

which, for �xed r, is O
�

r

q
logn

log logn

�
.

The theorem suggests that using the threshold strategy, one can successfully trade

load balance for communication time in a well-de�ned manner. We note that one can also

show that for T =

�

r

q
logn

log logn

�
, threshold(T) requires more than r rounds with high

probability. We also remark that we could show that Theorem 2.20 holds with very high

probability; that is, the probability of failure is bounded above by 1=f(n) where f(n) is a

superpolynomial function. This requires more attention to the Cherno� bounds.

2.5.2 The case of T = 1

We can extend our argument to the case where r grows with n with a bit more

care. As an illustrative example, we consider the case where T = 1. We note that similar

more powerful results are given in [42] and [55], but the simple proofs below are appealing.

Theorem 2.21 threshold(1) terminates after at most log log n+ O(1) stages with high

probability.

Proof: As in the proof of Theorem 2.20, let ki be the number of balls to be thrown after

round i. It is simple to show by Cherno� bounds (equation (1.1)) that, with high probability,

42

after only two rounds at most n=2e balls remain to be thrown. We claim that, as long as ki+1

is at least 4
p
n logn, ki+1 � ek2i =n with probability 1�O(1=n2). For convenience we assume

that in each round the balls arrive in some arbitrary order, with the �rst ball that arrives at

a bin being accepted. Let Xj be the indicator random variable of the event that the jth ball

falls into a non-empty bin, where 1 � j � ki. Note that Pr(Xj = 1 jX1; : : : ; Xj�1) � ki=n.

It follows from Lemma 1.2 that the sum of the ki random variables Xj is stochastically

dominated by the sum of ki independent Bernoulli random variables with parameter ki=n.

Using Cherno� bounds (equation (1.1)) the above claim follows; the restriction that ki+1

is at least 4
p
n logn is required for the Cherno� bound to hold with su�cient probability.

We thus have, if i � 2 and ki � 4
p
n logn, that

ki � n

e22
i�2 :

Hence r = log logn+O(1) rounds will su�ce to cut down kr to below 4
p
n log n with high

probability. By using the Poisson case to bound the number of bins that receive more than

one ball, one can show that only O(1) more rounds will be needed after this point, and the

result follows.

The strategy threshold(1) achieves a maximum load that is essentially the same

as greedy, but uses only O(log logn) asynchronous rounds instead of O(n) synchronous

rounds. Moreover, because of its simplicity, we expect that this strategy may be the best

choice when the greedy strategy does not apply. One might hope that the bound of

Theorem 2.21 is not tight, and that threshold(1) actually matches the lower bound

of Corollary 2.10. This could happen in one of two ways: either threshold(1) might

terminate in fewer than
(log logn) rounds, or even if
(log logn) rounds are required,

perhaps no bin actually receives
(log log n) balls. We will now show, however, that the

bound of Theorem 2.21 is tight, up to constant factors.

Theorem 2.22 The maximum load of threshold(1) is at least
(log logn) with high

probability.

Proof: As before, let ki be the number of balls to be thrown in round i, with k0 = n.

We can determine ki+1 by considering the number of bins that receive two or more balls in

the ith round. In the Poisson case, the probability that a bin receives two balls in round

43

i is e�ki=n k2i
2n2 � k2i

2en2 . By equation (1.2) of Lemma 1.3 and Corollary 2.12, as long as

ki > 10
p
n logn, then with probability at least 1�O(1=n2), ki+1 � k2i

4en . Hence, for all i � n

with ki > 10
p
n logn,

ki+1 �
�

1

4en

�2i+1�1

k2
i+1

0 =
4en

(4e)2
i+1 : (2.14)

It is easy to check from equation (2.14) that we need i =
(log logn) before

ki � 10
p
n logn. We now show that with high probability, there will be at least one bin

that receives a ball in each of the �rst
(log logn) rounds. Say that a bin survives up to

round i if it gets a ball in each of rounds 1; : : : ; i, and let si be the number of bins that

survive up to round i. Then

Pr
h
bin survives up to i+ 1

��� it survives up to i
i
= 1�

�
1� 1

n

�ki
� ki

2n
;

where the last inequality holds since ki � n. Applying Cherno�'s bound (equation (1.2))

tells us that the fraction of bins that survived round i that also survive round i + 1 is at

least ki
4n with probability at least 1 � O(1

n2
) as long as si is su�ciently large. Therefore,

after the (i+ 1)-st round, with high probability the number of surviving bins is at least

si+1 � n� k0
4n

� � � � � ki
4n

>
nei+1

(4e)2i+1 :

It remains to be checked that for i =
(log log n) all the Cherno� bounds will hold, and

thus with high probability there is still a surviving bin.

2.6 Simulation results

It is important to note that in the balls and bins scenario, even if each ball just

chooses one bin independently and uniformly at random, the maximum load is very small

compared to the total number of bins. Thus, even though one may be able to show that

asymptotically one strategy performs better than another, it is worthwhile to test actual

performance. For example, it is not clear from the results we have described that greedy

performs better than straightforward random selection unless n is exceedingly large! (In

44

fact, for all values of n, the expected maximum load of greedy is less than that of sim-

ple random selection; see [11] for more details.) Even if one can guarantee better per-

formance, however, a system designer interested in using a load balancing scheme must

balance the tradeo� between the maximum load and the complexity of the underlying al-

gorithm. Asymptotic notation proves less helpful than speci�c numbers in understanding

this tradeo�. We therefore examine actual performance through some simulation results.

For simplicity, we here consider only the case where the numbers of balls and bins

are equal. As usual, d represents the number of bins to which each ball sends requests.

The numbers given in the table represent the maximum load found for one hundred trials

of each strategy.

The �rst thing worth noting is that greedy performs noticeably better than sim-

ple one-choice randomization: even at just one million balls, the di�erence is at least a factor

of two in all of our trials. A second interesting feature of greedy is that the maximum load

appears to vary little across trials, suggesting that the maximum load is sharply concen-

trated on a single value. We shall gain more insight into this phenomenon in Section 4.2.

As expected, both pgreedy and threshold(T) perform somewhere between sim-

ple random selection and greedy. Notice that for pgreedy when d = 3 the maximum

load tends to be smaller than when d = 2, but that the maximum load tends to increase

when d = 4. This is not completely surprising given our previous analysis in Section 2.4.

In the threshold schemes, the thresholds used were as follows: 3 balls per round

per bin in the 2 round scheme, and 2 balls per bin per round in the 3 round scheme.

These choices were made to ensure that the algorithm terminated with all balls having

a �nal destination in the correct number of rounds with high probability: in all trials,

the algorithm terminated in the correct number of rounds. Our simulations suggest that

threshold schemes are the best practical choice when one wishes to achieve a better load

balance, but cannot meet the sequentiality requirement of greedy.

45

Balls One greedy pgreedy threshold(T)
n Choice d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 2 rnds. 3 rnds.

1 m.

8 : : 28
9 : : 57
10 : : 13
11 : : 2

4 : : 100 3 : : 100 3 : : 100
5 : : 92
6 : : 8

5 : : 95
6 : : 5

5 : : 77
6 : : 23

5 : : 88
6 : : 12

4 : : 77
5 : : 23

2 m.

8 : : 7
9 : : 72
10 : : 18
11 : : 3

4 : : 100 3 : : 100 3 : : 100
5 : : 90
6 : : 10

5 : : 96
6 : : 4

5 : : 68
6 : : 32

5 : : 74
6 : : 26

4 : : 69
5 : : 31

4 m.

8 : : 1
9 : : 63
10 : : 35
12 : : 1

4 : : 100 3 : : 100 3 : : 100
5 : : 71
6 : : 29

5 : : 87
6 : : 13

5 : : 36
6 : : 64

5 : : 54
6 : : 46

4 : : 47
5 : : 53

8 m.

9 : : 40
10 : : 58
11 : : 1
12 : : 1

4 : : 100 3 : : 100 3 : : 100
5 : : 55
6 : : 45

5 : : 71
6 : : 29

5 : : 6
6 : : 94

5 : : 20
6 : : 80

4 : : 19
5 : : 81

16 m.

9 : : 21
10 : : 62
11 : : 16
16 : : 1

4 : : 100 3 : : 100 3 : : 100
5 : : 31
6 : : 69

5 : : 48
6 : : 52

5 : : 1
6 : : 99

5 : : 5
6 : : 95

4 : : 1
5 : : 99

32 m.

9 : : 5
10 : : 65
11 : : 25
12 : : 5

4 : : 100 3 : : 100 3 : : 100
5 : : 8
6 : : 92

5 : : 20
6 : : 80

6 : : 100 6 : : 100 5 : : 100

Table 2.1: Simulation results for greedy and other strategies. The number of balls ranges
from one million to thirty-two million. The results from 100 trials are presented: the load
is given in bold on the left, and the frequency of that load is given on the right.

46

Chapter 3

The supermarket model

3.1 Introduction

3.1.1 The problem and model

In this chapter, we move from considering static problems to dynamic problems.

Recall that in dynamic models, tasks arrive and leave over time. Dynamic models often

capture more realistic settings than static models. For example, in the task-processor model

described in Section 1.1.2, there may not be a �xed number of tasks to distribute, but instead

tasks may arrive at the system over time and run for a certain period before completing.

Similarly, in the hashing model described Section 1.1.2, the hash table may not have a

�xed number of entries, and items may be deleted as well as placed in the hash table over

time. Our goal in studying these systems will be to determine properties of the system in

equilibrium, or over arbitrarily long periods of time.

In looking for a dynamic generalization of balls and bins problems, we are naturally

led to examine queueing models. We will assume that the reader has some familiarity with

the basic terminology and results from queueing theory, which can be found in most standard

introductory texts on stochastic processes (e.g. [66, 67, 76]). In particular, we expect a

basic understanding of the M/M/1 queue.

We �rst develop the appropriate techniques by focusing on the following natural

dynamic model: customers arrive as a Poisson stream of rate �n, where � < 1, at a collec-

tion of n servers. Each customer chooses some constant number d of servers independently

and uniformly at random from the n servers, and waits for service at the server currently

47

B

A

Figure 3.1: The supermarket model. Incoming customer A chooses two random servers,
and queues at the shorter one. Customer B has recently been served and leaves the system.

containing the fewest customers (ties being broken arbitrarily). Customers are served ac-

cording to the First In First Out (FIFO) protocol, and the service time for a customer is

exponentially distributed with mean 1. We call this model the supermarket model, or the

supermarket system (see Figure 3.1). We are interested in the expected time a customer

spends in the system in equilibrium, which we claim is a natural measure of system perfor-

mance. Note that the average arrival rate per queue is � < 1, and that the average service

rate is 1; hence we expect the system to be stable, in the sense that the expected number

of customers per queue remains �nite in equilibrium.

In this simple model, we have assumed that the time for a customer to obtain

information about queue lengths at the servers and the time to move to a server is zero.

Also, we have assumed that the processors are homogeneous, in that the service rates are

the same at each server. These assumptions are made for clarity and ease of presentation;

most of our techniques generalize easily to more complex systems.

As in the static case, the supermarket model is much easier to analyze when d = 1.

In this case, the arrival stream can be split into independent Poisson streams for each server,

and hence each server acts as a simple M/M/1 queue. For d � 2, the supermarket model

48

proves di�cult to analyze because of dependencies: knowing the length of one queue a�ects

the distribution of the length of all the other queues.

As we have described it, the supermarket model is a Markov process. That is, the

future of the supermarket system depends only on its current state, and not on the past. The

Markovian nature of the supermarket model will allow us to apply sophisticated techniques

from the theory of Markov chains to the problem. The fact that the supermarket model is

expressible as a suitable Markov process depends on our assumptions of Poisson arrivals and

exponential service times, but in practice, such strong assumptions are often unfounded.

This issue will be covered in the next chapter, where we consider how to approximate non-

Markovian models with Markovian models, allowing us to apply these techniques in the

study of non-Markovian systems.

Although it appears to be a natural model, there has been little reference to the

supermarket model in previous literature. As mentioned in Chapter 1, a great deal of

work has been done to study the model where incoming customers join the shortest queue,

the most recent of which is due to Adan and others [3, 4, 5]. The limited coordination

enforced by our model corresponds nicely to models of distributed systems, as distinguished

from centralized systems, where the shortest queue model appears more applicable. The

supermarket model has been studied both analytically and with simulations by Eager et

al. [29] and through trace-driven simulations by Zhou [77]. Both works demonstrate the

e�ectiveness of each customer having a small number of choices. The analytic results of

Eager et al., however, are derived using the assumption that the state of each queue in the

supermarket model in stochastically independent of the state of any other queue [29, p. 665].

The authors assert (without justi�cation) that this approach is exact in the asymptotic limit

as the number of queues grows to in�nity. In contrast, we do not begin with assumptions

of independence, and one of our main results veri�es the assertion of Eager et al. regarding

the asymptotic limit.

3.1.2 Methodology and results

Our results will be based on the following approach:

� We de�ne an idealized process, corresponding to a system of in�nite size. We then

analyze this process, which is cleaner and easier because its behavior is completely

deterministic.

49

� We relate the idealized system to the �nite system, carrying over the analysis with

bounded error.

For example, in the supermarket model, the intuition is that if we look at the

fraction of servers containing at least k customers for every k, the system evolves in an

almost deterministic way as n ! 1. The analysis of this system is interesting in its own

right. Then we bound the deviation between a system of �nite size n and the in�nite system.

The following result is typical of our method:

Theorem: For any �xed T and d � 2, the expected time a customer spends in the super-

market system when it is initially empty over the �rst T units of time is bounded above

by
1X
i=1

�
di�d
d�1 + o(1);

where the o(1) term is understood as n!1 (and may depend on T).

The summation is derived by studying the in�nite system, and the o(1) error term

arises when we bound the error between the in�nite system and the system for a �xed n.

The combination of the two analyses yields the theorem. This result should be compared

to the case where d = 1, where the expected time is 1=(1� �) in equilibrium. As we shall

see in Section 3.3.4, for � close to 1 there is an exponential improvement in the expected

time a customer spends in the system when d � 2.

Besides providing the �rst analysis of the supermarket model, we note that this

approach also provides a clean, systematic approach to analyzing several other load balanc-

ing models, as we will see in the next chapter. Further, the method provides a means of

�nding accurate numerical estimates of performance. In Section 3.6 we present simulation

results to demonstrate the accuracy of our approach.

To bound the error between the �nite and in�nite systems we will use Kurtz's

work on density dependent jump Markov processes [32, 49, 50, 51, 52], with some extensions

speci�c to our problems. Kurtz's work has previously been applied to matching problems

on random graphs [38, 43, 44] as well as some queueing models [70]; here, we apply it for

the �rst time to load balancing problems. Given the increasing use of Markov chains in the

analysis of algorithms, we believe that this technique may be more widely applicable than

previously expected.

The rest of this chapter is structured as follows: we �rst present an intuitive

example of the in�nite system approach, based on an epidemic model. Then, in Section 3.3,

50

we derive and analyze the behavior of the in�nite version of the supermarket model. In

Section 3.4, we explain Kurtz's work and how to adapt it to relate the �nite and in�nite

versions of the supermarket model, as well as o�er a generalization of his main theorem

to certain in�nite dimensional problems. In Section 3.5 we apply Kurtz's theorem to the

supermarket model to bound the expected time a customer spends in the system. Finally,

in Section 3.6, we provide simulation results demonstrating the e�ectiveness of the in�nite

system approach.

3.2 In�nite systems: the epidemic example

To explain the in�nite system approach, we begin with a simple example due

to Kurtz [52] using a model of the behavior of epidemics familiar to students of second

year calculus. We assume that the rate at which susceptible people become infected is

proportional to the amount of interaction between the susceptible and infected population,

and that infected people recover and become immune independently at a �xed rate.

A sophisticated attack would model the problem as a Markov chain. We introduce

a parameter N , corresponding to the population size. We take as our state space pairs

(X; Y), where X is the number of susceptible people, Y is the number of infected people,

and N �X � Y is the number of immune people. The transition intensities q are given by

the equations

q(X;Y);(X�1;Y+1) = ��X Y

N
= �N�

X

N

Y

N
;

q(X;Y);(X;Y�1) = ��Y = �N�
Y

N
:

Here � and � are �xed constants.

A second year calculus student would instead model the problem (without formal

justi�cation) by the deterministic solution to a set of di�erential equations. Let x be the

fraction of the population that is susceptible to the disease, and y be the fraction of the

population that is infected. The following di�erential equations intuitively correspond to

the description of the model:

dx

dt
= ��xy ; (3.1)

dy

dt
= �xy � �y: (3.2)

51

Noting that x = X
N and y = Y

N , we can see the relationship between the deter-

ministic process given by the di�erential equations and the random process given by the

Markov chain. Namely, for a small time interval �t, we have

E[�X] = �N�
X

N

Y

N
�t ; (3.3)

E[�Y] =

�
N�

X

N

Y

N
�N�

Y

N

�
�t: (3.4)

If we modify the state of the Markov chain to record the fractions (x; y) instead of the num-

bers (X; Y), then the di�erential equations (3.1) and (3.2) describe the expected behavior

of the Markov chain over a small interval of time as described in equations (3.3) and (3.4).

Hence, one might expect that the path taken by the Markov chain should look something

like the path given by the di�erential equations.

In fact the deterministic path given by the di�erential equations describes almost

surely the limiting behavior of the Markov chain as N , the population size, grows to in�nity.

This should not be surprising: as N grows to in�nity, a law of large numbers for Markov

processes takes e�ect, and the system must behave close to its expectation. This informal

intuition that looking at di�erential equations describes the expected behavior of the system

will be justi�ed later by Kurtz's theorem in Section 3.4.1.

3.3 The analysis of the supermarket model

3.3.1 Preliminaries

Recall the de�nition of the supermarket model: customers arrive as a Poisson

stream of rate �n, where � < 1, at a collection of n FIFO servers. Each customer chooses

some constant d � 2 servers independently and uniformly at random with replacement1

and queues at the server currently containing the fewest customers. The service time for a

customer is exponentially distributed with mean 1. The following intuitive lemma, which

we state without proof, will be useful:

Lemma 3.1 The supermarket system is stable for every � < 1; that is, the expected number

of customers in the system remains �nite for all time.

Remark: Lemma 3.1 can be proven by a simple comparison argument with the system

in which each customer queues at a random server (that is, where d = 1); in this system,

1We note that our results also hold with minor variations if the d queues are chosen without replacement.

52

each server acts like an M/M/1 server with Poisson arrival rate �, which is known to be

stable (see, for example, [46]). The comparison argument is entirely similar to those in

[74] and [75], which show that choosing the shortest queue is optimal subject to certain

assumptions on the service process; alternatively, an argument based on majorization is

given in [10]. We also remark that a similar argument shows that the size of the longest

queue in a supermarket system is stochastically dominated by the size of the longest queue

in a set of n independent M/M/1 servers.

We now introduce a representation of the system that will be convenient through-

out our analysis. We de�ne ni(t) to be the number of queues with i customers at time t;

mi(t) to be the number of queues with at least i customers at time t; pi(t) = ni(t)=n to

be the fraction of queues of size i; and si(t) =
P1

k=i pi(t) = mi(t)=n to be the tails of the

pi(t). We drop the reference to t in the notation where the meaning is clear. As we shall

see, the si prove much more convenient to work with than the pi. Note that s0 = 1 always,

and that the si are non-increasing. In an empty system, which corresponds to one with no

customers, s0 = 1 and si = 0 for i � 1. By comparing this system with a system of M/M/1

queues as in the remark after Lemma 3.1, we have that if si(0) = 0 for some i, then for all

t � 0 we have that limi!1 si(t) = 0. Under the same conditions, the expected number of

customers per queue, or
P1

i=1 si(t), is �nite even as t!1.

We can represent the state of the system at any given time by an in�nite dimen-

sional vector ~s = (s0; s1; s2; : : :). The state only includes information regarding the number

of queues of each size; this is all the information we require. It is clear that for each value

of n, the supermarket model can be considered as a Markov chain on the above state space.

That is, the future state of the system depends only on the current state, and not on the

past. Notice that, with this state description, the assumptions of Poisson arrivals and ex-

ponential service times ensure that the system is Markovian. If instead the service times

were constant, then the time for the next departure would depend on the past, speci�cally

on when all the customers being served began service.

We now introduce a deterministic in�nite system related to the �nite supermar-

ket system. The time evolution of the in�nite system is speci�ed by the following set of

di�erential equations:8><
>:

dsi
dt

= �(sdi�1 � sdi)� (si � si+1) for i � 1 ;

s0 = 1:
(3.5)

53

Let us explain the reasoning behind the system (3.5). Consider a supermarket

system with n queues, and determine the expected change in the number of servers with

at least i customers over a small period of time of length dt. The probability a customer

arrives during this period is �n dt, and the probability an arriving customer joins a queue of

size i� 1 is sdi�1� sdi . (This is the probability that all d servers chosen by the new customer

are of size at least i � 1 but not all are of size at least i.) Thus the expected change in

mi due to arrivals is exactly �n(sdi�1 � sdi)dt. Similarly, the probability a customer leaves

a server of size i in this period is ni dt = n(si � si+1)dt. Hence, if the system behaved

according to these expectations, we would have

dmi

dt
= �n(sdi�1 � sdi)� n(si � si+1):

Removing a factor of n from the equations yields the system (3.5). That this in�nite set

of di�erential equations has a unique solution given appropriate initial conditions is not

immediately obvious; however, it follows from standard results in analysis (see [1, p. 188,

Theorem 4.1.5], or [26, Theorem 3.2]). It should be intuitively clear that as n ! 1 the

behavior of the supermarket system approaches that of this deterministic system. A formal

justi�cation of this relationship will be given in Section 3.4. For now, we simply take this

set of di�erential equations to be the appropriate limiting process.

It is worth noting here that the state space of our in�nite system is, in this case,

in�nite dimensional, since we record si for every i. If the queue lengths were bounded,

then the system would only be �nite dimensional, as we would only need to consider values

s1; : : : ; sB for some bound B. (Indeed, we will say more about this model in the next

chapter.) We point this out because, in some cases, the mathematics of in�nite dimensional

systems can be much more di�cult to deal with.2 We try not to focus excessively on these

technical details, although we will take special care and cite the relevant material where

appropriate.

2As an example, consider the following simple paradox: place a light at every positive integer on the
number line. The lights are hooked up so that the light at i cannot go on until the light at i+1 goes on. At
time t = 0 all lights are o�. It would seem that we could conclude that all lights remain o� for all time, but
the following schedule has all lights on by time t = 1: at time 1=i, turn on light i. Of course if the number
of lights is �nite the lights must stay o� for all time.

54

3.3.2 Finding a �xed point

In this section we demonstrate that, given a reasonable condition on the initial

point ~s(0), the in�nite process converges to a �xed point. A �xed point (also called an

equilibrium point or a critical point) is a point ~p such that if ~s(t) = ~p then ~s(t0) = ~p for all

t0 � t. It is clear that for the supermarket model a necessary and su�cient condition for ~s

to be a �xed point is that for all i, dsi
dt = 0.

Lemma 3.2 The system (3.5) with d � 2 has a unique �xed point with
P1

i=1 si <1 given

by

si = �
di�1
d�1 :

Proof: It is easy to check that the proposed �xed point satis�es dsi
dt = 0 for all i � 1.

Conversely, from the assumption dsi
dt = 0 for all i we can derive that s1 = � by summing

the equations (3.5) over all i � 1. (Note that we use
P1

i=1 si < 1 here to ensure that the

sum converges absolutely. That s1 = � at the �xed point also follows intuitively from the

fact that at the �xed point, the rate at which customers enter and leave the system must

be equal.) The result then follows from (3.5) by induction.

The condition
P1

i=1 si <1, which corresponds to the average number of customers

per queue being �nite, is necessary; (1; 1; : : :) is also a �xed point, which corresponds the

number of customers at each queue going to in�nity. Given a suitable initial point, however,

we know that
P1

i=1 si(t) <1 for all t � 0 by Lemma 3.1.

De�nition 3.3 A sequence (xi)
1
i=0 is said to decrease doubly exponentially if and only if

there exist positive constants N;� < 1; � > 1, and
 such that for i � N , xi �
��
i
.

It is worth comparing the result of Lemma 3.2 to the case where d = 1 (i.e., all

servers are M/M/1 queues), for which the �xed point is given by si = �i. The key feature

of the supermarket system is that for d � 2 the tails si decrease doubly exponentially, while

for d = 1 the tails decrease only geometrically (or singly exponentially).

3.3.3 Convergence to the �xed point

We now show that every trajectory of the in�nite supermarket system converges

exponentially to the �xed point of Lemma 3.2 in an appropriate metric. Denote the above

55

�xed point by ~� = (�i), where �i = �
di�1
d�1 . We shall assume that d � 2 in what follows

unless otherwise speci�ed.

To show convergence, we �nd a potential function (also called a Lyapunov function

in the dynamical systems literature) �(t) with the following properties:

1. The potential function is related to the distance between the current point on the

trajectory and the �xed point.

2. The potential function is strictly decreasing, except at the �xed point.

The intuition is that the potential function shows that the system heads toward

the �xed point. By �nding a suitable potential function we will also be able to say how fast

the system approaches the �xed point. A natural potential function to consider is D(t) =P1
i=1 jsi(t) � �ij, which measures the L1-distance between the two points. Our potential

function will actually be a weighted variant of this, namely �(t) =
P1

i=1 wijsi(t) � �ij for
suitably chosen weights wi.

We begin with a result that shows the system has an invariant, which restricts in

some sense how far any si can be from the corresponding value �i.

Theorem 3.4 Suppose that there exists some j such that sj(0) = 0. Then the sequence

(si(t))1i=0 decreases doubly exponentially for all t � 0, where the associated constants are

independent of t. In particular, if the system begins empty, then si(t) � �i for all t � 0.

Note that the hypothesis of Theorem 3.4 holds for any initial state ~s derived from

the initial state of a �nite system.

Proof: Let M(t) = supi[si(t)=�i]
1=di. We �rst show that M(t) � M(0) for all t � 0. We

will then use this fact to show that the si decrease doubly exponentially.

A natural, intuitive proof proceeds as follows: in the case where there are a �nite

number of queues, an inductive coupling argument can be used to prove that if we increase

some si(0), thereby increasing the number of customers in the system, the expected value of

all sj after any time t increases as well. Extending this to the limiting case as the number

of queues n ! 1 (so that the sj behave according to their expectations), we have that

increasing si(0) can only increase all the sj(t) and hence M(t) for all t.

So, to begin, let us increase all the si(0) (including s0(0)!) so that si(0) = M(0)d
i
�i.

But then it is easy to check that the initial point is a �xed point (albeit possibly with

56

s0 > 1), and hence M(t) = M(0) in the raised system. We conclude that in the original

system M(t) �M(0) for all t � 0.

A more formal proof that increasing si(0) only increases all sj(t) relies on the fact

that the dsi=dt are quasimonotone: that is, dsi=dt is non-decreasing in sj for j 6= i. The

result then follows from [26, pp. 70-74].

We now show that the si decrease doubly exponentially (in the in�nite model). Let

j be the smallest value such that sj(0) = 0, which exists by the hypothesis of the theorem.

Then M(0) � [1=�j�1]
1=dj�1

< 1=�1=(d�1). Since M(t) �M(0),M(0)d
i � si(t)=�i for t � 0,

or

si(t) � �iM(0)d
i
= ��1=(d�1)(�1=(d�1)M(0))d

i
:

Note that �1=(d�1)M(0) < 1, since M(0) < 1=�1=(d�1) Hence the si decrease doubly expo-

nentially, with � = �1=(d�1)M(0) and � = d. In particular, if the system begins empty, then

si(t) � �i for all t and i.

We now show that the system not only converges to its �xed point, but that it

does so exponentially.

De�nition 3.5 The potential function � is said to converge exponentially to 0, or simply

to converge exponentially, if �(0) < 1 and �(t) � c0e
��t for some constant � > 0 and a

constant c0 which may depend on the state at t = 0.

By �nding a potential function � that converges exponentially to 0 and measures the dis-

tance between the current point on the trajectory and the �xed point, we now show that

the system converges exponentially quickly to its �xed point.

Theorem 3.6 Let �(t) =
P1

i=1 wijsi(t) � �ij, where for i � 1, wi � 1 are appropriately

chosen constants to be determined. If �(0) < 1, then � converges exponentially to 0. In

particular, if there exists a j such that sj(0) = 0, then � converges exponentially to 0.3

Proof: We shall prove the theorem by showing there exists a constant � (that will depend

only on �) such that d�=dt � ���. This su�ces to prove the theorem.
3For completeness, we note that in earlier versions of this work we made use of a di�erent potential

function: 	(t) =
P

1

i=1
si(t) log(si(t)=�i)�si(t)+�i

di
. The interested reader may enjoy showing that d	=dt � 0,

with equality only at the �xed point. We did not �nd a way to use this potential function to prove exponential
convergence, however.

57

De�ne �i(t) = si(t)� �i. As usual, we drop the explicit dependence on t when the

meaning is clear. For convenience, we assume that d = 2; the proof is easily modi�ed for

general d.

As d�i=dt = dsi=dt, we have from (3.5)

d�i
dt

= �[(�i�1 + �i�1)
2 � (�i + �i)

2]� (�i + �i � �i+1 � �i+1)

= �(2�i�1�i�1 + �2i�1 � 2�i�i � �2i)� (�i � �i+1);

where the last equality follows from the fact that ~� is the �xed point.

As �(t) =
P1

i=1 wij�i(t)j, the derivative of � with respect to t, d�=dt, is not well

de�ned if �i(t) = 0. We shall explain how to cope with this problem at the end of the proof,

and we suggest the reader proceed by temporarily assuming �i(t) 6= 0.

Now

d�

dt
=

X
i:�i>0

wi[�(2�i�1�i�1 + �2i�1 � 2�i�i � �2i)� (�i � �i+1)]� (3.6)

X
i:�i<0

wi[�(2�i�1�i�1 + �2i�1 � 2�i�i � �2i)� (�i � �i+1)]:

Let us look at the terms involving �i in this summation. (Note: �1 terms are a

special case, which can be included in the following if we take w0 = 0. This has no e�ect on

the value of �.) There are several cases, depending on whether �i�1; �i; and �i+1 are positive

or negative. Let us consider the case where they are all negative (which, by Theorem 3.4,

is always the case when the is initially empty). Then, by equation (3.6), the term involving

�i in d�=dt is

�wi�1�i + wi(2��i�i + ��2i + �i)� wi+1(2��i�i + ��2i): (3.7)

We wish to choose wi�1; wi; and wi+1 so that this term is at most �wi�i for some constant

� > 0. It is su�cient to choose them so that

(wi � wi�1) + (2��i + ��i)(wi � wi+1) � �wi ;

or, using the fact that j�ij � 1,

wi+1 � wi +
wi(1� �)� wi�1

�(2�i + 1)
:

We note that the same inequality would be su�cient in the other cases as well: for

example, if all of �i�1; �i, and �i+1 are positive, the above term (3.7) involving �i is negated,

58

1

0
s

i+1

i+1

si

πi

πi+1

1

0
s

i+1si

πi

π

Figure 3.2: A
uid
ow intuition: if si is too high, and si+1 is too low, there will be
ow
from si to si+1.

but now �i is positive. If �i�1; �i and �i+1 have mixed signs, this can only decrease the value

of the term (3.7). (See Figure 3.2.)

It is simple to check inductively that one can choose an increasing sequence of

wi (starting with w0 = 0; w1 = 1) and a � such that the wi satisfy the above restriction.

For example, one can break the terms up into two subsequences. The �rst subsequence

consists of all wi such that �i satis�es �(2�i + 1) � 1+�
2 . For these i we can choose

wi+1 = wi +
wi(1��)�wi�1

3 . Because this subsequence has only �nitely many terms, we can

choose a suitably small � so that this sequence is increasing. For su�ciently large i, we must

have �(2�i + 1) < 1+�
2 < 1, and for these i we may set wi+1 = wi +

2wi(1��)�2wi�1

1+� . This

subsequence of wi will be increasing for suitably small �. Also, this sequence is dominated

by a geometrically increasing sequence, so the condition sj(0) = 0 for some j is su�cient to

guarantee that �(0) <1.

Comparing terms involving �i in � and d�=dt yields that d�=dt � ���. Hence

�(t) � �(0)e��t and thus � converges exponentially.

We now consider the technical problem of de�ning d�=dt when �i(t) = 0 for some

i. Since we are interested in the forward progress of the system, it is su�cient to consider

the upper right-hand derivatives of �i. (See, for instance, [56, p. 16].) That is, we may

59

de�ne
dj�ij
dt

����
t=t0

� lim
t!t+0

j�i(t)j
t � t0

;

and similarly for d�=dt. Note that this choice has the following property: if �i(t) = 0, then
dj�ij
dt

���
t=t0

� 0, as it intuitively should be. The above proof applies unchanged with this

de�nition of d�=dt, with the understanding that the case �i > 0 includes the case where

�i = 0 and d�i=dt > 0, and similarly for the case �i < 0.

Theorem 3.6 yields the following corollary:

Corollary 3.7 Under the conditions of Theorem 3.6, the L1-distance from the �xed point

D(t) =
P1

i=1 jsi(t)� �ij converges exponentially to 0.

Proof: As the wi of Theorem 3.6 are all at least 1, �(t) � D(t) and the corollary is

immediate.

Corollary 3.7 shows that the L1-distance to the �xed point converges exponentially

quickly to 0. Hence, from any suitable starting point, the in�nite system quickly becomes

extremely close to the �xed point. Although it seems somewhat unusual that we had �rst to

prove exponential convergence for a weighted variation of the L1-distance in order to prove

exponential convergence of the L1-distance, it appears that this approach was necessary;

this will be clari�ed in Section 4.6.

3.3.4 The expected time in the in�nite system

Using Theorems 3.4 and 3.6, we now examine the expected time a customer spends

in the in�nite system.

Corollary 3.8 The expected time a customer spends in the in�nite supermarket system for

d � 2, subject to the condition of Theorem 3.4, converges as t!1 to

Td(�) �
1X
i=1

�
di�d
d�1 :

Furthermore, this number is an upper bound on the expected time in the in�nite system for

all t when the system is initially empty.

60

Proof: An incoming customer that arrives at time t becomes the ith customer in the

queue with probability si�1(t)
d � si(t)

d. Hence the expected time a customer that arrives

at time t spends in the system is
P1

i=1 i(si�1(t)
d � si(t)

d) =
P1

i=0 si(t)
d. As t ! 1, by

Corollary 3.7, the in�nite system converges to the �xed point in the L1-distance metric.

Hence the expected time a customer spends in the system can be made arbitrarily close toP1
i=0 �

d
i =

P1
i=1 �

di�d
d�1 for all customers arriving at time t � t0 for some su�ciently large t0,

and the result follows. The second result follows since we know that in an initially empty

in�nite system si(t) � �i for all t by Theorem 3.4.

Recall that T1(�) =
1

1�� from standard queueing theory. Analysis of the summa-

tion in Corollary 3.8 reveals the following.

Theorem 3.9 For � 2 [0; 1], Td(�) � cd(logT1(�)) for some constant cd dependent only

on d. Furthermore,

lim
�!1�

Td(�)

logT1(�)
=

1

log d
:

Choosing from d > 1 queues hence yields an exponential improvement in the expected time

a customer spends in the in�nite system, and as � ! 1� the choice of d a�ects the time

only by a factor of log d. These results are remarkably similar to those for the static case

studied in [11] and described in Section 1.2.

Proof: We prove only the limiting statement as � ! 1�; the other statement is proved

similarly. Let �0 = �1=(d�1): Then

Td(�) =
1X
i=1

�
di�d
d�1 =

P1
i=1 �

0di

�d=(d�1)
:

Hence

lim
�0!1�

Td(�)

logT1(�)
= lim

�0!1�

P1
i=1 �

0di

� log(1� �)�d=(d�1)

= lim
�0!1�

P1
i=1 �

0di

� log(1� �0)
log(1� �0)
log(1� �)

1

�d=(d�1)
:

In the �nal expression on the right, the last two terms go to 1 as �! 1�. The result then

follows from the following lemma.

61

Lemma 3.10 Let

Fd(�) =

P1
i=0 �

di

log 1
1��

:

Then lim
�!1�

Fd(�) = 1= logd.

Proof: We show that, for any small enough � > 0, there is a corresponding � such that for

� > 1� �,
1

(log d) + �
� Fd(�) � 1

(log d)� �
:

We prove only the left inequality; the right inequality is enitrely similar. We use the

following identity:
1Y
i=0

(1 + �d
i
+ �2di + : : :+ �(d�1)di) =

1

1� �
:

From this identity it follows that

1X
i=0

log(1 + �d
i
+ �2di + : : :+ �(d�1)di) = log

1

1� �
:

For a given �, let �0 = �=2, and let

z = sup

"
f0g [fx : 0 < x � 1 ;

log(1 + x+ x2 + : : :xd�1)

x
> log d+ �0g

#
:

Note that z < 1. For any �xed �, we split up the summation in the previous equation to

obtain

X
i:�d

i
<z

log(1 + �d
i
+ : : :+ �(d�1)di) +

X
i:�d

i�z
log(1 + �d

i
+ : : :+ �(d�1)di) = log

1

1� �
: (3.8)

The leftmost term of equation (3.8) is bounded by a constant, dependent only on z and

independent of �. Hence

X
i:�di<z

log(1 + �d
i
+ : : :+ �(d�1)di) +

X
i:�di�z

log(1 + �d
i
+ : : :+ �(d�1)di) �

cz + (log d+ �0)
X

i:�di<z

�d
i
+ (logd+ �0)

X
i:�di�z

�d
i
; (3.9)

where cz is a constant dependent only on z and is independent of �. Combining equations

(3.8) and (3.9) yields

(logd+ �0)
1X
i=0

�d
i
+ cz � log

1

1� �
, or

Fd(�) +
cz

(log d+ �0)
�
log 1

1��
� � 1

(log d) + �0
:

62

We now choose � small enough so that for � > 1� �,

1

(logd) + �0
� cz

(log d+ �0)
�
log 1

1��
� � 1

(log d) + �
;

and the lemma follows.

3.4 From in�nite to �nite: Kurtz's theorem

The supermarket model is an example of a density dependent family of jump

Markov processes, the formal de�nition of which we give shortly. Informally, such a family

is a one parameter family of Markov processes, where the parameter n corresponds to the

total population size (or, in some cases, area or volume). The states can be normalized and

interpreted as measuring population densities, so that the transition rates depend only on

these densities. As we have seen, in the supermarket model, the transition rates between

states depend only upon the densities si. Hence the supermarket model �ts our informal

de�nition of a density dependent family. The in�nite system corresponding to a density

dependent family is the limiting model as the population size grows arbitrarily large.

Kurtz's work provides a basis for relating the in�nite system for a density depen-

dent family to the corresponding �nite systems. Essentially, Kurtz's theorem provides a

law of large numbers and Cherno�-like bounds for density dependent families. Again, be-

fore launching into the technical details, we provide some informal intuition. The primary

di�erences between the in�nite system and the �nite system are: by

� The in�nite system is deterministic; the �nite system is random.

� The in�nite system is continuous; the �nite system has jump sizes that are discrete

values.

Imagine starting both systems from the same point for a small period of time.

Since the jump rates for both processes are initially the same, they will have nearly the

same behavior. Now suppose that if two points are close in the in�nite dimensional space

then their transition rates are also close; this is called the Lipschitz condition, and it is a

precondition for Kurtz's theorem. Then even after the two processes separate, if they remain

close, they will still have nearly the same behavior. Continuing this process inductively over

time, we can bound how far the processes separate over any interval [0; T].

63

In Section 3.5, we will apply Kurtz's results to the �nite supermarket model to

obtain bounds on the expected time a customer spends in the system and the maximum

queue length.

Theorem 3.11 For any �xed T , the expected time a customer spends in an initially empty

supermarket system of size n over the interval [0; T] is bounded above by

1X
i=1

�
di�d
d�1 + o(1);

where the o(1) is understood as n!1 and may depend on T .

The o(1) term in Theorem 3.11 is the correction for the �nite system, while the main term

is the expected time in the in�nite system from Corollary 3.8. Similarly, one can bound the

maximum load:

Theorem 3.12 For any �xed T , the length of the longest queue in an initially empty su-

permarket system of size n over the interval [0; T] is log logn
logd + O(1) with high probability,

where the O(1) term depends on T and �.

In the case where customers have only one choice, in equilibrium the expected time

in the system is 1
1�� and (as �i = �i) the maximum load is O(logn). Hence, in comparing

the systems where customers have one choice and customers have d � 2 choices, we see that

the second yields an exponential improvement in both the expected time in the system and

in the maximum observed load for su�ciently large n. In practice, simulations reveal that

this behavior is apparent even for relatively small n over long periods of time, suggesting

that the smaller order terms given in the above theorems can be improved. We will discuss

this point further in Section 3.5.

3.4.1 Kurtz's theorem

We now give a more technical presentation of Kurtz's theorem. The presentation

is based on [52], although we have extended it to include certain in�nite dimensional sys-

tems.4 We begin with the de�nition of a density dependent family of Markov chains, as

4Recall that the system is in�nite dimensional because si represents the fraction of servers with load at
least i, and the state is the vector ~s = (s1; s2; : : :). An in�nite system is one where the size of the system, in
terms of the number of servers n, goes to in�nity. As the epidemic model of Section 3.2 shows, an in�nite
system need not be in�nite dimensional.

64

in [52, Chapter 8], although we extend the de�nition to countably many dimensions.5 For

convenience we drop the vector notation where it can be understood by context. Let Z� be

either Zd for some dimension d, or ZN, as appropriate. Given a set of transitions L � Z�

and a collection of nonnegative functions �l for l 2 L de�ned on a subset E � R�, a density

dependent family of Markov chains Xn is a sequence fXng of jump Markov processes such

that the state space of Xn is En = E \ fn�1k : k 2 Z�g and the transition rates of Xn are

q(n)x;y = n�n(y�x)(x); x; y 2 En:

As an example of this de�nition, consider the supermarket model for d = 2 with n

queues. The state of the system is ~s = k=n, where ~s is given by the vector of the si and k

is the state scaled to the integers. That is, ~s represents the state by the fraction of servers

of size at least i, and k represents the state by the number of servers of size at least i. Note

that we may think of the state of the system either as ~s or k, as they are the same except

for a scale factor. The possible transitions from k is given by the set L = f�ei : i � 1g,
where the ei are standard unit vectors; these transitions occur when a customer either

enters or departs. The transition rates are given by q
(n)
k;k+l = n�l(k=n) = n�l(~s), where

�ei(~s) = �(s2i�1 � s2i), and ��ei(~s) = si � si+1. These rates determined our in�nite system

(3.5).

It follows from [52, Chapter 7], that a Markov process X̂n, with intensities q
(n)
k;k+l =

n�l(k=n) satis�es

X̂n(t) = X̂n(0) +
X
l2L

lYl

n

Z t

0
�l

X̂n(u)

n

!
du

!
;

where the Yl(x) are independent standard Poisson processes. This equation has a natural

interpretation: the process at time t is determined by the starting point and the rate of

each transition integrated over the history of the process. In the supermarket system, X̂n is

the unscaled process with state space ZN that records the number of servers with at least

i customers for all i, and X̂n(0) is the initial state, which we usually take to be the empty

system.

5This association of �nite dimensional and in�nite dimensional spaces is a technical convenience we use
in this section. A more rigorous approach would embed the in�nite dimensional system in an appropriate
Banach space, such as the space of sequences with limit 0. Note that, under the conditions of Theorem 3.4,
the system state is always a sequence (si)

1

i=0 with the limit of the si being 0, and hence the system lies in
this space. See, for example, [27] for this more general treatment.

65

We set

F (x) =
X
l2L

l�l(x); (3.10)

and by setting Xn = n�1X̂n to be the appropriate scaled process, we have from the above:

Xn(t) = Xn(0) +
X
l2L

ln�1 ~Yl

�
n

Z t

0
�l(Xn(u))du

�
+
Z t

0
F (Xn(u))du; (3.11)

where ~Yl(x) = Yl(x)� x is the Poisson process centered at its expectation.

As we shall verify shortly, the deterministic limiting process is given by

X(t) = x0 +
Z t

0
F (X(u))du; t � 0 ; (3.12)

where x0 = limn!1X(0): An interpretation relating equations (3.11) and (3.12) is that as

n ! 1, the value of the centered Poisson process ~Yl(x) will go to 0 by the law of large

numbers. In the supermarket model, the deterministic process corresponds exactly to the

di�erential equations we have in system (3.5), as can be seen by taking the derivative of

equation (3.12). Also, in the supermarket model we have x0 = Xn(0) = (1; 0; 0; : : :) in the

case where we begin with the empty system.

We must also introduce a condition that ensures uniqueness for the correspond-

ing limiting deterministic process, the di�erential equation _X = F (X). The appropriate

condition is that the di�erential equation be Lipschitz; that is, for some constant M ,

jF (x)� F (y)j �M jx� yj:

That this is a su�cient condition for uniqueness in the �nite-dimensional case is standard;

for the countably in�nite dimensional case, a bit more work is required ([26, Theorem 3.2]

or [1, p. 188, Theorem 4.1.5]).

We now present Kurtz's theorem. We note that the proof is essentially exactly

the same as that given in [52, Chapter 8] or [32, Chapter 11], generalized to the case of

countably in�nite dimensions.

Theorem 3.13 [Kurtz] Suppose we have a density dependent family (of possibly countably

in�nite dimension) satisfying the Lipschitz condition

jF (x)� F (y)j �M jx� yj

66

for some constant M . Further suppose limn!1X(0) = x0, and let X be the deterministic

process:

X(t) = x0 +

Z t

0
F (X(u))du; t � 0:

Consider the path fX(u) : u � tg for some �xed t � 0, and assume that there exists a

neighborhood K around this path satisfying

X
l2L

jlj sup
x2K

�l(x) <1: (3.13)

Then

lim
n!1 sup

u�t
jXn(u)�X(u)j = 0 a.s.

Proof: We follow [52, Chapter 8]. Let supx2K �l(x) = ��l. Then

�n(t) � sup
u�t

jXn(u)�Xn(0)�
Z u

0
F (Xn(s))dsj (3.14)

�
X
l2L

jljn�1 sup
u�t

j ~Yl(n��lu)j (3.15)

�
X
l2L

jljn�1(Yl(n��lt) + n��lt); (3.16)

where (3.15) follows from equation (3.11) and the last inequality is term by term. We can

apply the law of large numbers directly to the process on the right, to �nd:

lim
n!1

X
l2L

jljn�1(Yl(n��lt) + n��lt) =
X
l2L

2jlj��lt

=
X
l2L

lim
n!1 jljn

�1(Yl(n��lt) + n��lt):

The last equality uses the condition (3.13) to guarantee that all summations are

�nite, and hence we can interchange the limit and the summation. Since the inequality

from (3.15) to (3.16) is term by term, we can interchange the limit and the summation in

(3.15) as well, to obtain:

lim
n!1 �n(t) �

X
l2L

lim
n!1 jljn

�1 sup
u�t

j ~Yl(n��lu)j:

The right hand side goes to 0 almost surely.

We can derive from the above that for all u � t,

jXn(u)�X(u)j � jXn(0)� x0j+ �n(u) +
Z u

0
M jXn(s)�X(s)jds: (3.17)

We now apply Gronwall's inequality (see [32, p. 498] or [70, p. 78]):

67

Lemma 3.14 [Gronwall's inequality] Let f(t) be a bounded function on [0; T] satisfying

f(t) � � + � �
Z t

0
f(s)ds

for 0 � t � T , where � and � are positive constants. Then for t 2 [0; T], we have

f(t) � �e�t:

Applying Gronwall's inequality to equation (3.17), we have

jXn(u)�X(u)j � (jXn(0)� x0j+ �n(t))e
Mu: (3.18)

The theorem follows.

Theorem 3.13 says that the in�nite system is the correct limiting process as the

system size n goes to in�nity. In fact, the theorem yields a great deal more. Using equation

(3.18) of Theorem 3.13, we can determine a bound on the deviation between the �nite system

and the in�nite system that holds over bounded time intervals [0; T] with high probability

by �nding a bound for �n(t) that holds with high probability. We use this to bound the

deviation of the �nite supermarket model from the in�nite system in Section 3.5. Since we

know that the in�nite system follows a trajectory that quickly converges to its �xed point

by Corollary 3.7, by applying Kurtz's theorem appropriately we may conclude that over a

bounded time interval the �nite system follows a trajectory that approaches the �xed point

with high probability.

Note that, by equation (3.18), in a straightforward application of Kurtz's theo-

rem, the error bound is exponential in T . Since, by Corollary 3.7, the supermarket model

converges exponentially, it would seem that we could get around this problem by using the

following technique: given the starting point, choose some time T0 so that the in�nite sys-

tem is within � of �xed point (in terms of L1-distance) by time T0. By the proof of Kurtz's

theorem, with very high probability (exponential in n) the �nite system should be within �

of the in�nite system over the interval [0; T0], and hence within 2� of the �xed point at T0.

Now break the time interval [T0; T] into blocks of time T1, where T1 is the maximum time

required to half the distance to the �xed point in the in�nite system. Consider the �nite

system over the interval [T0; T0 + T1]. The corresponding in�nite system, starting at the

same point as the �nite system, goes from distance at most 2� away from the �xed point

68

to at most � away from the �xed point. Using Kurtz's theorem, with very high probability

(exponential in n) the �nite system should be within � of the in�nite system over the inter-

val [T0; T0 + T1]. Hence the �nite system stays within 3� of the �xed point over this whole

interval, and end within 2� of the �xed point at T0+T1. We can now repeat this argument

for the next block of T1 time units, and so on. This argument can be used to show that once

the �nite system gets close to the �xed point, it remains close for periods of time that are

exponentially (in n) long. Furthermore, since the in�nite system converges exponentially,

even if the �nite system does deviate from the �xed point over some interval of time, it is

likely to move back towards the �xed point almost immediately. This argument is the basis

for the Freidlen-Wentzell theory, presented for example in [70, Chapter 6].

Unfortunately, we have not been able to formalize this argument for the in�nite

dimensional supermarket model, because of some technical problems related to working in

in�nite dimensions. The problem is that T1, as we have informally de�ned it, may not exist

in the in�nite dimensional case. The proof of Theorem 3.6 shows that there is some T1 such

that the value of the potential function �(t) is halved after T1 units of time, but this T1 may

not half the actual L1-distance to the �xed point. This setback appears relatively minor,

for the following reasons. We note, without proof, that this argument can be formalized for

a �nite dimensional variation of the supermarket model that we present in Section 4.4.2,

which corresponds to a system where a maximum queue size is allowed. (In the �nite

dimensional case, �(t) and the L1-distance di�er by at most a constant factor, so a suitable

T1 can be found.) A proof for the in�nite dimensional case may therefore be possible using a

limiting argument based on a sequence of �nite dimensional systems. (See, for example, the

work of Miller and Michel [57].) For the supermarket model, each system in this sequence

would have a bound on the maximum queue size, and we would examine the limit as the

maximum allowed queue length increases to in�nity.

This main point, however, is that this argument suggests that although the �nite

system will move far from the �xed point of the in�nite system over a suitably long period of

time, most of the time it remains near the �xed point. Our simulation results in Section 3.6

verify that this is the case.

69

3.5 Proofs for �nite systems

As indicated earlier, we can apply Kurtz's theorem to the supermarket model to

obtain bounds on the expected time a customer spends in the system and the maximum

queue length. We �rst note that the preconditions of Theorem 3.13 hold. The rate at which

jumps occur is bounded above by �+ 1 everywhere. We also need the following:

Lemma 3.15 The supermarket model satis�es the Lipschitz condition.

Proof: Let x = (xi) and y = (yi) be two states of the supermarket model. Then

jF (x)� F (y)j �
1X
i=1

j�(xdi�1 � xdi)� (xi � xi+1)� �(ydi�1 � ydi) + (yi � yi+1)j

� 2
1X
i=0

jxi � yij+ 2�
1X
i=0

jxdi � ydi j

�
1X
i=0

(2 + 2d�)jxi � yij;

where we have used the fact that 0 � xi; yi � 1 for all i.

In order to bound the error between the �nite supermarket model with n queues

and the in�nite system, we need a bound on the quantity �n(t) in Theorem 3.13, which we

�nd by using equation (3.15). Equation (3.15) bounds �n(t) by a summation, where each

term contains a factor that is the maximum deviation of a Poisson process from its mean

over the course of the process. We begin by showing the following intuitive lemma: if the

Poisson process deviates a large amount from its mean at some point, it is likely to deviate

a large amount from its mean at the end of process. For the following lemma, let ~Z(t)

represent a centered Poisson process that has a �xed rate over the interval [0; t].

Lemma 3.16

Pr(sup
u�t

j ~Z(t)j � 2a) � Pr(j ~Z(t)j > a)

Pr(j ~Z(t)j < a)
:

Proof: If supu�t ~Z(t) � 2a, then let x be the �rst time at which ~Z(x) = 2a. The only way

that the process can end with j ~Z(t)j < a is if j ~Z(t)� ~Z(x)j > a. But the remainder of the

process from x to t is independent of its past, so ~Z(t)� ~Z(x) is distributed as ~Z(t�x), and

further Pr(~Z(t� x) > a) � Pr(~Z(t) > a): Hence

Pr(sup
u�t

j ~Z(t)j � 2a)Pr(j ~Z(t)j < a) � Pr(j ~Z(t)j > a):

70

We have reduced the problem of bounding the maximum deviation of the Poisson

process from its mean to bounding the �nal deviation of the Poisson process from its mean.

This latter quantity is more easily bounded by applying Cherno�-type bounds to the Poisson

distribution that are similar to those in Lemma 1.3.

Lemma 3.17 [7, Theorem A.15] Let P have a Poisson distribution with mean �. For

� > 0,

Pr(P � �(1� �)) � e�
2�=2 (3.19)

Pr(P � �(1 + �)) �
h
e�(1 + �)�(1+�)

i�
: (3.20)

Using these ideas, we can bound �n(t) for the supermarket model; we omit the

technical proof.

Lemma 3.18 For the supermarket model, the value of supu�t jXn(u)�X(u)j, which is the

maximum L1-distance between the �nite and the in�nite process over the time interval [0; t],

is O
�
log2 np

n

�
with high probability.

Note that the constant in the O
�
log2 np

n

�
term of Lemma 3.18 may be exponential

in t; d; and �. We now prove the theorems from Section 3.4.

Theorem 3.11 For any �xed T , the expected time a customer spends in an initially empty

supermarket system with d � 2 over the interval [0; T] is bounded above by

1X
i=1

�
di�d
d�1 + o(1);

where the o(1) is understood as n!1.

Proof: Suppose we start with an empty system. Then by Theorem 3.4 we know that for

the in�nite system, si(t) � �i over the entire interval [0; T]. Using Lemma 3.18, with high

probability the L1-distance between the �nite and in�nite systems is O
�
log2 np

n

�
. We also

note that, with high probability, the maximum queue size in a supermarket system with

n queues over the interval [0; T] is O(logn), based on a comparison with a system of n

independent M/M/1 queues, as described in the remark after Lemma 3.1. Hence, with high

probability, the total di�erence in the expected time between the �nite and in�nite systems

71

is O
�
log3(n)p

n

�
with high probability. This term is clearly o(1). In the case where one of the

high probability events does not hold, one can again use a comparison with independent

M/M/1 queues to show that the expected time in the system is at most O(logn). Since

these events fail to happen with probability O(1n), the additional term one must add to the

expected time for this case is also o(1).

From the proof of Kurtz's theorem, the o(1) term of Theorem 3.11 depends ex-

ponentially on T , but as we have mentioned, this appears to be an artifact of our proof

technique. Similarly, one can bound the maximum load:

Theorem 3.12 For any �xed T , the length of the longest queue in an initially empty

supermarket system with d � 2 over the interval [0; T] is log logn
log d +O(1) with high probability,

where the O(1) term depends on T and �.

Proof: The proof has the following sketch: we �rst show that, with high probability, in

the in�nite system the fraction of queues with log logn
logd + c1 customers is much smaller than

1=n over the entire time period [0; T] for some constant c1. This implies that with high

probability, there are only a small number of queues with at least log logn
logd + c1 customers in

the �nite system of size n over the interval [0; T]. We then conclude by using this fact to

show that, with high probability, no queue ever has log logn
logd + c2 customers for some larger

constant c2.

In the in�nite system of an initially empty supermarket model, si(t) � �i for all

t by Theorem 3.4. Since �i = �
di�1
d�1 , we have �k < 1=n for k = log logn

logd + c1 and some

constant c1. Hence, in the in�nite system, sk(t) < 1=n over the entire interval [0; T]. It

follows from Theorem 3.13 and Lemma 3.18 that, with high probability, in the �nite system

sk(t) = O
�
log3 np

n

�
over the entire interval [0; T].

We now show that, if sk(t) = O
�
log3 np

n

�
over the interval [0; T], then the maximum

queue size over the interval is k + c2 for some constant c2 with high probability. Note that

the total arrival rate into the �nite system is �n, and hence that the expected number

of customers that enter the system over the time interval is �nT . By the Cherno�-type

bounds of Lemma 3.17, the number of customers that enter the system is at most 2�nT

with probability exponentially small in n. We now use the same idea as in Theorem 1.1. The

probability that any entering customer chooses d queues of already containing k or more

customers is at most
�
� log3 np

n

�d
for some constant �. Using Cherno� bounds (Lemma 1.3,

72

equation (1.3)), with high probability the number of customers that join a queue with at

least k customers is at most polylog(n). Hence the number of queues that ever have at least

k + 1 customers is at most polylog(n). Repeating this argument, it is easy to check that

with high probability no queue ever has k + 2 customers.

3.6 Simulation results

We provide the results of some simulations based on the supermarket model.6

Table 3.1 presents results for a system of n = 100 queues at various arrival rates. The

results are based on the average of 10 runs, where each run simulates 100,000 time steps,

and the �rst 10,000 time steps are ignored in recording data in order to give the system time

to approach equilibrium. For arrival rates of up to 95% of the service rate (i.e., � = 0:95),

the predictions are within a few percent of the simulation results. Even at 99% of capacity,

the prediction from the in�nite system is within 10% of the simulations when two queues are

selected, and at 99.9% (generally an unreasonably high load on a system), the predictions

are o� only by factors close to 2. It is not surprising that the error increases as the arrival

rate or the number of choices available to a customer increases, as these parameters a�ect

the error term in Kurtz's theorem (for example, they a�ect the constant used to verify the

Lipschitz condition in Lemma 3.15). As one would expect, however, the approximation does

improve if the number of queues is increased, as can be seen by the results for 500 queues

given in Table 3.2.

The simulations clearly demonstrate the impact of having two choices. Recall that,

in equilibrium, the expected time a customer spends in the system given one choice (d = 1)

is 1=(1� �). Hence, as shown in Table 3.2, when � = 0:99 the expected time in the system

when d = 1 is 100:00; with two choices, this drops to under 6. Allowing additional choices

leads to much less signi�cant improvements. When the arrival rate is smaller the e�ect is

less dramatic, but still apparent, and when � = 0:999, Table 3.2 shows the e�ect is even

more pronounced. The qualitative behaviors that we predicted with our analysis are thus

readily observable in our simulations even of relatively small systems. This lends weight to

the predictive power of our theoretical results in practical settings.
6In these simulations, choices were made without replacement, as this method is more likely to be used

in practice. The in�nite system is the same regardless of whether the choices are made with or without
replacement; we have described the model with replacement to simplify the exposition. The same holds for

other simulation results in this thesis unless explicitly noted.

73

Choices � Simulation Prediction Relative Error (%)

2 0.50 1.2673 1.2657 0.1289

0.70 1.6202 1.6145 0.3571

0.80 1.9585 1.9475 0.5742

0.90 2.6454 2.6141 1.1981

0.95 3.4610 3.3830 2.3028

0.99 5.9275 5.4320 9.1227

0.999 14.0790 8.6516 62.7328

3 0.50 1.1277 1.1252 0.2146

0.70 1.3634 1.3568 0.4858

0.80 1.5940 1.5809 0.8314

0.90 2.0614 2.0279 1.6533

0.95 2.6137 2.5351 3.1002

0.99 4.4080 3.8578 14.2607

0.999 11.7193 5.9021 98.5593

5 0.50 1.0340 1.0312 0.2637

0.70 1.1766 1.1681 0.7250

0.80 1.3419 1.3289 0.9789

0.90 1.6714 1.6329 2.3564

0.95 2.0730 1.9888 4.2363

0.99 3.4728 2.9017 19.6825

0.999 9.3366 4.3001 117.1240

Table 3.1: Simulations versus estimates for the supermarket model: 100 queues.

Choices � Simulation Prediction Relative Error (%)

1 0.99 { 100.00 {

2 0.99 5.5413 5.4320 2.0121

3 0.99 3.9518 3.8578 2.4366

5 0.99 3.0012 2.9017 3.4305

1 0.999 { 1000.00 {

2 0.999 9.3994 8.6516 8.6435

3 0.999 7.0497 5.9021 19.4428

5 0.999 5.5801 4.3001 29.7665

Table 3.2: Simulations versus estimates for the supermarket model: 500 queues.

74

Chapter 4

In�nite systems for other load

balancing problems

4.1 Introduction

In the last chapter we introduced a new methodology for studying load balancing

problems, based upon the idea of the in�nite system. The technique required the following

steps:

� Set up the appropriate in�nite system { a system of di�erential equations.

� Study the behavior of the in�nite system, either numerically or by proving convergence

to a �xed point.

� Deduce the �nite system behavior from that of the in�nite system using Kurtz's

theorem.

The example of the supermarket model suggests that the in�nite system approach

can lead to relatively straightforward analyses of complicated systems once the appropriate

di�erential equations have been established. In this chapter, we expand upon this method-

ology by applying it to a variety of other simple randomized load balancing schemes, many

of which have so far resisted analysis. One goal of this chapter is to demonstrate the ad-

vantages of this approach: simplicity, generality, and accuracy. The second goal is to gain

further insight into practical aspects of load balancing by studying other load balancing

strategies and their variations.

75

Because the emphasis of this chapter is the in�nite system approach, we will

primarily focus on developing the in�nite systems, and set aside questions of convergence

until late in the chapter. Also, we will not explicitly use Kurtz's theorem for each system

we study; instead, we simply determine the in�nite systems, keeping in mind the global

principle that Kurtz's theorem can be used to justify the connection between the in�nite

and �nite systems. Of course the preconditions to Kurtz's theorem (Theorem 3.13) must

be checked, as was done for the supermarket system in Section 3.5: the jump rates must be

bounded, and the in�nite system must satisfy the Lipschitz condition. All of the systems

we study satisfy these preconditions. Kurtz's theorem allows one to conclude that large

�nite systems are expected to stay close to the in�nite system for small enough intervals

of time, and as we have seen for the supermarket model in Section 3.5, this can be used to

derive bounds on �nite system performance.

We begin by applying the in�nite system approach to the greedy strategy studied

by Azar, Broder, Karlin, and Upfal in the static case [11]. We shall derive an alternative

proof of the log logn= log d+O(1) upper bound on the maximum load in the static case, and

also demonstrate that the in�nite system approach provides accurate predictions of actual

performance in this case.

We then return to dynamic systems, beginning with generalized version of the

supermarket model where the service times may not be exponentially distributed, and the

arrival times may not be Poisson. These assumptions that we made in Chapter 3 limit

the applicability of our results, as in practice arrival and service distributions may not be

so simple. We shall focus on the speci�c example of constant service times, although our

approach can be applied to other distributions as well. As an interesting corollary, we

show that switching from exponential service times to constant service times with the same

mean improves the performance of the supermarket system, in terms of the expected time

a customer spends in the in�nite system.

We then proceed to study a variety of other load balancing models, including

variations of the supermarket model as well as other strategies. Two particularly interesting

models involve thresholds, in which a customer only makes additional choices if the previous

destination choices are too heavily loaded, and load stealing, in which tasks do not distribute

themselves upon arrival, but instead processors seek out work when they are underutilized.

Besides demonstrating that our technique applies to a variety of models and problems,

these examples emphasize that even a small amount of additional communication beyond

76

simple random selection can lead to dramatic improvements in performance. Our results

for the in�nite system are again compared with simulations, which verify the accuracy of

our approach.

In Section 4.6, we discuss the convergence of the in�nite systems we examine in

this chapter. In most cases small variations on the attack we developed in Theorem 3.6 to

show exponential convergence of the supermarket model su�ce to demonstrate exponential

convergence of these other models as well. Rather than prove convergence for each model,

we prove a general theorem that applies to many of the systems we consider. In cases where

we cannot prove exponential convergence, we can often prove a weaker result; namely, that

the �xed point is stable. We also discuss why the potential functions we use do not seem

to lead to exponential convergence for some models.

We conclude with a brief discussion of open problems and future directions for this

work.

4.2 The static model

We now demonstrate the applicability of the in�nite system approach to static

problems by returning to the original balls and bins setting described in Chapters 1 and 2.

Recall the scenario of the greedy strategy of [11] that we presented in Section 1.2: in the

case where m = n, we begin with n balls and n bins. Balls arrive sequentially, and upon

arrival, each ball chooses d bins independently and uniformly at random (with replacement);

the ball is then placed in the least loaded of these bins (with ties broken arbitrarily). With

high probability, the maximum load is log logn= log d+ O(1).

Suppose that instead of the maximum load, we wish to know howmany bins remain

empty after the protocol greedy(d) terminates. This question has a natural interpretation

in the task-processor model: how many of our processors are not utilized? The question can

also be seen as a matching problem on random bipartite graphs: given a bipartite graph

with n vertices on each side such that each vertex on the left has d edges to vertices chosen

independently and uniformly at random on the right, what is the expected size of the greedy

matching obtained by sequentially matching vertices on the left to a random unmatched

neighbor? Our attack, again, is to consider this system as n!1. This question has been

previously solved in the limiting case as n!1 by Hajek using similar techniques [38]. We

shall begin by brie
y repeating his argument with some additional insights. Once we show

77

how to answer the question of the number of empty bins, we shall extend it to the more

general load balancing problem.

4.2.1 The empty bins problem

To set up the problem as a density dependent Markov chain, we �rst establish a

concept of time. We let t be the time at which exactly x(t) = nt balls have been thrown,

and we let y(t) be the fraction of non-empty bins. Then at time t, the probability that a

ball �nds at least one empty bin among its d choices is 1� yd, and hence we have

dy

dt
= 1� yd: (4.1)

A marked di�erence between the static problem and the supermarket model is

that in the static case we are only interested in the progress of the process over a �xed time

interval, while in the dynamic case we are interested in the behavior of the model over an

arbitrary period of time. In this respect, the static problem is easier than the corresponding

dynamic problem.

Theorem 4.1 Suppose cn balls are thrown into n bins according to the greedy(d) protocol

for some constant c. Let Ycn be the number of non-empty bins when the process terminates.

Then limn!1 E[Ycnn] = yc, where yc < 1 satis�es

c =
1X
i=0

yid+1
c

(id+ 1)
:

Proof: The preconditions for Kurtz's theorem (Theorem 3.13) are easily checked for the

one-dimensional system described by (4.1), so by Kurtz's theorem we have that this di�er-

ential equation is the correct limiting process.1 Instead of solving (4.1) for y in terms of t,

we solve for t in terms of y: dt
dy =

1
1�yd =

P1
i=0 y

id. We integrate, yielding

t0 =
1X
i=0

y(t0)id+1

(id+ 1)
: (4.2)

From equation (4.2), given d we can solve for y(t0) for any value of t0 using for

example binary search.2 In particular, when t0 = c, all of the balls have been thrown,

1It appears that there might be a problem here since we consider events occurring at discrete time steps,
instead of according to random times from a Poisson process. One can always adopt the convention that
each discrete time step corresponds to an amount of time given by an exponentially distributed random
variable. In the limiting case, this distinction disappears.

2One could also attempt to directly �nd an equation for y in terms of d and c. Standard integral tables
give such equations when d = 2; 3 and 4, for example [19].

78

and the process terminates. Plugging t0 = c into equation (4.2) yields the theorem, with

yc = y(c).

We may actually use the proof of Theorem 3.13 to obtain a concentration result.

Theorem 4.2 In the notation of Theorem 4.1, jYcnn �ycj is O
�q

logn
n

�
with high probability,

where the constant depends on c.

Proof: From the proof of Theorem 4.1, we know that yc is the correct limiting value of

Ycn
n . By equations (3.18) and (3.15), we obtain a bound for �n(c) as the supremum of

the deviation of a Poisson process with rate 1 from its expectation over the course of the

process. By Lemma 3.16 it su�ces to consider the deviation from the mean at the end of

the process. Using Lemma 3.17, one may check that this deviation is O

�q
logn
n

�
with high

probability.

One can also show that Ycn is close to its mean with high probability using mar-

tingale arguments and the method of bounded di�erences. In the following application of

this alternative technique, we assume familiarity with basic martingale theory; see, for ex-

ample, [7, Chapter 7] for more information. We use the following form of the martingale

tail inequality due to Azuma [14]:

Lemma 4.3 [Azuma] Let X0; X1; : : :Xm be a martingale sequence such that for each k,

jXk �Xk�1j � 1:

Then for any � > 0,

Pr(jXm �X0j > �
p
m) < 2e��

2=2:

Theorem 4.4 In the notation of Theorem 4.1, Pr(jYcn � E[Ycn]j > �
p
cn) < 2e��2=2 for

any � > 0.

Proof: The argument we present is based on a similar argument presented in [41, Theorem

2]. For 0 � j � cn, let Fj be the �-�eld of events corresponding to the possible states after

j balls have been placed, and Zj = E[YcnjFj] be the associated conditional expectation

of Ycn . Then the random variables fZjgcnj=0 form a Doob martingale, and it is clear that

79

jZj � Zj�1j � 1. The theorem now follows from Lemma 4.3.

Theorem 4.4 implies that Ycn is within O(
p
n logn) of its expected value with high

probability. Unlike the in�nite system method, however, the martingale approach does not

immediately lead us to the value to which Ycn=n converges. This is a standard limitation

of the martingale approach: one may prove concentration with no knowledge of the actual

mean. This in�nite system approach, in contrast, often allows one to �nd the mean as well

as prove concentration around the mean.

4.2.2 Bins with �xed load

We can extend the previous analysis to �nd the fraction of bins with load k for

any constant k as n ! 1. We �rst establish the appropriate density dependent Markov

chain. Let si(t) be the fraction of bins with load at least i at time t, where again at time t

exactly nt balls have been thrown. Then the corresponding di�erential equations regarding

the growth of the si (for i � 1) are easily determined:8><
>:

dsi
dt

= (sdi�1 � sdi) for i � 1 ;

s0 = 1:
(4.3)

The di�erential equations (similar to (3.5) for the supermarket model) have the following

simple interpretation: for there to be an increase in the number of bins with at least i balls,

the d choices of a ball about to be placed must all be bins with load at least i� 1, but not

all bins with load at least i.

In contrast to Section 4.2.1, where we could derive a formula for the fraction of

empty bins, we are not aware of how to determine explicit formulae for si(t) in general.

These systems of di�erential equations can be solved numerically using standard methods,

however; for up to any �xed k and t, we can accurately determine sk(t). By applying

Kurtz's theorem (as in Theorem 4.2) or martingale arguments (as in Theorem 4.4) one can

show that these results will be accurate with high probability.

We also demonstrate that our technique accurately predicts the behavior of the

greedy(d) algorithm by comparing with simulation results. The �rst and third columns

of Table 4.1 shows the predicted values of si for d = 2 and d = 3. From these results with

d = 2, one would not expect to see bins with load �ve until billions of balls have been

80

d = 2 1 million d = 3 1 million
Prediction Simulation Prediction Simulation

s1 0.7616 0.7616 0.8231 0.8230

s2 0.2295 0.2295 0.1765 0.1765

s3 0.0089 0.0089 0.00051 0.00051

s4 0.000006 0.000007 < 10�11 0

s5 < 10�11 0 < 10�11 0

Table 4.1: Predicted behavior for greedy(d) and average results from 100 simulations with
1 million balls.

thrown. Similarly, choosing d = 3 one expects a maximum load of three until billions of

balls have been thrown. These results match those we have presented earlier in Table 2.1,

as well as simulation results presented in [10]. We also present the averages from one

hundred simulations of one million balls for d = 2 and d = 3, which further demonstrate

the accuracy of the technique in predicting the behavior of the system. This accuracy

is a marked advantage of this approach; previous techniques have not provided ways of

concretely predicting actual performance.

4.2.3 A new proof of O(log log n) bounds

We can also use the above approach to give an alternative proof of the upper

bounds on the maximum load of greedy(d). Our proof is derived from Theorem 1.1;

however, we feel that the approach of looking at the underlying di�erential equations em-

phasizes the key features of the proof. The di�erential equations provide the insight that the

sk decrease quadratically at each level, and hence overall the sk are doubly exponentially

decreasing.

Theorem 4.5 [Azar et al. [11]] Suppose that n balls are thrown into n buckets by the

greedy process. Then the �nal load is log logn= log d+O(1) with high probability.

Proof: We wish to know the values of si(1) in the �nite system. Because the si are all

non-decreasing over time and non-negative, in the in�nite system we have from (4.3)

dsi
dt

= sdi�1 � sdi � [si�1(1)
d]

for all t � 1 and hence

si(1) � [si�1(1)]
d: (4.4)

81

It is easy to check that s1(1) < 1 in the in�nite system, since a constant fraction

of the bins will not be chosen by any of the balls. Hence, there exists a constant c1 such

that for D = log logn= log d + c1 we have sD(1) < 1=n in the in�nite system. We now

apply the proof of Theorem 3.13 in this D-dimensional space. It is easy to check that the

error term introduced in the proof of Theorem 3.13 (from the �n(1)) between the �nite

and the in�nite dimensional system is O(polylog(n)p
n

) with high probability, as in the proof

of Theorem 3.11. Hence, with high probability, the number of bins with load at least D

is bounded by O(n2=3). At this point we must handle the small tail explicitly, as is done

in the proof of Theorem 1.1, using Cherno� bounds. It is simple to verify that with high

probability that there are at most O(n1=3) bins with load at least D+1, O(logn) bins with

load at least D + 2, and no bins with load at least D + 3.

The above proof essentially mimics that of Theorem 1.1, with the inductive use of

Cherno� bounds replaced by an invocation of Kurtz's more general theorem. One can adapt

the lower bound proof in [11] in a similar fashion. Note, however, that the proof cannot

be extended for the general case of m balls and n bins, unless m = cn for some constant

c. When m = cn, the in�nite process runs until time c; if m is not a linear function of n,

the time until the process terminates is dependent on n, and Kurtz's theorem cannot be

applied.

4.3 Constant service times

We now wish to show how to apply our techniques to other service and arrival

distributions. The assumptions we have made in studying the supermarket model in the

previous chapter, namely that the arrival process is Poisson and that the service times

are exponentially distributed, do not accurately describe many (and probably most) real

systems, although they are standard in much of queueing theory, because they lead to simple

Markovian systems. In this section, we demonstrate how to modify our approach in order

to apply it to more general service and arrival distributions. The technique is most easily

described by �xing on a speci�c example. Here we examine the supermarket model where

the service time is a �xed constant, 1, for all customers. This model is often more realistic

in computer systems, where all jobs may require a �xed amount of service.

Once service times are a �xed constant, the supermarket system with our standard

82

Mean 1 , Variance 1

Mean 1/5
Variance 1/25

Mean 1 , Variance 1/5

Figure 4.1: Gamma distributed service times with r = 5. If one exponentially distributed
stage of service is replaced by �ve shorter exponentially distributed stages, then the variance
of the service time is reduced by a factor of �ve.

state space is no longer Markovian, as the time until the next customer departs depends

upon the times at which all customer undergoing service began being served. To use the

in�nite system technique, we approximate this non-Markovian system by a Markovian one.

The approach we use is based on Erlang's method of stages, which we shall describe brie
y

here. Kleinrock's excellent text provides a more detailed explanation [46, Sections 4.2 and

4.3], and Kelly uses this approach in a similar fashion [45, Section 3.3]. We approximate the

constant service time with a gamma distribution: a single service will consists of r stages of

service, where each stage is exponentially distributed with mean 1=r. As r becomes large,

the expected time spent in these r stages of service remains 1 while the variance falls like

1=r; that is, the total time to complete the r stages behaves like a constant random variable

in the limit as r! 1. The appropriate picture of the process is that we have replaced the

single, long exponential server at each queue with r shorter exponential servers in series;

note that only a single customer, the one receiving service, can be anywhere inside this

group of r stages at one time. (See Figure 4.1.)

The state of a queue will now be the total number of stages remaining that the

queue has to process, rather than the number of customers; that is, the state of a queue is

r(# of waiting customers) + stages of the customer being served:

In practice, since r determines the size of the state space, numerical calculations will be

83

easier if we choose r to be a reasonably small �nite number. Our simulations, which appear

later in this section, suggest that for r � 20 the approximations are quite accurate.

There is some ambiguity now in the meaning of a customer choosing the shortest

queue. If the number of customers in two queues are the same, can an incoming customer

distinguish which queue has fewer stages of service remaining? The two possible answers to

this question lead to di�erent systems. Let us �rst consider the case where we have aware

incoming customers, who can tell how many stages are left for each of their d choices, and

hence choose the best queue when there is a tie in terms of the number of customers. Let sj

be the fraction of queues with at least j stages left to process. For notational convenience

we adopt the convention that sj = 1 whenever j � 0. Then sj increases whenever an arrival

comes to a queue with at least j � r and fewer than j stages left to complete. Similarly, sj

decreases whenever a queue with j stages completes a stage, which happens at rate r. The

corresponding system of di�erential equations is thus

dsj
dt

= �(sdj�r � sdj)� r(sj � sj+1):

(Note that in the case where r = 1, this corresponds exactly to the standard supermarket

model, as one would expect.)

As for the supermarket model, we can identify a unique �xed point ~� for this

system (with a �nite expected number of customers per queue). At the �xed point, �1 = �

(intuitively because the arrival rate and exit rate of customers must be equal), and �i = 1 for

i � 0. From these initial conditions one can �nd successive values of �j from the recurrence

�j+1 = �j �
�(�dj�r � �dj)

r
: (4.5)

Unfortunately, we have not found a convenient closed form for �j .

We say that the system has unaware customers if the customers can only determine

the size of the queue, and not the remaining amount of service required. In a system with

unaware customers, if there is a tie for the fewest customers among the queues chosen by

an incoming customer, then the customer will choose randomly from those queues with

the smallest number of customers. The di�erential equations are slightly more complicated

than in the aware case. Again, let sj be the fraction of queues with at least j stages left

to process. For notational convenience, let Si = s(i�1)r+1 be the fraction of queues with at

least i customers, and let �(j) = d jr e be the number of customers in a queue with j stages

left to process. There are now two cases to consider in determining when sj increases,

84

corresponding to whether the shortest queue an incoming customer chooses has �(j) � 1

or �(j) customers. Let us consider the �rst case. The probability that the shortest queue

chosen by an incoming customer has �(j)� 1 customers is Sd�(j)�1 � Sd�(j). In this case, sj

will increase only when the incoming customer chooses a queue with at least sj�r stages.

Conditioned on the assumption that shortest queue chosen by an incoming customer has

�(j) � 1 customers already waiting, the probability that the customer chooses a queue

with at least j � r stages is
sj�r�S�(j)

S�(j)�1�S�(j) . The second case is similar. The corresponding

di�erential equations are

dsj
dt

= �(Sd�(j)�1 � Sd�(j))
sj�r � S�(j)

S�(j)�1 � S�(j)
+ �(Sd�(j) � Sd�(j)+1)

S�(j) � sj

S�(j) � S�(j)+1
� r(sj � sj+1):

Note that the �xed point cannot be determined by a simple recurrence, as the

derivative of sj depends on S�(j),S�(j)�1, and S�(j)+1. It turns out that the system con-

verges quickly, and hence one can �nd the �xed point to a suitable degree of accuracy by

standard methods, such as simulating the di�erential equations for a small period of time,

or relaxation.

4.3.1 Constant versus exponential service times

One interesting application of the above di�erential equations is to show that, at

the �xed points of the corresponding in�nite models, constant service times are better than

exponential service times, measured in terms of the expected time a customer spends in

the system in equilibrium. More speci�cally, we show that, if the arrivals form a Poisson

process, the fraction of servers with at least k customers is greater when service times are

exponential than when service times are constant with the same mean. Although this may

not appear surprising, it is far from trivial: a simple variation of a counterexample given

by Ross [65] shows that for certain arrival processes, the expected time in systems where

customers choose the shortest queue can increase when one changes service times from

exponential to constant.

In fact, the question of whether constant service times reduce the expected delay

in comparison to exponential service times in a network, and the more general question

of whether variance in service times necessarily increases the expected delay of a network,

often arises when one tries to use standard queueing theory results to �nd performance

bounds on networks. (See, for example, [39, 59, 60, 64, 71].) Generally, results comparing

85

the two types of systems are achieved using stochastic comparison techniques. Here, we

instead compare the �xed points of the corresponding in�nite systems.

Let us begin with the case of aware customers where service times have a gamma

distribution corresponding to r stages. Recall that the �xed point was given by the recur-

rence (4.5) as �j+1 = �j��(�dj�r��dj)=r, with �1 = � and �i = 1 for i � 0. The �xed point

for the standard supermarket model, as found in Lemma 3.2, satis�es �i+1 = ��di . Since �1

is � in both the standard supermarket model and the model with gamma distributed service

times, to show that the tails are larger in the standard supermarket model, it su�ces to

show that ��(j)+1 � ��d�(j) in the aware customer model. Inductively it is easy to show the

following stronger fact:

Theorem 4.6 In the system with aware customers, for j � 1,

�j =
�

r

j�1X
i=j�r

�di :

Proof: The equality can easily be veri�ed for 1 � j � r. For j > r, the following induction

yields the theorem:

�j = �j�1 � �

r
(�dj�r�1 � �dj�1)

= �j�2 � �

r
(�dj�r�1 + �dj�r�2 � �dj�1 � �dj�2)

...

= �j�r � �

r

0
@ j�r�1X
i=j�2r

�di �
j�1X

k=j�r
�dk

1
A

=
�

r

j�1X
k=j�r

�dk:

Here the last step follows from the inductive hypothesis, and all other steps follow from the

recurrence equation (4.5) for the �xed point.

We may conclude that the expected time when service times have a gamma distri-

bution with r stages is better than when service times are exponential in the corresponding

in�nite systems. Since, intuitively, the limit as r goes to in�nity corresponds to constant

service times, we would like to conclude that the expected time in the system when service

86

times are constant is better than when the service times are exponential in the correspond-

ing in�nite systems. A full proof of this statement appears to require handling several

technical details and has not been completed. In the sequel, we sketch steps that would be

necessary for such a proof.

First, even in a �nite system, it is not clear that the limiting distribution as r! 1
converges to the same distribution as when service times are constant. Indeed, even this step

is non-trivial, although a similar proof for networks of quasi-reversible queues by Barbour

appears to apply [15]. (See also [45, p.77-78] for more background for this problem.) Now,

let Dr;n be the distribution when there are n queues and service times have a gamma

distribution of r stages. We must also show that

lim
r!1 lim

n!1Dr;n = lim
n!1 lim

r!1Dr;n:

The left hand side is the limit of the in�nite systems as the service times approaches a

�xed constant; the right hand side is the in�nite system when service times are constant,

assuming that the limiting distribution as r!1 does converge to the same distribution as

when service times are constant. Showing that this interchange of limits is justi�ed can be

extremely di�cult; for example, see Chapter 14 of the book by Shwartz and Weiss [70, pp.

400-405] for a partial justi�cation of such an interchange in a model related to the Aloha

protocol.

Because of the great technical di�culties of a formal proof, we only provide the

above informal justi�cation that our comparison of exponential and gamma distributed

service times in the in�nite system can be extended to compare exponential and constant

service times by taking the limit as r!1.

A similar result holds even in the case of unaware customers. The proof is simpler

with the following notation: let qi be the probability than an arriving customer joins a

queue with i or more stages to complete at the �xed point of the system with unaware

customers. We set qi = 1 for i � 0. Then along with the fact that �1 = � and �i = 1 for

i � 0, the following recurrence describes the �xed point for the unaware system:

�j+1 = �j � �(qj�r � qj)

r
: (4.6)

Although we do not know the qj , we can use this recurrence to compare the standard

supermarket model with the unaware model. As noted before Theorem 4.6, it su�ces to

show that in the unaware model, ��(j)+1 � ��d�(j).

87

Theorem 4.7 At the �xed point in the model with unaware customers, for j � 1,

�j =
�

r

j�1X
i=j�r

qi:

In particular,

��(j)+1 � ��d�(j):

Proof: The equality can easily be veri�ed for 1 � j � r. For j > r, the following induction

yields the theorem:

�j = �j�1 � �

r
(qj�r�1 � qj�1)

= �j�2 � �

r
(qj�r�1 + qj�r�2 � qj�1 � qj�2)

...

= �j�r � �

r

0
@ j�r�1X
i=j�2r

qi �
j�1X

k=j�r
qk

1
A

=
�

r

j�1X
k=j�r

qk

Here the last step follows from the inductive hypothesis, and all other steps follow from the

recurrence equation for the �xed point (4.6). The last line of the theorem now follows by

noting that the qi are decreasing and that q�(j) = �d�(j).

Theorem 4.6 can be used to show that constant service times are better than expo-

nential service times in su�ciently large �nite systems as well; however, a formal statement

would require showing that the trajectories converge to the �xed point when service times

are gamma distributed, which we leave to Section 4.6. Here we note that Theorems 4.6 and

4.7 provide evidence that constant service times may be better than exponential service

times regardless of the number of queues, and hence suggest that a more straightforward

stochastic comparison argument might be possible for this problem. If such an argument

exists, it would likely hold for any values of d and n, and therefore be a much stronger result.

(Note that we implicitly assume d is a constant in order to obtain the in�nite system, and

we have really only proven the result for the in�nite systems.) We strongly suspect that a

comparison argument is possible; this remains an interesting open question.

88

� Simulation r = 10 r = 20 r = 30

0.50 1.1352 1.1478 1.1412 1.1390

0.70 1.3070 1.3355 1.3200 1.3148

0.80 1.4654 1.5090 1.4847 1.4766

0.90 1.7788 1.8492 1.8065 1.7923

0.95 2.1427 2.2355 2.1714 2.1500

0.99 3.2678 3.2461 3.1243 3.0644

Table 4.2: Simulations versus estimates for constant service times: 100 queues.

4.3.2 Simulations

To provide evidence for our claim that small values for the number of stages r can

be used to achieve good approximations for constant service times, we brie
y compare our

analytic results with corresponding simulation results. Table 4.2 compares the value of the

expected time a customer spends in an in�nite system with unaware customers and d = 2

choices per customer obtained using various values of r against the results from simulations

with constant service times for 100 queues. The simulation results are the average of ten

runs, each for 100,000 time units, with the �rst 10,000 time units excluded to account for

the fact that the system begins empty.

As one might expect, the expected time in the system decreases as r increases

(and hence as the variance decreases). The results for r = 20 lie within 1-2% of the value

calculated from the in�nite system for all values of � presented except for � = 0:99. We

expect that for � = 0:99 the in�nite system only becomes accurate for a larger number of

queues, and hence the discrepancy is not surprising.

4.3.3 Other service times

In principle, this approach could be used to develop deterministic di�erential equa-

tions that approximate the behavior of any service time distribution. This follows from the

fact that the distribution function of any positive random variable can be approximated

arbitrarily closely by a mixture of countably many gamma distributions [45, Lemma 3.9

and Exercise 3.3.3]. (An interesting discussion of this fact is given in [45, Section 3.3],

where Erlang's method is used in a manner similar to that here.) In fact, the service time

for each customer can be taken to be distributed as a gamma distribution described above

with some number of stages r, each with the same mean 1=m, where the value of r varies

89

from customer to customer and is chosen according to some �xed probability distribution.

Using this fact, we brie
y describe a suitable state space for a Markov process that ap-

proximates the underlying non-Markovian process. The state of a queue will correspond

to a triple (i; j; k). The �rst coordinate, i, is the number of customers in the queue. The

second coordinate, j, is the total number of stages to be completed by the customer cur-

rently obtaining service in the queue. The third coordinate, k, is the number of stages the

customer currently obtaining service has completed. The resulting process is Markovian

and one can now write di�erential equations describing the behavior of the system in terms

of the transition rates between states. Various arrival processes can be handled similarly.

In practice, for the solution of this problem to be computable in a reasonable

amount of time, one would need to guarantee that both the number of distributions in

the mixture and the number of stages for each distribution are small in order to keep the

total number of states reasonably small. Thus the quality of the approximation will depend

on how well the service distribution can be approximated by a mixture satisfying these

conditions. Although these limitations appear severe, many service distributions can still

be handled easily. For example, as we have seen, in the case of constant service times one

only needs to use a single gamma distribution with a reasonable number of stages to get

a very good approximation. Distributions where the service time takes on one of a small

�nite number of values can be handled similarly.

4.4 Other dynamic models

In this section, we shall develop in�nite systems for a variety of other load balancing

models. We shall begin with variations on the supermarket model, and then examine other

load balancing strategies. This section is devoted to the development of the in�nite systems;

questions of convergence and comparisons with simulations will be handled in subsequent

sections.

Unless otherwise noted, the system state is represented by a vector (s0; s1; : : :),

where si is the fraction of queues with at least i customers, as in the supermarket model.

Similarly, (�0; �1; : : :) will refer to the �xed point. We will not explicitly check that these

systems are stable, in that the expected number of customers per queue is �nite; this is

generally straightforward. Also, technically a system may have many �xed points; however,

the systems we examine generally have a unique �xed point where the average number of

90

customers per queue is �nite, and we shall simply refer to this �xed point as the �xed point.

4.4.1 Customer types

One possible way of extending the supermarket model is to allow di�erent cus-

tomers di�erent numbers of choices. The more choices one gets, the less time one is expected

to wait. For example, suppose there are two types of customers. One type gets to choose

only one queue; each customer is of this type with probability 1 � p. The more privileged

customer gets to choose two queues; each customer is of this type with probability p. The

corresponding in�nite system is governed by the following set of di�erential equations:

dsi
dt

= �p(s2i�1 � s2i) + �(1� p)(si�1 � si)� (si � si+1):

The equilibrium point is given by �0 = �, �i = ��i�1(1�p+p�i�1). Note that this

matches the supermarket model for d = 1 and d = 2 in the cases where p = 0 and p = 1,

respectively. There does not appear to be a convenient closed form for the �xed point for

other values of p.

This model has an interesting alternative interpretation. A customer who only

has one choice is equivalent to a customer who has two choices, but erroneously goes to the

wrong queue half of the time. Hence, the above system is equivalent to a two-choice system

where customers make errors and go to the wrong queue with probability 1�p
2 . A model of

this sort may therefore also be useful in the case where the information available from the

chosen servers is unreliable.

4.4.2 Bounded bu�ers

In practice, we may have a system where the queue size has a maximum limit, say

b. In this case, arriving customers that �nd queues �lled are turned away. That is, for the

supermarket model, if an arriving customer chooses d queues all of which have b customers

already waiting, the customer leaves the system immediately without being served.

The state can be represented by a �nite dimensional vector (s0; s1; : : : ; sb). Be-

sides the expected time in the system, it would be useful to know the probability that a

customer is turned away. The long-term probability that a customer is turned away can be

determined by �nding the �xed point; the probability a customer is turned away is then �db .

Alternatively, if one is interested in the number of lost customers over a certain interval of

91

time from a speci�c starting state, one can add a variable to the state to count the number

of customers turned away over time. The in�nite system is given by the following equations:

dsi
dt

= �(sdi�1 � sdi)� (si � si+1) ; i < b ;

dsb
dt

= �(sdb�1 � sdb)� sb:

Note that at the �xed point for this problem, we do not have �1 = �. The total

arrival rate of customers into the queues at the �xed point is �(1��db), as rejected customers
do not enter the system. Since at the �xed point the total rate at which customers arrive

must equal the rate at which they leave, we have �1 = �(1 � �db). Using the di�erential

equations, we can develop a recurrence for the values of the �xed point �i. This recurrence

yields a polynomial equation for �b, which can be shown to have a unique root between 0

and 1. Solving for �b then allows us to compute the �xed point numerically. (These steps

are shown in more detail in the explanation of the weak threshold model in Section 4.4.4.)

4.4.3 Closed models

In the closed model, at each time step exactly one non-empty queue, chosen uni-

formly at random, completes service, and the customer is immediately recycled back into

the system by again choosing the shortest of d random queues. Let the number of customers

that cycle through the system be �n. Note that the average number of customers per queue

is �; this corresponds to the invariant
P1

i=1 si = �.

The in�nite system is again very similar to that of the supermarket model. An

important di�erence is that at each step, the probability that a customer leaves a server with

i customers is si�si+1

s1
, since a random queue with at least one customer loses a customer.

The corresponding di�erential equations are thus

dsi
dt

= sdi�1 � sdi �
si � si+1

s1
: (4.7)

To �nd the �xed point, assume �1 = �. Then inductively, we can solve to �nd �i =

�
di�1
d�1 ; the correct value of � can be found by using the constraint

P1
i=1 �i =

P1
i=1 �

di�1
d�1 = �.

It is not surprising that the �xed point for the closed model looks similar to the �xed point

for the supermarket model, as the closed model is exactly like the supermarket model,

except that its state space is truncated to states where there are �n customers. (For

further reference, see the State Truncation Property described in [62].)

92

A slightly di�erent closed model was successfully analyzed (in a completely di�er-

ent manner) by Azar et al. in [11]. Their model describes the following scenario: suppose

that each server represents a hash bucket, rather than a queue of customers, and at each

step a random item is deleted from the hash table and a new item is inserted. We call this

the hashing closed model. The corresponding in�nite system is remarkably similar to the

previous example (4.7):

dsi
dt

= sdi�1 � sdi � i
si � si+1

�
:

The �xed point for this system, however, does not appear to have a convenient closed form.

4.4.4 The threshold model

In some systems, limiting the amount of communication may be an important

consideration. A threshold system reduces the necessary communication by only allowing a

customer a second random choice if its �rst choice exceeds a �xed threshold. The customer

begins by choosing a single queue uniformly at random: if the queue length at this �rst

choice (excluding the incoming customer) is at most T , the customer lines up at that queue;

otherwise, the customer chooses a second queue uniformly at random (with replacement).

Two variations are now possible. In the weak threshold model, the customer waits at the

second queue, regardless of whether it is longer or shorter than the �rst. In the strong

threshold model, if both choices are over the threshold, the customer queues at the shorter

of its two choices. (See Figure 4.2.) One could also expand both models so that a customer

could possibly have several successive choices, with a di�erent threshold set for each choice,

up to any �xed number of choices; here we model only the case where a customer has at

most two choices. Threshold systems have been shown to perform well both in theoretical

models and in practice [29, 48, 77], although our results (such as the connection to density

dependent Markov chains) appear to be new.

We �rst consider the weak threshold model. The rate at which a queue changes

size is clearly dependent on whether a queue has more or less than T customers. We �rst

calculate dsi
dt in the case i � T +1. Let pi = si� si+1 be the fraction of queues with exactly

i customers. An arriving customer becomes the ith customer in a queue if one of two events

happen: either its �rst choice has i � 1 customers, or its �rst choice has T + 1 or more

customers and its second choice has i � 1 customers. Hence over a time interval dt the

93

2

1

2

Weak Threshold Strong Threshold

1

Figure 4.2: Weak and strong threshold models. A customer rechooses if and only if they
would start behind the dashed line. In the weak model, the customer jumps to a second
server, and may end up at one with a longer line (2). In the strong model, the customer
goes to the shorter of the two lines (1).

expected number of jumps from queues of size i� 1 to i is �n(pi�1 + sT+1pi�1). Similarly,

the expected number of jumps from queues of size i to i� 1 is npidt. Hence we �nd

dsi
dt

= �(pi�1 + sT+1pi�1)� pi ; i � T + 1; or

dsi
dt

= �(si�1 � si)(1 + sT+1)� (si � si+1) ; i � T + 1: (4.8)

The case where i � T + 1 can be calculated similarly, yielding

dsi
dt

= �(si�1 � si)sT+1 � (si � si+1) ; i > T + 1: (4.9)

We now seek to determine the �xed point. As usual, �0 = 1 and, because at the

�xed point the rate at which customers arrive must equal the rate at which they leave,

�1 = �. In this case we also need to �nd the value of �T+1 to be able to calculate further

values of �i. Using the fact that dsi
dt = 0 at the �xed point yields that for 2 � i � T + 1,

�i = �i�1 � �(�i�2 � �i�1)(1 + �T+1): (4.10)

Recursively plugging in, we �nd

�T+1 = 1� (1� �)[((1+ �T+1)�)
T+1 � 1]

(1 + �T+1)�� 1
:

94

Given the threshold T , �T+1 can be computed e�ectively by �nding the unique root between

0 and 1 of the above equation. (The root is unique as the left hand side is increasing in

�T+1, while the right hand side is decreasing in �T+1.) Note that in this system the �i

do not decrease doubly exponentially, although they can decrease very quickly if �T+1 is

su�ciently small.

The strong threshold model is given by the following di�erential equations:

dsi
dt

= �(si�1 � si)(1 + sT+1)� (si � si+1) ; i � T + 1 ; (4.11)

dsi
dt

= �(s2i�1 � s2i)� (si � si+1) ; i > T + 1: (4.12)

For small thresholds, the behavior of this system is very similar to that of the supermarket

system, as has been noted empirically previously in [29] and [77]. In fact, we next show

that the strong threshold model is double exponentially decreasing, as one would expect

from the di�erential equations (4.12).

Lemma 4.8 The �xed point for the strong threshold model decreases doubly exponentially.

Proof: To show that the �xed point decreases doubly exponentially, we note that it is

su�cient to show that �T+j+1 = ��2
T+j for all j � 1, from which the lemma follows by a

simple induction. Moreover, to prove that �T+j+1 = ��2
T+j for all j � 1, it is su�cient to

show that �T+2 = ��2
T+1. That this is su�cient follows from equation (4.12) and the fact

that dsi
dt = 0 at the �xed point, from which we obtain

��2
i�1 � �i = ��2

i � �i+1

for i � T + 2.

Hence, to prove the lemma, we now need only show that �T+2 = ��2
T+1. From

equation (4.11) we have

�T+2 = �T+1 � �(�T � �T+1)(1 + �T+1);

which can be written in the form

�T+2 � ��2
T+1 = (1 + �)�T+1 � �(1 + �T+1)�T : (4.13)

We show that the right hand side of equation (4.13) is 0.

95

The recurrence (4.10), which also describes the �xed point for the strong threshold

model for 2 � i � T + 1, yields that

�(�i�2 � �i�1)(1 + �T+1) = �i�1 � �i:

Summing the left and right hand sides of the above equation for all values of i in the range

2 � i � T + 1 yields

�(1� �T)(1 + �T+1) = �� �T+1;

or more conveniently,

�(1 + �T+1)�T = (1 + �)�T+1:

Hence the right hand side of equation (4.13) is 0 and the lemma is proved.

4.4.5 Load stealing models

Another paradigm for load distribution in a multiprocessor network is load stealing.

In this discipline, jobs are allocated randomly to a group of processors, and underutilized

processors seek out work from processors with higher utilization. Often this approach is

more communication-e�cient than standard load balancing strategies, since if all processors

are busy, they do not need to communicate with each other in an attempt to distribute the

load.

A basic load stealing scheme, which has been shown to perform well in static

problems [20], is to have a processor that has completed all its tasks choose another processor

at random and steal a job from that processor if possible. If no job is found, the processor

attempts to steal again from another random processor, and so on until a job is found. We

call the processor attempting to steal a thief, and say that it is looking for a victim.

Our framework allows us to consider dynamic variants of this problem. We begin

with a simple model: tasks are generated at each processor as a Poisson process of rate � < 1.

Tasks require an exponentially distributed amount of service time before completing, with

a mean of 1. The task times are not known to the processors. Tasks are served by a First

In First Out (FIFO) policy. We shall assume that stealing can be done instantaneously, so

that the stolen task joins the queue of the thief immediately. Tasks will be stolen from the

end of the victim's queue; the victim must have at least two jobs for a job to be stolen. We

96

also simplify the system by allowing a processor to make only one steal attempt when it

empties; after that it waits for a new arrival (although the model is easily extended).

When a processor that completes its �nal job attempts to �nd a victim, the prob-

ability of success is just s2, the probability of choosing a victim processor whose queue has

at least two jobs. Hence we must reduce the departure rate by a factor of 1� s2, yielding

ds1
dt

= �(s0 � s1)� (s1 � s2)(1� s2): (4.14)

For i > 1, si decreases whenever a processor with load i completes a job, or when a job is

stolen. The rate at which thieves attempt to steal jobs is just (s1 � s2), the rate at which

processors complete their �nal job, and hence we �nd

dsi
dt

= �(si�1 � si)� (si � si+1)� (si � si+1)(s1 � s2) ; i � 2: (4.15)

The �xed point is easily found, since �0 = 1 and �1 = �. Using equation (4.14) to

solve for �2 yields

�2 =
1+ ��p1 + 2�� 3�2

2
;

and from equation (4.15) we have by induction that, for i � 2,

�i = �2

�
�

1 + �� �2

�i�2

:

Hence, for i � 2, we have that �i decreases geometrically, albeit at a faster rate

than if there were no stealing, in which case the �xed point is �i = �i. An interpretation of

this phenomenon is that, once a queue hits a certain load, it is as though the service rate

has increased due to the stealing. Alternatively, if we think of the service rate as always

being scaled to unity, then it is as though the arrival rate falls from � to �
1+���2 when we

introduce stealing.

This approach can be generalized in several directions, including varying the time

to transfer a task and the load at which processors seek to steal tasks; the work of Eager

et al. examines some of these possibilities [30]. It may also be used to model other work

stealing strategies, such as that proposed by Rudolph, Slivkin-Allalouf, and Upfal in [68].

4.4.6 The edge orientation problem

We now examine a rather di�erent type of load balancing problem. Consider

the complete graph on n vertices. At each time step an edge, chosen independently from

97

past choices and uniformly at random, arrives and must be oriented toward one of its

adjacent vertices. The weight of a vertex w(v) is the di�erence between its indegree and the

outdegree. The goal is to minimize the weight discrepancy, that is, to minimize the function

maxv jw(v)j. The algorithm we consider orients each arriving edge towards the vertex of

smaller weight (with ties broken arbitrarily). This model is called the edge orientation

problem in [8], where it was shown that the maximum weight discrepancy is O(log logn)

in equilibrium with high probability. This problem arises in the analysis of the carpool

problem, in which people attempt to determine a fair protocol for dividing the task of

driving over several days. The edge orientation problem corresponds to a carpool problem

where every day two random people must choose a driver between them, and they make

their choice based on the di�erence between the number of times each has driven and been

driven.

The process can be described as a Markov chain. Following our previous examples,

here we embed the chain in an in�nite dimensional space where si is the fraction of vertices

of weight at least i. In this case we do not have s0 = 1, and i can be negative. Also, we

will let pi be the fraction of vertices with weight exactly i.

To write the di�erential equation describing this process, consider �rst the prob-

ability that an incoming edge increases the number of vertices of weight at least i. This

can happen in one of two ways: �rst, both endpoints of the edge could have weight i� 1,

in which case the new edge will leave one with weight i. The probability of this event is

p2i�1 �O(1n). In the limiting case the O(1n) term goes to 0 and so we shall drop it3; a more

formal justi�cation can be found in [32] or [53]. Alternatively, one of the endpoints could

have weight i � 1 and the other could have weight at least i + 1. (If the endpoints have

weight i� 1 and i, then there is no overall change in the system!) The probability that this

event happens is 2si+1pi�1. Similarly, one can determine the probability that an arrival

causes a vertex to drop from weight i to weight i� 1; the resulting di�erential equation is

dsi
dt

= p2i�1 + 2si+1pi�1 � (p2i + 2pi(1� si�1)):

Using the fact that pi = si � si+1 we can simplify to:

dsi
dt

= s2i�1 � s2i+1 � 2(si � si+1):

3We have avoided this problem in other models by having customers choose servers with replacement.
If customers choose without replacement, we again have this problem; however, it should be clear that this
will not change the �xed point for the corresponding in�nite systems.

98

We determine the �xed point under the assumption that we begin with an empty

system; that is, one with no edges initially. In this case, from the underlying symmetry, we

must have pi = p�i for all time in the in�nite system. Hence, for all time,

s0 + s1 =
1X
i=0

pi +
1X
i=1

pi =
1X
i=0

pi +
�1X

i=�1
pi =

1X
i=�1

p1 = 1:

Also, since at the �xed point dsi
dt = 0, we have

1X
i=1

dsi
dt

=
1X
i=1

h
s2i�1 � s2i+1 � 2(si � si+1)

i
= s20 + s21 � 2s1 = 0

at the �xed point. Solving the system of two equations and two unknowns yields

�0 =
1p
2
; �1 = 1� 1p

2
;

and all other values of �i can be derived from these initial two using the fact that dsi
dt = 0

at the �xed point. Moreover, by examining the summation
P1

i=k+1
dsi
dt , we can derive that

�2
k+�2

k+1� 2�k+1 = 0, from which it is easy to derive that the �xed point decreases doubly

exponentially.

4.5 Simulations

In this section, we illustrate the e�ectiveness of the in�nite system approach by

examining a few of the models in more detail. We compare the predictions obtained from

the in�nite system model with simulations for the weak threshold model of Section 4.4.4 and

the customer type model of Section 4.4.1. As an interesting byproduct of these comparisons,

we demonstrate that these schemes, which use even less coordination than the supermarket

model, distribute the load remarkably well. For both models, results are based on the

average of ten simulations of 100,000 time steps; since the simulations started with no

customers in the system, the �rst 10,000 time steps were ignored.

4.5.1 The weak threshold model

We consider the weak threshold scheme of Section 4.4.4 (where customers who

make a second choice always queue at their second choice) with 100 queues at various

arrival rates in Table 4.3. For arrival rates up to 95% of the service rate, the predictions are

99

within approximately 2% of the simulation results; with smaller arrival rates, the prediction

is even more accurate.

The approximation breaks down as the arrival rate nears the service rate. At

99% of the service rate, deviations of around 10% are noted with 100 queues; however, for

systems with 500 queues the predictions are within 2% even at this arrival rate, as shown

in Table 4.4. This is similar to the behavior of the supermarket model, as shown previously

in Table 3.1 and Table 3.2.

As one might expect, threshold schemes do not perform as well as the supermarket

model (Tables 3.1 and 3.2). It is worth noting, however, that the weak threshold scheme

performs almost as well, which is somewhat surprising in light of the di�erence in the

behavior of the tails (exponential versus doubly exponential dropo�). In many applications

threshold schemes may be suitable, or even preferable, because in most instances only a

single message and response are necessary. In the strong threshold model, performance

is even better, and the di�erence between the threshold strategy and always choosing the

shorter of two queues can be quite small.

4.5.2 Customer types

Recall that in the customer type model of Section 4.4.1, the parameter p measures

the proportion of customers that choose from two queues instead of just one. We �rst

examine the expected time in the in�nite system model as p varies. For small �xed �, one

�nds that as p increases the expected time falls almost linearly. At higher arrival rates, the

drop becomes highly non-linear, with a sharp fall for small p and a more gradual drop as p

approaches 1 (see Figure 4.3).

There is a good informal intuition for why this is the case. Consider the case when

p is close to zero. If we temporarily ignore the customers that choose two queues, we have a

system of independent queues each with arrival rate �(1� p). When � is close to one, even

a small value of p can make a substantial di�erence to the expected delay in this system.

Adding back in the customers that choose two queues then has a comparatively small e�ect.

Similarly, when p is close to one, then suppose we temporarily ignore the customers that

only choose one queue. This system is not too di�erent from a system where all customers

choose two queues; adding back in the other customers only has a small e�ect. Even a

small advantage in choosing a shorter queue can therefore lead to dramatic improvements,

100

� Threshold Simulation Prediction Relative Error (%)

0.50 0 1.3360 1.3333 0.2025

1 1.4457 1.4444 0.0900

2 1.6323 1.6313 0.0613

3 1.7695 1.7694 0.0057

0.70 0 1.9635 1.9608 0.1377

1 1.8144 1.8074 0.3873

2 2.0150 2.0109 0.2039

3 2.2601 2.2570 0.1374

0.80 0 2.7868 2.7778 0.3240

1 2.2493 2.2346 0.6578

2 2.3518 2.3387 0.5601

3 2.6192 2.6122 0.2680

0.90 0 5.2943 5.2535 0.7766

1 3.5322 3.4931 1.1194

2 3.1497 3.1067 1.3841

3 3.2903 3.2580 0.9914

4 3.6098 3.5839 0.7227

0.95 1 6.1120 5.9804 2.2005

2 4.5767 4.4464 2.9305

3 4.2434 4.1274 2.8105

4 4.3929 4.3061 2.0158

5 4.7426 4.6722 1.5068

6 5.1640 5.1065 1.1260

0.99 4 8.1969 7.4323 10.2875

5 7.5253 6.8674 9.5800

6 7.6375 6.9369 10.0996

7 7.8636 7.2925 7.8313

8 8.3157 7.7823 6.8540

9 8.8190 8.3385 5.7624

Table 4.3: Simulations versus estimates for the weak threshold model: 100 queues.

� Threshold Simulation Prediction Relative Error (%)

0.99 4 7.6561 7.4323 3.0112

5 7.0286 6.8674 2.3473

6 7.0623 6.9369 1.8077

7 7.3896 7.2925 1.3315

8 7.8685 7.7823 1.1076

9 8.4153 8.3385 0.9210

Table 4.4: Simulations versus estimates for the weak threshold model: 500 queues.

101

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

E
xp

ec
te

d
T

im
e

Probability of Choosing 2

Figure 4.3: Expected time versus probability (p) of choosing two locations (� = 0:99).

while a small probability of error for a customer does not drastically hurt performance, so

the strategy is robust under errors. Our experience with the in�nite system is borne out by

simulations, as shown in Table 4.5.

4.6 Convergence and stability of in�nite systems

In Chapter 3, we demonstrated that trajectories in the supermarket model con-

verge to the �xed point exponentially making use of a somewhat complex potential function.

We would like to prove similar results for the various dynamic systems we have described

in this chapter.4 For several of these systems, the proof of Theorem 3.6 can be modi�ed in

a straightforward fashion.

In some cases, however, proving convergence is di�cult. For several systems,

instead of proving convergence, it is much easier to prove the weaker property of stability

of the �xed point. For our purposes, we may adopt the following de�nition of stability:

4It is worth recalling that for static systems, convergence to a �xed point is not an issue. For example,
in Section 4.2, where we studied the static system of Azar et al., we considered the system over a �xed time
interval, and hence the question of convergence to the �xed point did not apply.

102

� p Simulation Prediction Relative Error (%)

0.5 0.1 1.8765 1.8767 0.0107

0.5 1.5266 1.5257 0.0590

0.9 1.3094 1.3076 0.1377

0.7 0.1 2.9407 2.9425 0.0612

0.5 2.0914 2.0884 0.1437

0.9 1.6898 1.6843 0.3265

0.8 0.1 4.1315 4.1307 0.0194

0.5 2.6351 2.6283 0.2587

0.9 2.0526 2.0426 0.4896

0.9 0.1 7.0212 7.0208 0.0057

0.5 3.7490 3.7247 0.6524

0.9 2.7899 2.7601 1.0797

0.95 0.1 11.1007 11.0823 0.1660

0.5 5.0845 5.0075 1.5377

0.9 3.6698 3.5662 2.9050

0.99 0.1 24.5333 24.1874 1.4301

0.5 8.9365 8.4716 5.4878

0.9 6.2677 5.7582 8.8483

Table 4.5: Simulations versus estimates for two customer types: 100 queues.

De�nition 4.9 A �xed point ~� for a system d~s=dt = f(~s) is stable5 if, for any � > 0, there

exists a � = �(�) such that j~s(t)� ~�j < � for all t � 0 whenever j~s(0)� ~�j < �.

A �xed point is hence stable if, once the trajectory is within � of the �xed point, it will never

again go beyond �(�) of it; that is, once it becomes close to the �xed point, it stays close.

To prove stability, we will actually show a stronger property for several systems; namely,

that the L1-distance to the �xed point is non-increasing everywhere. Then the �xed point

is clearly stable from De�nition 4.9, with �(�) = �.

We note here that there are other notions of convergence besides exponential con-

vergence (De�nition 3.5) and stability, but we will not require them here. A good intro-

duction to dynamical systems in this context is the book by Miller and Michel [58]. We

also suggest other works by these authors [56, 57], which provide a deeper treatment of the

subject.

Rather than prove results for every speci�c model, we �rst prove some general

theorems on stability and exponential convergence that apply to several of the models we

5We emphasize that stability of the �xed point is a di�erent notion from the stability of the system, as
described in Lemma 3.1.

103

have suggested. We believe these results are interesting in their own right and will be useful

in the future for studying other systems. We then explain how the results apply to the

systems we have studied.

4.6.1 General stability and convergence results

In this section, we consider general systems governed by the equations dsi
dt = fi(~s)

for i � 1, with �xed point ~� = (�i). Let �i(t) = si(t) � �i, with the understanding that

for i < 1 or i larger than the dimension of the state space we �x �i = 0. We shall drop

the explicit dependence on t when the meaning is clear. For convenience, we shall consider

only systems where si(t) 2 [0; 1] for all t, and hence �i(t) 2 [��i; 1 � �i] for all t. This

restriction simpli�es the statements of our theorems and can easily be removed; however,

all the systems described in this chapter meet this condition.

We examine the L1-distance D(t) =
P

i�1 j�i(t)j. In the case where our state space
is countably in�nite dimensional, the upper limit of the summation is in�nity, and otherwise

it is the dimension of the state space. As in Theorem 3.6, dD
dt will denote the right-hand

derivative. We shall prove that dD
dt � 0 everywhere; this implies that D(t) is non-increasing

over time, and hence the �xed point is stable.

For many of the systems we have examined, the functions fi have a convenient

form: they can be written as polynomial functions of the sj with no product terms sjsk for

j 6= k. This allows us to group together terms in dD=dt containing only �i, and consider

them separately. By telescoping the terms of the derivative appropriately, we can show the

system is stable by showing that the sum of the terms containing �i are at most 0.

Theorem 4.10 Suppose we are given a system d�i=dt =
P

j gi;j(�j), where the gi;j satisfy

the following conditions:

1. gi;i(x) = �Pj 6=i gj;i(x) for x 2 [��i; 1� �i];

2. for all i 6= j, sgn(gj;i(x)) = sgn(x) for x 2 [��i; 1� �i].

Then for D(t) =
P1

i=1 j�i(t)j we have dD=dt � 0, and hence the �xed point is stable.

As a sample application of the above theorem, recall from Theorem 3.6 that for the super-

market model d�i=dt = �[�(2�i�i+�2i)+�i]+�(2�i�i�1+�2i�1)+�i+1. Hence, in the notation

of Theorem 4.10, for the supermarket system gi;i(x) = �[�(2�ix + x2) + x], gi;i+1(x) = x,

104

gi;i�1(x) = �(2�ix+ x2), and all other gi;j are 0. It is simple to check that these gi;j satisfy

the conditions of the theorem, and therefore the supermarket system is stable (as we already

knew).

Proof: We group the �i terms in dD=dt, and show that the sum of all terms involving �i

is at most 0. We examine the case where �i > 0; the case where �i < 0 is similar, and the

case where �i = 0 is trivial.

The terms in �i sum to h(�i) = gi;i(�i) sgn
�(�i) +

P
j 6=i gj;i(�i) sgn�(�j), where

sgn�(�j) is 1 if �j > 0 or �j = 0 and is nondecreasing, and sgn�(�j) is �1 if �j < 0 or �j = 0

and is decreasing. Note that, from the conditions of the theorem, gi;i(�i) sgn�(�i) � 0, as

gi;i(�i) � 0 when �i > 0 and gi;i(�i) � 0 when �i < 0. Since gi;i(x) = �Pj 6=i gj;i(x), we may

conclude that regardless of the values of sgn�(�j), the value of h(�i) is at most 0. Hence

dD=dt � 0, and this su�ces to show that the �xed point is stable.

A simple generalization of Theorem 4.10 allows us to prove convergence, using a

weighted form of the potential function as in Theorem 3.6.

Theorem 4.11 Suppose we are given a system d�i=dt =
P
gi;j(�j), and suppose also that

there exists an increasing sequence of real numbers wi (with w0 = 0) and a positive constant

� such that the wi and gi;j satisfy the following conditions:

1.
P

j wjgj;i(x) � ��wijxj for x 2 [��i; 1� �i];

2. for all i 6= j, sgn(gj;i(x)) = sgn(x) for x 2 [��i; 1� �i].

Then for �(t) =
P1

i=1 wij�i(t)j, we have that d�=dt � ���, and hence from any initial point

where
P

i wij�ij <1 the process converges exponentially to the �xed point in L1-distance.

Proof: We group the �i terms in d�=dt as in Theorem 4.10 to show that the sum of all

terms involving �i is at most ��wij�ij. We may conclude that d�=dt � ��� and hence �(t)

converges exponentially to 0. Also, note that we may assume without loss of generality

that w1 = 1, since we may scale the wi. Hence we may take �(t) to be larger than the

L1-distance to the �xed point D(t), and thus the process converges exponentially to the

�xed point in L1-distance.

105

Proving convergence thus reduces to showing that a suitable sequence of weights

wi satisfying Condition 1 of Theorem 4.11 exist, which, as in the case of the supermarket

model, is quite often straightforward.

Theorems 4.10 and 4.11 apply directly to several of the models we have mentioned.

The following corollary is almost immediate:

Corollary 4.12 The in�nite systems for the following models have stable �xed points:

gamma distributed service times with aware customers (Section 4.3), customer types (Sec-

tion 4.4.1), bounded bu�ers (Section 4.4.2), and closed hashing (Section 4.4.3).

It is only slightly more di�cult to show that these models converge exponentially to their

�xed points; we omit the straightforward proofs.

Corollary 4.13 The in�nite systems for the following models converge exponentially to

their corresponding �xed points: gamma distributed service times with aware customers,

customer types, bounded bu�ers, and closed hashing.

For the other systems we have studied, Theorems 4.10 and 4.11 do not immediately

apply. Even in cases where the function d�i=dt may not have the exact form required for

Theorems 4.10 or 4.11, however, the technique of examining the terms in each �i separately

still often proves e�ective. For example, the same technique allows one to prove that the

�xed point for the closed model given by the equations (4.7) in Section 4.4.3 is stable. Also,

it can be used to show that the �xed point for the edge orientation problem in Section 4.4.6

is stable, and that further the in�nite system for this problem converges exponentially to

the �xed point under the assumption that the system begins empty.

Showing stability or convergence for the remaining systems (gamma distributed

service times with unaware customers, the threshold models, and the load stealing model)

proves much more di�cult. We examine some of these di�culties in the next section, where

we will focus on the threshold models. We believe, however, that these problems and most

other simple systems may be solvable using a variant of these techniques.

4.6.2 The threshold model: stability and convergence

To demonstrate how we can use the idea of Theorem 4.10 even if the derivatives

are not of the exact form in the statement of the theorem, we �rst show that the weak

106

threshold model is stable. It is convenient to write the derivatives d�i=dt obtained from

equations (4.8) and (4.9) in the following form:

d�i
dt

= �(�i�1 � �i)(1 + �T+1)� (�i � �i+1) + ��T+1(si�1 � si) ; i � T + 1 ; (4.16)

d�i
dt

= �(�i�1 � �i)�T+1 � (�i � �i+1) + ��T+1(si�1 � si) ; i > T + 1: (4.17)

Notice that we have made all the terms appear linear in �i by leaving terms of the form

��T+1(si�1 � si) unexpanded.

Theorem 4.14 The �xed point of the weak threshold model is stable.

Proof: We examine the potential function given by the L1-distance D(t) =
P1

i=1 j�i(t)j,
and show that dD

dt � 0. As in Theorem 4.10 we collect all terms with a factor of �i. For

i 6= T + 1, it is simple to verify that all terms are linear in �i, and that the coe�cient of

sum of all such terms is at most 0. For example, for i < T +1, the sum of the terms in �i is

(��(1 + �T+1)� 1)�i sgn
�(�i) + �(1 + �T+1)�i sgn

�(�i+1) + �i sgn
�(�i�1);

which is at most 0. The case i > T + 1 is similarly straightforward.

The only di�culty arises in the �T+1 term. Note the di�erent form of the �rst

expression on the right hand side of (4.16) and (4.17) : one has a factor of �T+1, and one

has a factor of 1+�T+1. Hence, in gathering the terms in �T+1, we have the following sum:

(��(1 + �T+1)� 1)�T+1 sgn
�(�T+1) + ��T+1�T+1 sgn

�(�T+2)

+�T+1 sgn
�(�T) + �T+1

1X
j=1

�(sj�1 � sj) sgn
�(�j):

Let us suppose that �T , �T+1, and �T+2 are all strictly positive; all other cases are

similar. Then the above summation reduces to

���T+1 + �T+1

1X
j=1

�(sj�1 � sj) sgn
�(�j):

The largest value the second expression can take is when sgn�(�j) = 1 for all j, in which case

it is ��T+1. Hence, regardless of the signs of the remaining �i, we �nd that the coe�cient

of the sum of the terms in �T+1 is also at most 0.

107

A similar proof shows that the load stealing system given by equations (4.14) and

(4.15) is stable.

We now explain why our approach to show exponential convergence seems to fail for

the weak threshold model. To prove exponential convergence, we would seek an increasing

set of weights wi for the potential function �(t) =
P1

i=1 wij�i(t)j so that d�=dt � ���. The
problem, as one might expect, comes from the terms in �T+1. Suppose that �i > 0 for all i,

and collect all terms in �T+1. The discrepancy in telescoping the derivatives
d�T+1

dt and d�T+2

dt

yields an additional term ��wT+1�T+1. If the wi sequence is increasing, this term does not

seem to balance with the sum of the rightmost terms in equations (4.16) and (4.17), which

sum to �T+1
P

i �wi(si�1�si). This is in contrast to Theorem 4.14, where in the case where

all wi are 1, the term ���T+1 matches the summation �T+1
P

i �(si�1� si), so that we may

conclude that the terms in �T+1 sum to at most 0.

It is perhaps not surprising that this problem arises. If all coordinates si besides

sT+1 had reached �i, the system would not smoothly continue toward its �xed point: d�i
dt

would be non-zero for every i. Apparently the system's strong dependence on sT+1 makes

it more challenging to prove exponential convergence. For the strong threshold model,

however, these problems do not arise, as the value of sT+1 does not directly a�ect all

other coordinates. Hence, we can show that the strong threshold model does converge

exponentially.

As in Theorem 4.14, it will help us to rewrite the derivatives d�i
dt for the in�nite

system of the strong threshold model obtained from the equations (4.11) and (4.12) in the

following form:

d�i
dt

= �(�i�1 � �i)(1 + �T+1)� (�i � �i+1) + ��T+1(si�1 � si) ; i � T + 1 ; (4.18)

d�i
dt

= �(�2i�1 + 2�i�1�i�1 � �2i � 2�i�i)� (�i � �i+1) ; i > T + 1: (4.19)

Theorem 4.15 The strong threshold model converges exponentially to its �xed point.

Proof: We shall �nd an increasing sequence wi and � > 0 such that for �(t) =
P

iwij�i(t)j,
we have d�=dt = ���. As in Theorem 3.6 and Theorem 4.11, the proof will depend on

�nding a sequence wi such that the terms of d�=dt in �i sum to at most ��wij�ij. In fact,

any sequence satisfying

wi+1 � wi +
wi(1� �)� wi�1

�(1 + �T+1)
; i < T + 1 (4.20)

108

wi+1 � wi +
wi(1� �)� wi�1

�(1 + 2�i)
; i � T + 1 (4.21)

will su�ce, and it is easy to verify that such sequences exist, as in Theorem 3.6. That this

condition su�ces can be easily checked in the same manner as Theorem 3.6 for all �i except

�T+1. The di�culty lies in the extraneous ��T+1(si�1 � si) terms in equation (4.18).

To conclude the theorem, we bound the sum of the terms in �T+1. We consider

here only the case where all �i are positive; other cases are similar. The sum of all the terms

in �T+1 is

(��(1 + �T+1)� 1)wT+1�T+1 sgn
�(�T+1) + �(2�T+1 + �T+1)wT+2�T+1 sgn

�(�T+2) +

wT �T+1 sgn
�(�T) + �T+1

T+1X
j=1

wj�(sj�1 � sj) sgn
�(�j):

If all �i are positive this reduces to

(��(1+�T+1)�1)wT+1�T+1+�(2�T+1+�T+1)wT+2�T+1+wT �T+1+�T+1

T+1X
j=1

wj�(sj�1�sj):

As the wi are increasing, the term �T+1
PT+1

j=1 wj�(sj�1 � sj) can be bounded above by

�T+1

T+1X
j=1

wT+1�(sj�1 � sj) = �T+1wT+1�(1� �T+1 � �T+1):

Hence the sum of the terms in �T+1 is bounded above by

(��(2�T+1 + �T+1)� 1)wT+1�T+1 + �(2�T+1+ �T+1)wT+2�T+1 + wT �T+1;

and it is easily checked that equation (4.21) is su�cient to guarantee that this sum is at

most ��wT+1�T+1.

In contrast with the weak threshold model, in the strong threshold model the e�ect

of sT+1 is only felt in terms si with i � T +1, and this distinction is enough for us to prove

exponential convergence.

4.7 Open problems and future work

In the past two chapters, we have explored how to analyze dynamic load balancing

models using the in�nite system approach. The primary remaining open question for the

109

models we have studied is to prove exponential convergence for the weak threshold system

and the other systems for which we have only been able to prove stability. Also, a comparison

argument relating exponential service times and constant service times for the supermarket

model would be interesting, as suggested in Section 4.2.

Another very interesting question, which seems to require di�erent techniques,

is to consider how the network topology a�ects these simple randomized load balancing

schemes. For example, in the supermarket model, we might think of the servers as being

arranged in a ring. An incoming customer will choose from two (or more) servers, but these

choices must be adjacent in the ring. Simulations suggest that having two choices in this

model also provides dramatic improvements over having just a single choice, but we do not

yet have a suitable approach for analyzing this problem.

We believe that the in�nite system approach may have application in other do-

mains as well. For example, we are currently working with the Priority Encoding Trans-

mission group at the International Computer Science Institute to see if the in�nite system

approach can be useful in the design of simple erasure codes. The idea of using in�nite

systems has also been applied to recent work in genetic algorithms, such as the work on

quadratic dynamical systems by Rabani, Rabinovich, and Sinclair [63]. We hope that the

work of this thesis will encourage this type of analysis in other areas.

We also believe that it is important to apply the ideas in this thesis, especially the

idea of the power of two choices, to actual systems. Already some practitioners have noted

the relevance of our ideas to their work. Bestavros suggests that the paradigm of the power

of two choices holds for his \load pro�ling" algorithms for distributed real-time systems [18];

Dahlin notes the relationship between our results and his studies for load balancing in caches

in networks of workstations [25]. Distributed systems, especially networks of workstations,

appear to be growing larger and more common [17], suggesting that the applicability of the

simple randomized load balancing schemes we have studied will grow in the future. We hope

that, by providing a strong theoretical basis for the power of two choices, we can increase

the impact of this idea on the development of real systems.

110

Bibliography

[1] R. Abraham, J. Marsden, and T. Raitu. Manifolds, Tensor Analysis, and Applications.

Addison-Wesley, 1983.

[2] I. J. B. F. Adan. A compensation approach for queueing problems. CWI (Centrum

voor Wiskunde en Informatica), 1994.

[3] I. J. B. F. Adan, G. van Houtum, and J. van der Wal. Upper and lower bounds for the

waiting time in the symmetric shortest queue system. Annals of Operations Research,

48:197{217, 1994.

[4] I. J. B. F. Adan, J. Wessels, and W. H. M. Zijm. Analysis of the symmetric shortest

queue problem. Stochastic Models, 6:691{713, 1990.

[5] I. J. B. F. Adan, J. Wessels, and W. H. M. Zijm. Analysis of the asymmetric shortest

queue problem. Queueing Systems, 8:1{58, 1991.

[6] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel random-

ized load balancing. In Proceedings of the 27th ACM Symposium on the Theory of

Computing, pages 238{247, 1995.

[7] N. Alon, J. Spencer, and Paul Erd�os. The Probabilistic Method. John Wiley and Sons,

1992.

[8] M. Atjai, J. Aspnes, M. Naor, Y. Rabani, L. Schulman, and O. Waarts. Fairness in

scheduling. In Proceedings of the Sixth Annual ACM/SIAM Symposium on Discrete

Algorithms, pages 477{485, 1995.

[9] Y. Azar, A. Broder, and A. Karlin. Online load balancing. In Proceedings of the 33rd

IEEE Symposium on Foundations of Computer Science, pages 218{225, 1992.

111

[10] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. Journal version,

preprint.

[11] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. In Proceedings of

the 26th ACM Symposium on the Theory of Computing, pages 593{602, 1994.

[12] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. Online load

balancing of temporary tasks. In WADS 1993, Lecture Notes in Computer Science 709,

pages 119{130, 1993.

[13] Y. Azar, J. Naor, and R. Rom. The competitiveness of online assignment. In Pro-

ceedings of the 3rd ACM/SIAM Symposium on Discrete Algorithms, pages 203{210,

1992.

[14] K. Azuma. Weighted sums of certain dependent random variables. Tôhoku Mathemat-

ical Journal, 19:357{367, 1967.

[15] A. D. Barbour. Networks of queues and the method of stages. Advances in Applied

Probability, 8:584{591, 1976.

[16] A. D. Barbour, L. Holst, and S. Janson. Poisson Approximation. Oxford University

Press, 1992.

[17] The Berkeley NOW Project. The Berkeley NOW Project: Project overview. Located

at http://now.cs.berkeley.edu/index.html.

[18] A. Bestavros. Load pro�ling in distributed real-time systems. Preprint.

[19] W. H. Beyer, editor. CRC Handbook of Mathematical Sciences: 6th Edition. CRC

Press, 1987.

[20] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work

stealing. In Proceedings of the 35th Annual IEEE Conference on Foundations of Com-

puter Science, pages 356{368, 1994.

[21] B. Bollob�as. Random Graphs. Academic Press, London, 1985.

[22] A. Broder, A. Frieze, C. Lund, S. Phillips, and N. Reingold. Balanced allocations for

tree-like inputs. Information Processing Letters, 55(6):329{332, 1995.

112

[23] A. Broder, A. Frieze, and E. Upfal. On the satis�ability and maximum satis�ability of

random 3-CNF formulas. In Proceedings of the 4th ACM-SIAM Symposium on Discrete

Algorithms, pages 322{330, 1993.

[24] A. Broder and A. Karlin. Multi-level adaptive hashing. In Proceedings of the 1st

ACM/SIAM Symposium on Discrete Algorithms, 1990.

[25] M. Dahlin. Serverless Network File Systems. PhD thesis, University of California,

Berkeley, 1995.

[26] K. Deimling. Ordinary Di�erential Equations in Banach Spaces. Springer-Verlag, 1977.

Lecture Notes in Mathematics. Vol. 96.

[27] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and

Bartlett Publishers, 1993.

[28] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, e�cient shared memory sim-

ulations. In Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms

and Architectures, pages 110{119, 1993.

[29] D. L. Eager, E. D. Lazokwska, and J. Zahorjan. Adaptive load sharing in homogeneous

distributed systems. IEEE Transactions on Software Engineering, 12:662{675, 1986.

[30] D. L. Eager, E. D. Lazokwska, and J. Zahorjan. A comparison of receiver-initiated

and sender-initiated adaptive load sharing. Performance Evaluation Review, 16:53{68,

March 1986.

[31] D. L. Eager, E. D. Lazokwska, and J. Zahorjan. The limited performance bene�ts of

migrating active processes for load sharing. Performance Evaluation Review, 16:63{72,

May 1988. Special Issue on the 1988 SIGMETRICS Conference.

[32] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence.

John Wiley and Sons, 1986.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, 1979.

113

[34] L. A. Goldberg, Y. Matais, and S. Rao. An optical simulation of shared memory. In

Proceedings of the Sixth Annual ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 257{267, 1994.

[35] G. Gonnet. Expected length of the longest probe sequence in hash code searching.

Journal of the ACM, 28(2):289{304, April 1981.

[36] L. Green. A queueing system with general-use and limited-use servers. Operations

Research, 33:168{182, 1985.

[37] T. Hagerup and C. R�ub. A guided tour of Cherno� bounds. Information Processing

Letters, 33:305{308, February 1990.

[38] B. Hajek. Asymptotic analysis of an assignment problem arising in a distributed com-

munications protocol. In Proceedings of the 27th Conference on Decision and Control,

pages 1455{1459, 1988.

[39] M. Harchol-Balter and D. Wolfe. Bounding delays in packet-routing networks. In Pro-

ceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing,

pages 248{257, 1995.

[40] N. Johnson and S. Kotz. Urn Models and Their Application. John Wiley and Sons,

1977.

[41] A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for occupancy and

the satis�ability threshold conjecture. In Proceedings of the 35th IEEE Symposium on

Foundations of Computer Science, 1994.

[42] R. M. Karp, M. Luby, and F. Meyer auf der Heide. E�cient PRAM simulation on

a distributed memory machine. In Proceedings of the 24th ACM Symposium on the

Theory of Computing, pages 318{326, 1992.

[43] R. M. Karp and M. Sipser. Maximum matchings in sparse random graphs. In Pro-

ceedings of the 22nd IEEE Symposium on Foundations of Computer Science, pages

364{375, 1981.

[44] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line

bipartite matching. In Proceedings of the 27th Conference on Decision and Control,

pages 352{358, 1990.

114

[45] F. P. Kelly. Reversibility and Stochastic Networks. John Wiley and Sons, 1979.

[46] L. Kleinrock. Queueing Systems, Volume I: Theory. John Wiley and Sons, 1976.

[47] V. F. Kolchin, B. A. Sevsat'yanov, and V. P. Chistyakov. Random Allocations. V. H.

Winston & Sons, 1978.

[48] T. Kunz. The in
uence of di�erent workload descriptions on a heuristic load balancing

scheme. IEEE Transactions on Software Engineering, 17:725{730, 1991.

[49] T. G. Kurtz. Solutions of ordinary di�erential equations as limits of pure jump Markov

processes. Journal of Applied Probability, 7:49{58, 1970.

[50] T. G. Kurtz. Limit theorems for sequences of jump Markov processes approximating

ordinary di�erential processes. Journal of Applied Probability, 8:344{356, 1971.

[51] T. G. Kurtz. Strong approximation theorems for density dependent Markov chains.

Stochastic Processes and Applications, 6:223{240, 1978.

[52] T. G. Kurtz. Approximation of Population Processes. CBMS-NSF Regional Conf.

Series in Applied Math. SIAM, 1981.

[53] H. J. Kushner. Approximation and Weak Convergence Methods for Random Processes,

with Applications to Stochastic Systems Theory. MIT Press, 1984.

[54] M. Luby and A. Wigderson. Pairwise independence and derandomization. Technical

Report TR-95-35, International Computer Science Institute, 1995.

[55] P. D.MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution protocols

and associated probabilistic phenomena. Department of Computer Science TR-94-06,

University of Texas at Austin, April 1994. An extended abstract appears in STOC

1994.

[56] A. N. Michel and R. K. Miller. Qualitative Analysis of Large Scale Dynamical Systems.

Academic Press, Inc., 1977.

[57] A. N. Michel and R. K. Miller. Stability theory for countably in�nite systems of

di�erential equations. Tôhoku Mathematical Journal, pages 155{168, 1980.

115

[58] R. K. Miller and A. N. Michel. Ordinary Di�erential Equations. Academic Press, Inc.,

1982.

[59] M. Mitzenmacher. Bounds on the greedy routing algorithm for array networks. In

Proceedings of the Sixth Annual ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 248{259, 1994. To appear in the Journal of Computer Systems and

Science.

[60] M. Mitzenmacher. Constant time per edge is optimal on rooted tree networks. In

Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 162{169, 1996.

[61] M. Mitzenmacher. Density dependent jump Markov processes and applications to load

balancing. In Proceedings of the 37th IEEE Symposium on Foundations of Computer

Science, 1996.

[62] R. D. Nelson. The mathematics of product form queuing networks. ACM Computing

Surveys, 25(3):339{369, September 1992.

[63] Y. Rabani, Y. Rabinovich, and A. Sinclair. A computational view of population genet-

ics. In Proceedings of the 27th ACM Symposium on the Theory of Computing, pages

83{92, 1995.

[64] R. Righter. and J. Shanthikumar. Extremal properties of the FIFO discipline in queue-

ing networks. Journal of Applied Probability, 29:967{978, November 1992.

[65] S. M. Ross. Average delay in queues with non-stationary Poisson arrivals. Journal of

Applied Probability, 15:602{609, 1978.

[66] S. M. Ross. Introduction to Probability Models. Academic Press, Inc., 1989.

[67] S.M. Ross. Stochastic Models. John Wiley and Sons, 1983.

[68] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme for task

allocation in parallel machines. In Proceedings of the Second Annual ACM Symposium

on Parallel Algorithms and Architectures, pages 237{245, 1991.

[69] B. L. Schwartz. Queueing models with lane selection: A new class of problems. Oper-

ations Research, 22:331{339, 1974.

116

[70] A. Shwartz and A. Weiss. Large Deviations for Performance Analysis. Chapman &

Hall, 1995.

[71] G. D. Stamoulis and J. N. Tsitsiklis. The e�ciency of greedy routing in hypercubes

and butter
ies. IEEE Transactions on Communications, 42(11):3051{3061, Novem-

ber 1994. An early version appeared in the Proceedings of the Second Annual ACM

Symposium on Parallel Algorithms and Architectures, p. 248-259, 1991.

[72] V. Stemann. Contention Resolution Protocols in Hashing Based Shared Memory Sim-

ulations. PhD thesis, University of Paderborn, 1995.

[73] V. Stemann. Parallel balanced allocations. In Proceedings of the Eighth Annual ACM

Symposium on Parallel Algorithms and Architectures, 1996.

[74] R. R. Weber. On the optimal assignment of customers to parallel servers. Journal of

Applied Probability, 15:406{413, 1978.

[75] W. Winston. Optimality of the shortest line discipline. Journal of Applied Probability,

14:181{189, 1977.

[76] R. Wol�. Stochastic Modeling and the Theory of Queues. Prentice-Hall, Inc., 1989.

[77] S. Zhou. A trace-driven simulation study of dynamic load balancing. IEEE Transac-

tions on Software Engineering, 14:1327{1341, 1988.

